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While people are aware that there is a continuing conflict in Ukraine, there is little
understanding of its impact. The military conflict in South-Eastern Ukraine has been on-
going since 2014, with a major socio-economic impact on the Donetsk and Luhansk
regions. In this study, we quantify land cover land use changes in those regions related
to cropland changes. Cropland areas account for almost 50% of the Donetsk and
Luhansk regions, and with the declining industry between 2014 and 2017, the role
of agriculture to the regional economy has increased. We use freely available satellite
data and machine learning methods to map cropland extent in 2013 and 2018 and
derive corresponding changes in cropland areas. We use a multi-layer perceptron (MLP)
to classify multi-temporal Landsat-7, Landsat-8, and Sentinel-2 images into cropland
and non-cropland areas, and a sampling-based approach to estimate the areas of
cropland change. We found that net cropland losses were not uniform across the
regions, and were more substantial in the areas not under control of the Ukrainian
Government (22% of net cropland area loss compared to cropland areas in 2013) and
within a buffer zone along the conflict border line (46%), where combat activities occur.
These results highlight the impact of the conflict on agriculture and the utility of spatially
explicit information acquired from Earth observation satellites, especially for areas, where
collecting ground-based data is impractical.

Keywords: land cover land use, agriculture, cropland abandonment, military conflict, Ukraine, Landsat 8,
Sentinel-2

INTRODUCTION

In 2013–2014, Ukraine experienced a dramatic political and social change, caused by the annexation
of Crimea by the Russian Federation, and partial occupation of areas in Donetsk and Luhansk
regions by pro-Russian militants (Ivanov, 2015; Davis, 2016). The ongoing military conflict in
these regions has had a considerable socio-economic impact in the area, including migration
(1.5 M people were displaced internally) (Woroniecka-Krzyzanowska and Palaguta, 2016), health

Frontiers in Earth Science | www.frontiersin.org 1 November 2019 | Volume 7 | Article 305

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2019.00305
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2019.00305
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2019.00305&domain=pdf&date_stamp=2019-11-19
https://www.frontiersin.org/articles/10.3389/feart.2019.00305/full
http://loop.frontiersin.org/people/414036/overview
http://loop.frontiersin.org/people/89586/overview
http://loop.frontiersin.org/people/418582/overview
http://loop.frontiersin.org/people/380623/overview
https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-07-00305 November 16, 2019 Time: 13:5 # 2

Skakun et al. Cropland Losses in South-Eastern Ukraine

(Vasylyeva et al., 2018) and economy (Davis, 2016). From 2009
to 2013, the Donetsk and Luhansk regions (53.2 thousand sq.
km, or 8.8% of total Ukraine area) accounted for c. 16% of total
Ukrainian gross domestic product (GDP), according to the State
Statistics Service of Ukraine (SSSU) (Figure 1). However, as of
now, only 68% of Donetsk region and 69% of Luhansk region
are under control by the Ukrainian Government (Figure 2),
and their share in national GDP dropped to 7.5% between
2014 and 2017. Although only half of the area of these regions
is cropland, agriculture contributed 4.1% (Donetsk) and 5.9%
(Luhansk) to the overall regional gross value added (GVA) in
2009–2013 (Figure 1). With industrial decline between 2014 and
2017 due to the ongoing conflict, agriculture’s contribution to
GVA increased to 7.6% in the Donetsk region and 18.6% in the
Luhansk region. With the increased role of agriculture in the
regional economy, it is important to understand how the ongoing
conflict is impacting agricultural land use and the geographical
patterns of these changes. The collapse of the former Soviet
Union led to land use change in the Ukraine in the form of
cropland abandonment (Gutman and Radeloff, 2016; Lesiv et al.,
2018). However, since 2007, these abandoned agricultural lands
started to be re-cultivated, resulting in up to 1 million ha of
re-cultivation (Smaliychuk et al., 2016).

FIGURE 1 | Dynamics of some economic metrics in Donetsk and Luhansk
regions in 2006–2017. Share of the regions in Ukrainian gross domestic
product (GDP) (A). Contribution of agriculture to gross value added (GVA) for
Donetsk and Luhansk regions (B). Data were obtained from Statistical Bulletin
“Gross Regional Product in 2017,” produced by SSSU.

However, no studies have been undertaken on quantifying
LCLU changes in the Donetsk and Luhansk regions due to
the recent military conflict. This is in part due to the lack of
reliable information, especially in the regions not under control
of the Ukrainian Government. The SSSU does not provide any
statistical data in the regions under control by the militants,
and collection of data becomes practically impossible due to
the ongoing combat activities. Therefore, remote observations
from space, provide a viable alternative source of information
with regular, timely and synoptic coverage of these regions.
In this study, we used freely available data acquired by
remote sensing satellites, namely Landsat-7 (Arvidson et al.,
2001), Landsat-8 (Roy et al., 2014), and Sentinel-2 (Drusch
et al., 2012), to map cropland areas in the Donetsk and
Luhansk regions at 30-m spatial resolution in 2013 (before
the conflict) and 2018 (during the conflict). We use the
definition of “cropland,” adopted within the Joint Experiment
for Crop Assessment and Monitoring (JECAM) network, which
defines cropland a piece of land that is sown/planted and
harvestable at least once within the 12 months after the
sowing/planting date (Waldner et al., 2016). Since satellite-
derived maps have errors and provide biased estimates of
areas, we combine those maps with sample-based reference
data to derive unbiased area estimates along with uncertainties
(Stehman, 2013; Olofsson et al., 2014). The derived LCLU maps
allow us not only to quantify overall changes of cropland areas
in the regions, but also analyze regional patterns and transitions
with other LCLU classes.

MATERIALS AND METHODS

Experimental Design
Experimental design to estimate areas of cropland change
followed well-established recommended practices (Stehman,
2013; Olofsson et al., 2014). Multi-temporal multi-spectral
satellite data at 30-m spatial resolution were used to classify
the territory of Donetsk and Luhansk regions into cropland
and non-cropland areas for 2013 and 2018. These maps were
used to generate a change detection map with four classes:
“Stable non-cropland” (non-cropland areas in both 2013 and
2018), “Stable cropland” (cropland areas in both 2013 and 2018),
“Cropland gain” (non-cropland in 2013 and cropland in 2018),
and “Cropland loss” (cropland in 2013 and non-cropland in
2018). Areas of cropland changes were estimated from samples.
A stratified random sampling approach was employed with four
classes from the change detection map used as strata. Each
sample represented a 30 × 30 m pixel, and was labeled through
photo-interpretation by an expert. For this, very high spatial
resolution (VHR) imagery from Google Earth and time-series of
moderate spatial resolution satellite imagery (Landsat-7, Landsat-
8, and Sentinel-2) were analyzed visually to label each sampled
pixel into cropland or non-cropland class in 2013 and 2018.
The samples were used to calculate a confusion matrix in terms
of area proportions. Finally, proportions of areas derived from
samples (a stratified estimator, when map classes are strata)
were used to estimate areas and corresponding standard errors
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FIGURE 2 | Location of Donetsk and Luhansk regions in Ukraine (A). Areas under control by the Ukrainian Government and militants (B). Location of the conflict
border line was obtained from the official map produced by the Ministry of Defense of Ukraine (http://www.mil.gov.ua/en/news/2019/02/18/briefing-of-the-english-
spokesman-of-the-ministry-of-defence-of-ukraine-(video)/).

(Stehman, 2013; Olofsson et al., 2014). The overall flowchart is
show in Supplementary Figure 1.

Satellite Data
Remote sensing images acquired by the Enhanced Thematic
Mapper Plus (ETM+) instrument aboard Landsat-7 satellite,
the Operational Land Imager (OLI) instrument aboard Landsat-
8 satellite and by the Multi-Spectral Instrument (MSI) aboard
Sentinel-2A/B satellites were used in the study. Time-series
of Landsat-7/ETM+ and Landsat-8/OLI data were used for
cropland mapping in 2013, and Landsat-8/OLI and Sentinel-
2A/B were used for cropland mapping in 2018. Landsat-
7/ETM + captures images of the Earth’s surface in 7 spectral
bands at 30 m spatial resolution (15 m for panchromatic
band); Landsat 8/OLI acquires images in nine spectral bands
at 30 m spatial resolution (15 m for panchromatic band); and
Sentinel-2A/B/MSI acquire images in 13 spectral bands at 10,
20, and 60 m spatial resolution. For 2013, atmospherically
corrected Landsat-7/ETM+ and Landsat-8/OLI data (Level-2
data product) were downloaded from the USGS’ EarthExplorer
system. For 2018, we used NASA’s Harmonized Landsat Sentinel-
2 (HLS) product (Claverie et al., 2018), which provides a Level-2

Nadir BRDF (Bidirectional Reflectance Distribution Function)-
Adjusted surface Reflectance (NBAR) at 30 m spatial resolution.
Satellite images were further re-projected to the Albers Equal
Area projection at 30 m and mosaiced to cover the study
area. Both USGS and HLS products provide quality assessment
(QA) layers that were used to eliminate clouds and shadows
from satellite imagery. Since data availability varied in 2013
and 2018 (with much more frequent observations available in
2018), different strategies were used to generate composites of
surface reflectance values, which were ultimately used as features
for cropland mapping. These composites were also generated
with respect to the phenology of winter and summer crops.
Winter crops are usually planted in September–October of the
preceding year, and re-emerge in early spring after the dormancy
period in winter. Winter crops are typically harvested in July.
Summer crops are typically planted in April–May and harvested
in August–September.

In 2013, three time periods were used to capture cropland
developments during the growing season (Supplementary
Figure 2): March 1–May 31, June 1–August 31, and July 1–
August 31. The compositing was performed using a maximum
normalized difference vegetation index (NDVI) approach
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FIGURE 3 | Changes in cropland areas in the Donetsk and Luhansk regions. Cropland changes in 2013 and 2018 (A). Subset of panel (A) (identified by a rectangle)
(B). Cropland losses were not uniform throughout the region with most of losses happening along the border line and in the areas controlled by militants. The
majority of cropland losses were due to abandonment, showing a return to natural vegetation.

(Holben, 1986), where an observation with maximum NDVI
during the specified period is used in the temporal composite.
For 2018, owing to more frequent observations from Landsat-
8/OLI and Sentinel-2A/B (Li and Roy, 2017), the following time
periods were used (Supplementary Figure 3): April 9, May
4, June 18, July 7–13, August 24–27, and September 24. For
cropland mapping, we used time-series of surface reflectance
values in the following six spectral bands: blue (∼0.480 µm),
green (∼0.560 µm), red (∼0.660 µm), near infrared (NIR)
(∼0.865 µm), and two short-wave infrared (SWIR) (∼1.6 µm
and∼2.2 µm).

Topography Data
One arc-second digital elevation model (DEM) derived from the
Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007) was
used as an additional input for cropland mapping. The DEM was
re-projected to Albers Equal Area projection at 30 m resolution
to match optical satellite data, and three features were derived,
namely elevation, slope and aspect.

Reference Data Generation
Reference data for cropland mapping (training dataset) and
area estimation (samples) were generated through photo-
interpretation by an expert by analyzing moderate spatial
resolution data (Landsat-7, Landsat-8, and Sentinel-2) and
VHR data available at Google Earth. The reference data
were classified into two classes (cropland and non-cropland)
through analysis of satellite image time-series, which capture

phenological development of cropland, as well as spatial textural
information from the VHR satellite data. Usually availability
of the VHR images in the May-August period allowed better
detection of agricultural fields. In cases, where VHR data were
not available, only time-series of moderate spatial resolution
data were used. The main difficulties were in discriminating
cropland from natural vegetation. Multi-year natural vegetation
can be discriminated from cultivated areas by their characteristic
geometrical shape and boundaries. A more complex case is
identification of abandoned fields with natural vegetation. This
was done by first examining textural information from VHR
imagery, as well as phenological profiles from moderate spatial
resolution satellite data. Examples of abandoned fields with
natural vegetation are given in Supplementary Figure 6.

Cropland Mapping
Multi-temporal optical satellite images in six spectral bands along
with three DEM features (elevation, slope, and aspect) were
concatenated into a feature vector that was input to the classifier.
Before feeding into a classifier, input data were normalized to
have mean 0 and standard deviation 1. We used a multi-layer
perceptron (MLP) (Skakun et al., 2015; Kussul et al., 2017b) to
classify each pixel into a cropland or non-cropland class. The
MLP had 100 neurons in a hidden layer with a rectified linear
unit (ReLU) activation function (Nair and Hinton, 2010) and
two output neurons corresponding to two output classes. To
reduce MLP overfitting, we also applied an L2 (or Tikhonov’s)
regularization (Phillips, 1962; Tikhonov et al., 1998). The derived
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FIGURE 4 | Location of 831 reference samples, which were used to estimate
areas of cropland changes. The distribution of samples among four strata was
as follows: 308 samples for strata “Stable non-cropland,” 220 samples for
“Stable cropland,” 126 samples for “Cropland gain,” and 177 samples for
“Cropland loss.”

cropland extent maps were filtered to remove connected objects,
identified as cropland, with an area nine pixels or less. Binary
cropland/non-cropland maps for 2013 and 2018 were used to
derive the cropland change map with the following four classes:
stable non-cropland, stable cropland, cropland gain and cropland
loss. The majority voting filter with a 3 × 3 kernel was run for
the change detection map to reduce the impact of noise and
isolated pixels.

Area Estimation
The maps incorporate errors and direct application of maps
for area estimation, for example pixel counting, will result in
biased estimates. A stratified random sampling of 30 × 30
m pixels was used to estimate the areas of cropland change.
Four strata were identified from the satellite derived 2013–
2018 cropland change detection map: “Stable non-cropland,”
“Stable cropland,” “Cropland gain,” and “Cropland loss.” Overall,
831 samples (sampling rate was 0.0014%) were used with 308
samples allocated for strata “Stable non-cropland,” 220 samples
for “Stable cropland,” 126 samples for “Cropland gain,” and
177 samples for “Cropland loss.” The number of samples was
selected in the following way: 75 and 100 samples were initially
allocated for change strata “Cropland gain” and “Cropland loss,”
respectively, while the remainder of the sample size was allocated
proportionally to the area of the corresponding stratum. Pre-
allocating a certain number of samples for change strata was
done to reduce uncertainties of area estimates for change strata

(Olofsson et al., 2014). These samples were used to compute
confusion matrices to estimate the accuracies of the map,
estimate the areas and corresponding uncertainties (Olofsson
et al., 2014). These estimates are given in Supplementary
Data Sheet 1.

RESULTS

Classification Results and Accuracy
Assessment
Cropland extent maps for 2013 and 2018 are shown in
Supplementary Figures 4, 5. These maps were used to produce
a change detection map (Figure 3), and the latter was used for
sampling (Figure 4) to estimate accuracies and areas. A confusion
matrix in terms of estimated area proportions along with
producer’s and user’s accuracies is provided in Supplementary
Table 1. The estimated producer’s accuracy is 92.2 ± 1.0% for
stable non-cropland, 74.6± 1.2% for stable cropland, 86.2± 8.4%
for cropland gain, and 98.7 ± 1.3% for cropland loss. The
estimated user’s accuracy is 97.1 ± 1.0% for stable non-cropland,
96.8 ± 1.2% for stable cropland, 24.6 ± 3.9% for cropland
gain, and 40.1 ± 3.7% for cropland loss. The estimated overall
accuracy is 84.7 ± 0.8%. Accuracies for classes are not balanced,
therefore direct application of maps for area estimation through
pixel counting would lead to biases. The main confusion of
cropland gain is with stable cropland. Those cropland gains
were primarily conversions from fallow. The fields, that were
fallow during the current year and were planted for the next
season as a winter crop, were designated as cropland. This
was done to comply with the formal definition of cropland
used in the study, which uses a 12 month for the crop to
be planted and harvestable. Capturing winter crops, which
were planted late in the current season (for the next season)
with optical satellite data represents a challenge because of
heavy cloud cover late October and November. The main
confusion of cropland loss is with stable cropland. Parts of
cropland losses (around 40%) were actual conversions from
cropland to fallow, which were incorrectly mapped for the same
reasons stated above.

Overall Cropland Area Changes
In 2013, cropland accounted for 1.46 ± 0.04 Mha and
1.11 ± 0.03 Mha of the Donetsk and Luhansk regions,
respectively. The uncertainty is represented as ± 1 standard
error (SE) of the estimate. These values represent a 2.2 and 8.0%
overestimation compared to the official statistics provided by the
SSSU. Typically, cropland area is underestimated by the official
statistics due to imperfect data collection protocols and under-
reporting by crop producers (Gallego et al., 2014; Kussul et al.,
2017a). For 2018, our satellite-based estimates were cropland
losses for the entire region of 188.8 ± 19.2 Tha for Donetsk and
64.2 ± 12.7 Tha for Luhansk regions, while cropland gains were
53.5 ± 13.2 Tha for Donetsk and 63.0 ± 14.0 Tha for Luhansk.
Net cropland losses (loss minus gains) were 135.3± 23.3 Tha (p-
value = 8× 10−8) and 1.2± 18.9 Tha (p-value = 0.95) in Donetsk
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and Luhansk regions, respectively. The identified cropland gains
were due to transitions from fallow. For the Donetsk region, net
cropland losses accounted for 9.2% of the cropland area in 2013.
For Luhansk region, cropland gains and losses were offset.

Cropland Area Changes in the Areas
Under (and Not Under) Control of the
Ukrainian Government
In the areas under the control of the Ukrainian Government
(Figure 2), we observed cropland net losses 39.8 ± 15.6 Tha
(p-value = 0.011) for Donetsk and cropland net gains
31.2 ± 16.1 Tha (p-value = 0.054) for Luhansk. Those cropland
gains were primarily due to conversion from fallow to cropland
(100% in Donetsk and 94% in Luhansk). However, the derived
uncertainties were too high to make any conclusions on cropland
gains/losses. However, different patterns were observed in the
partially occupied areas. In the areas not under control of the
Ukrainian Government, net cropland losses were 97.5± 17.6 Tha
(p-value = 2 × 10−7) in Donetsk and 31.4 ± 10.2 Tha (p-
value = 0.0025) in Luhansk. These estimates account for
25.7 and 14.8% loss of cropland areas (since 2013) in those
sub-regions of Donetsk (379.9 ± 24.2 Tha) and Luhansk
(212.0 ± 14.1 Tha) regions, respectively. The majority of
cropland losses were due to abandonment, showing a return
to natural vegetation: 60% in Donetsk and 73% in Luhansk
regions. Cropland gains were not substantial (6.1% in Donetsk
and 3.0% in Luhansk) and were due to transition from fallow.
The losses in cropland areas would lead to reduction in crop
production. Assuming contribution of agriculture to regional
GVA at 7.6% in Donetsk region (average 2014–2017) and
18.6% in Luhansk region (Figure 1), that would account
2.0 and 2.8% reduction in GVA for Donetsk and Luhansk
regions, respectively.

Cropland Area Changes Within the
Border Line
We also estimated cropland areas within a ± 7 km buffer
zone along the conflict border line, which is subject to active
combat operations. The net cropland losses were estimated at
93.5 ± 12.7 Tha (p-value = 1 × 10−15), which constitutes 46%
of the cropland area estimates in 2013 for this zone. Those
cropland losses were due to abandonment and a return to natural
vegetation (88%).

DISCUSSION AND CONCLUSION

The military conflict in Southeast Ukraine has been continuing
since 2014, and the present study highlighted regional LCLU
changes associated with this conflict. We found that cropland
losses were not uniform throughout Donetsk and Luhansk
regions, but were substantial in the areas controlled by militants
and within the border area, where combat activities occur. In
those regions, up to 46% cropland areas were abandoned relative
to the 2013 cropland estimates and are returning to natural
vegetation. These results highlight the utility of spatially explicit
information acquired from Earth observation satellites, especially
for areas, where collecting ground-based data is impractical.
While the present study provides a snapshot of changes occurred
during 2013–2018 period, further work is needed to monitor
and quantify long-term consequences of the conflict on the
environment in the Southeastern Ukraine.
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