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A method for reconstruction of gridded fields of sea surface variables from time-
dependent observations, using sub-regional EOF (Empirical Orthogonal Functions)
patterns from models, is presented and tested. Covariance fields, calculated from the
model results over long enough time span, are used to find EOF modes. The gravest
“observational” amplitudes and their first temporal derivatives are determined from the
least-square minimization of fitting errors in relation to the observed values. The field is
reconstructed by superposition of continuous model-based mode patterns multiplied
by observational amplitudes that meet adopted statistical limits. If the observational
amplitude exceeds the limits, gridded fields for this and higher modes are not produced.
We applied the method in the northeastern Baltic over the model time series 2010–2015.
Daily averages of sea surface temperature (SST) and salinity (SSS) from the high-
resolution (grid step 0.5 nautical miles) sub-regional HBM model were spatially averaged
over bins of 5× 5 nautical miles. Three first modes cover 99% of variance of temperature
and 61.4% of salinity. As shown by experiments with pseudo-observations (model
values at these points reconstructed to the model grid and then compared with the
original model data), reconstruction performance depends on the configuration of
the observation points in the model domain. Still, a few first modes usually produce
acceptable results. When removing the SST seasonal cycle prior to EOF analysis,
spatial patterns of leading modes remained practically unchanged, share of variance of
the three first modes was reduced to 88.6% and reconstruction errors were reduced
by about 25%. Sufficient spatial data coverage of the larger basin with ship-born
observations usually takes quite long time – of the order of month; therefore, time
correction of the amplitudes using the found temporal derivatives improves the accuracy
of reconstruction. The method is compared with the Optimal Interpolation (OI) by using
the pseudo-observations. Results show that, for SST reconstruction, the OI method
is significantly worse than the EOF method. For SSS, OI is slightly better than EOF.
The superiority of EOF is that the remote correlation patterns can be used in the
reconstruction, which is important when the observations are sparse.

Keywords: sea surface observations, model-based patterns, EOF analysis, reconstruction of gap-free data,
Baltic Sea
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INTRODUCTION

Many oceanographic tasks require appropriate reconstruction
of gridded fields from different observational data: shipborne
monitoring, coastal stations, offshore buoy stations, FerryBoxes,
gliders and remote sensing. As a result, densely sampled
sections may be neighbored with areas of rare or missing
observational data.

Meteorology and oceanography share the same theoretical
foundations of interpolation and data assimilation (Ghil and
Malanotte-Rizzoli, 1991; Ide et al., 1997). Their practical
implementation is, however, rather different (Ghil, 1989), owing
to the nature of governing processes (landlocked basins, shallow
areas and wind driving characterize oceans; atmosphere is
unbounded, “deep” and self-driving by polar-tropical gradients),
but also of techniques and amount/density of observations.

Many different methods have been applied for the data
reconstruction, including both statistical [e.g., regression,
optimal interpolation and Empirical Orthogonal Functions
(EOFs)] and dynamic methods (e.g., data assimilation). Good
reconstruction (in some statistical merit) should be based on
the knowledge of multiscale spatial and temporal covariance.
Atmospheric and ocean variability are similar (Woods, 1980;
Cushman-Roisin and Beckers, 2011), if the lengths are scaled
to the different values of baroclinic Rossby deformation radius
(Rd). On the shorter scales, marginal seas and/or their sub-
basins which have typical lateral dimensions less than 1000 km
(typical Rd in the atmosphere), are forced by the same or
neighboring weather patterns. This causes for example coherent
upwelling/downwelling patterns (Lehmann et al., 2012) on
the left-hand/right-hand coasts from the direction of weather-
generated wind. Considering also faster heating or cooling of
shallow coastal areas compared to the deeper offshore regions
(Legrand et al., 2015), and freshwater spreading patterns due to
the dynamics of river plumes (Soosaar et al., 2016), there could
be significant covariance of sea surface temperature (SST) and
sea surface salinity (SSS) in marginal seas over large distances,
mainly stretched along the topography isolines and/or coasts
(Fu et al., 2011).

Classical optimal interpolation (OI) (Gandin, 1963) assumes
that covariance is represented by Gaussian, damped cosine or
exponential decay of covariance with distance between the points.
In case of open sea or dense observations (e.g., satellite SST),
the OI is sufficiently good for the reconstruction (Høyer and
She, 2007). However, when the observations are sparse or in the
coastal waters where the covariance pattern is complicated, more
comprehensive reconstruction method is needed.

Spatiotemporal variability of the ocean state can be regarded
as an attractor of the dynamic ocean system in a linear phase
space, in which any state can be presented as a linear summation
of a complete set of orthogonal base functions. The EOFs (Davis,
1976) is one kind of such base functions, which is derived
as eigenfunctions of the observed spatial covariance matrix. It
projects the spatiotemporal variability of the system state onto
correlation patterns of different scales, which are orthogonal.
The time-space matrix of the field of interest is decomposed
into the sum of space-dependent mode patterns multiplied

by time-dependent amplitudes of each mode (eigenfunction).
Eigenvalues present the variance of particular mode; the sum
of all eigenvalues is equal to the variance of the initial field.
Usually, a few most energetic modes present majority of the initial
field variance. The method is not restricted to Gaussian or other
similar decay over space lag.

One of the first developments of EOF interpolation in
oceanography (Smith et al., 1996) considered SST on the global
scale. During the period 1982–1993, when data coverage was
good, SST data were gridded using traditional OI. Further, EOF
modes were calculated from the gridded data. Subsequently,
the EOF method was expanded to the globe in a longer
period of 1950–1992. Compared to the traditional OI, the EOF
produced enhanced large-scale patterns like ENSO. A number
of studies (Kaplan et al., 1997; Kim, 1997; Menemenlis et al.,
1997; Beckers and Rixen, 2003) have considered multivariate
combined methods of interpolation: large-scale background field
is approximated by the dominant EOFs; in the regions of dense
sampling, the anomalies from large-scale fields are interpolated
using OI or some of its modified method. There are also examples
how iterated EOF method (DINEOF – Data Interpolating
Empirical Orthogonal Functions) is used to reconstruct gap-free
satellite images (Alvera-Azcárate et al., 2015; Jayaram et al., 2018).

The present paper has been initially motivated by the need
of detailed examination of spatial covariance characteristics in
a specific region – the northeastern Baltic, in relation to the
data assimilation. Although using OI with Gaussian correlation
function provided satisfactory results (Zujev and Elken, 2018),
need for improved description of statistics deemed obvious.
During different test options, we used also traditional EOF
method. The covariance was determined from the model results
since observational data were too irregular. The vast amount of
available data was limited to the sea surface data, namely SST and
SSS. Although SST is densely sampled by remote sensing, most
demanding in terms of methodical aspects is using in situ data
from a variety of platforms, e.g., research vessels, FerryBoxes and
buoy stations. During the tests, we developed an easy algorithm,
where “observational” amplitudes of leading base functions (EOF
modes) can be evaluated by limited amount of instantaneous
observational data using least-square minimization. Smith et al.
(1996) have already developed this mathematics earlier, but they
used the method in oceanic conditions where EOF behavior is
quite different. Applying the method in the sub-region of the
marginal sea, preliminary results were promising and they were
presented in a recent conference paper by Elken et al. (2018).

The aim of the present paper is to develop and test the
method for large-scale EOF analysis of sub-regional time-
dependent SST and SSS data, based on the covariance estimates
from the model results. In real oceanographic situations, spatial
observations are spread over a certain time span (mapping
of a sub-region by different countries/ships may take about
month), therefore time correction of variables of reconstruction
procedure would be useful. “Observational” EOF amplitudes and
their temporal derivatives are calculated from the conditions of
least-square minimization of EOF analysis error at observation
points, compared to the observed values. After evaluating the
covariance and EOF modes for 5-years test period, we analyze
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the reconstruction accuracy using “pseudo-observations,” i.e.,
extracting of model data at variable “observation” locations and
comparing the reconstruction result with the original model
result, using the EOF reconstruction but also OI. Further tests
of the method include removal of SST seasonal cycle prior to
reconstruction, partitioning of the study region into smaller sub-
regions, comparison of reconstruction using time correction,
and calculation of long sequences of gridded data using
only ship-borne observations. The paper ends with discussion
and conclusions.

METHODS AND DATA

Notations for Empirical Orthogonal
Functions (EOF)
We follow the vector-matrix notation and consider the model
results as M × N space-time matrix X containing deviations from
space-dependent temporal mean values x̄m. The columns xi of
matrix X are spatial time slices consisting of M points at time i,
out of N time instances. Determine then the empirical orthogonal
functions as M ×M matrix E, which columns are eigenvectors
(normalized orthogonal spatial modes) ek. In the decomposition,
the eigenvalues λk form the diagonal matrix 3 that has zeros
outside the main diagonal. The eigenvalue of the specific mode
presents the variance attributed to this mode; the sum of all
eigenvalues is the variance of X.

Time-dependent part of the decomposition is M × N matrix
A, which columns ai are the values of time-dependent amplitude
vectors (one amplitude time series value for each mode) at time i.
As a result, we obtain

xi = E3ai or xi = Eãi (1)

where ãi = 3ai is dimensional amplitude. For the whole data
set X = E3A. Note the orthonormality as eiej = δi,j and aiaj =

δi,j, where δi,jis the Kronecker symbol. For the amplitudes,
orthonormality usually is interpreted that amplitudes of different
modes are uncorrelated in time.

The eigenvalue problem is

BE = 3E (2)

(equivalent to |B− λI| = 0), where the covariance matrix
averaged over N instances of time is

B =
1

N − 1
XTX (3)

Matrix E can be found by a number of methods for solving
linear system of equations. One favorite method is singular value
decomposition (SVD). Due to the orthonormality ETE = I. The
dimensional amplitudes are determined by the relation

ãi = 3ai = ETxi (4)

Reconstruction of Observed Fields Using
EOF Modes
Consider now the case where observations at a specific time
instance i are represented by vector yi that has different set of

K points than M points for xi. If observations include high-
resolution data that contain multiple data points within the grid
cell and time interval of model lattice, such oversampling has to
be removed prior to further analysis, usually by averaging over
the grid cell. Therefore K ≤ M. Gridded data xi are transformed
to the observation points by matrix Hi (observation function)
in a way that Hixi has the same dimension as yi and has
to be directly compared with it. To be more specific, vector
yi presents the observed deviations from the temporal mean
value Hix̄m whereas the observation function Hi depends on the
configuration of observation points. Eigenvalue transformation
takes the form Hix̂i = HiE âi, where âiis the “observational”
amplitude, determined from observed values yi at K observation
points, using the full patterns of EOF modes ek with M spatial
points. For the least-squares minimization of ||yi −Hixi||

2
=

||yi −HiEâi||
2, the system of equations is HTETHEâi = HTETyi,

where the amplitudes as K × 1 vector and interpolated field x̂i are
found from

âi = (HT
i ETHiE)−1HT

i ETyi, x̂i = Eâi (5)

Note, that we cannot here anymore use the condition that the
mode patterns are orthonormal.

In the matrix of eigenvectors E, where different modes are
presented by column vectors, we take only L first vectors and
the rest of the columns are truncated to zero. When using only
L modes for reconstruction, contribution of truncated modes is
added in the error variance.

For the clarity of the calculations, we spell out also the
element-wise summation form without presenting the time

index. Minimization is done for Q =
∑K

k=1

(
yk −

∑L
l=1 âlêk

l

)2
,

leading to the L conditions ∂Q
/
∂ âl = 0. It results in the L× L

system of linear equations

Dâ = h (6)

where the matrix and vector elements are

Dmn =

K∑
k=1

êk
m êk

n, hm =

K∑
k=1

yk êk
m (7)

Here êk
m is the m-th eigenvector mapped to the

observation point k.
The original dimensional amplitudes ã have some statistical

regularities determined over a large number of samples. Such
regularities contain e.g., standard deviation σ or variance σ2,
percentiles and covariance in relation to time lag etc. The
observational amplitudes â are determined from much less
amount of information and are rather uncertain. There is a
caution that with bad configuration of the observation points,
observational EOF amplitudes of particular modes may get larger
than limits determined from full statistics (details in section
Covariance and EOF Characteristics). Therefore it is important
to determine the maximum number of modes L by checking if
determined â values lie within the statistical limits of ã; if the
limits are exceeded then this and higher modes are removed from
the further analysis.
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Extension of the EOF Reconstruction
Method to Time-Dependent Data
Quite often in oceanographic practice, there are not enough
observational data at a specific time instance i to perform
reliable construction of observations. Shipborne surveys over
larger sub-regions may take several days or even weeks. Usual
procedure is to consider the observations yp made within the time
window n1 . . . n2, p ∈ n1 . . . n2 as instantaneous, and reference
the (non-processed) result to the time instance i, when n1 ≤ i ≤
n2. Such procedure can introduce apparent distortions, when
the observations are conducted during the increase or decrease
period within the seasonal cycle. For example, when during
the spring warming period the observations are first acquired
in the southern part and later in the northern part, then
higher temperatures presented in the northern part of the map
compared to the southern part are just an artifact, due to missing
treatment of time-dependence of the data.

Take now the P observed data yp within window p ∈ n1 . . . n2

and construct modified observation function Ĥp that allows
pointwise comparison of yp at different times and Ĥpx based on
gridded data at specified time i. Time difference of observation
p and reference time i is determined 1tp = tp − ti. Eigenvalue
transformation is Ĥpx̂i = ĤpE b̂p, where modified amplitude,
accounting for linear time dependence given by rate of change
vector αi, is b̂p = âi + αi ·1tp. The function to be minimized
is Q = ||yp − ĤpEb̂p||

2
= ||yp − ĤpE(âi + αi ·1tp)||

2 regarding
∂Q/∂ âl = 0 and ∂Q/∂αl = 0. Define the 2L unknown coefficients
z = {â1 . . . âL, α1 . . . αL} and modified EOF mode values at
observation points fp

m = {ê
p
1 . . . êp

L, êp
11tp . . . êp

L1tp}, we obtain
2L× 2L system of linear equations

Gz = w (8)

where the matrix and vector elements are

Gmn =

P∑
p=1

f p
m f p

n , wn =

P∑
p=1

yp f p
n (9)

We note that when all observations have the same time stamp and
1tp = 0, the system (8)-(9) is reduced to (6)-(7).

From the found vectors z we extract separately observational
amplitudes â =

{
â1 . . . âL

}
and their temporal derivatives α =

{α1 . . . αL}, where they both are checked for the statistics of full
data set, in order to determine the highest acceptable mode L.

Reference time i for observational amplitudes (and
corresponding reconstructions) can be modified on the
condition of acceptable accuracy. Finding these bounds is a
subject of separate study. In principle, it is possible to perform
centered referencing, including the data from past and future
times (like it is done in processing of existing time series), but
also backward referencing, including only the past data (like
within data assimilation for on-line forecasts).

Estimation of Reconstruction Accuracy
Using Pseudo-Observations
Accuracy of EOF reconstruction by a limited number of modes is
performed by evaluating the reconstructed fields versus original

fields over a sufficiently long span of time. In case of observational
data, another key factor, besides the number of modes, is
configuration (including the number) of observation points.
Assuming that statistical features of observations are close to
that of the model results, we introduce pseudo-observations
as extract of model results in the predefined locations where
usually observations are taken. Accuracy of reconstruction
from the pseudo-observations was checked by a series of
experiments containing the following steps: (i) Configuration
of observation points was selected; (ii) model values were
extracted at observation points (pseudo-observations were
taken); (iii) reconstructed fields x̂i were calculated from pseudo-
observations using (5)-(7); (iv) calculations were repeated for all
time instances available, statistical characteristics like root-mean-
square deviation (RMSD) between the reconstructed and original
fields were evaluated.

The main experiments were made for the case of pseudo-
observations on the variable grid. The factor N by which the
grid step of observations were larger than the model grid was
varied from 1 to 11. Additional experiments were performed
with configurations typical to the FerryBox observation points
and typical to the marine shipborne monitoring with reduced
sampling network (Elken et al., 2018; not shown here).

In addition to the EOF reconstruction, OI was used for
comparison purposes in two configurations: (i) interpolation
of deviations from locally resolved mean (modeled) fields that
includes high gradients in the coastal areas of river influence
zones, (ii) interpolation of deviations from smooth climatological
mean fields. Both configurations used Gaussian correlation
function in the form C (r) = exp(−r2/R2) (e.g., Zujev and Elken,
2018), where r is the space lag and R is the correlation scale.
The OI configurations used for smoothing purposes prescribed
noise-to-signal ratio η2.

Regional Setting of Experiments
We chose the area of our study in the northeastern Baltic
(Figure 1) that contains two distinct geographical areas – Gulf
of Finland and Gulf of Riga – and includes the northeastern part
of the Baltic Proper. The Baltic Sea is a brackish estuarine-type
multi-basin marginal sea (Elken and Matthäus, 2008; Leppäranta
and Myrberg, 2009), where complex coastline and topography
essentially guide the dynamics of SST and SSS. In the Gulf of
Finland, EOF modes have profound structure (Elken et al., 2011).
Thermal regime is dominated by the seasonal heat cycle, but it
is also modified by differential heating/cooling above variable
depths in the coastal and offshore areas. Ice cover occurs in the
coastal areas every winter, while open parts of the sub-area are
ice-covered during severe winters (Vihma and Haapala, 2009).
SST is heavily modified by upwelling and downwelling patterns
induced by the transient wind fields (e.g., Laanemets et al., 2011).
Due to the fragmented coastline and multiple rivers entering
the area, SSS has numerous high-gradient regions. Large scale
SSS patterns are guided by unsteady circulation that depend
on the climatic variations of atmospheric forcing; while earlier
studies suggested cyclonic circulation patterns in both the Gulf
of Finland and the Gulf of Riga and right-hand spreading of less
saline waters from the large Neva and Daugava rivers, then recent
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FIGURE 1 | A map of the study area in the northeastern Baltic. Shown are the main 8 rivers bringing into the sea mean freshwater discharge (m3 s−1) as given in the
legend.

studies frequently reveal also anticyclonic patterns (Soosaar et al.,
2016). Mesoscale variability has rather short spatial scales; the Rd
values are from a few km to about 7 km (Alenius et al., 2003).

We used the HBM model (Berg and Poulsen, 2012) with sub-
regional 0.5 NM (nautical mile, 926 m) setup (Lagemaa, 2012;
Zujev and Elken, 2018) in the geographical bounds shown in
Figure 1 to produce the SST and SSS data. This HBM-EST model
domain contains 529 × 455 horizontal grid points. Forcing at
the western open boundary is taken from the Baltic-wide HBM
model, which operates routinely within the Copernicus Marine
Environment Monitoring Service (CMEMS) with the resolution
of 1 nautical mile. Forcing on the sea surface is obtained from
the Estonian version of the HIRLAM model that is run by the
national weather service for operational forecasts on 11-km grid.

HBM is a 3D oceanographic model for the North and
Baltic Sea, which uses Arakawa C-grid and is forced by
surface energy fluxes (mechanical, radiative, thermodynamic)
using bulk parameterization formulae. The model includes
sub-models for turbulence parameterization. A model for ice
thermodynamics and ice mechanics is embedded into the
model system. The HBM model has been upgraded within
the CMEMS from earlier BSHCmod versions. The Baltic-wide
HBM setup is extensively validated within CMEMS. The quality
information document for physical variables can be found on the

web http://cmems-resources.cls.fr/documents/QUID/CMEMS-
BAL-QUID-003-006.pdf as accessed on 10 July 2019.

For the analysis we used daily model data of free run (without
data assimilation) averaged over 10 × 10 grid points, resulting
in 744 wet points with 5 NM (9.26 km) resolution on the coarse
grid. Since the grid step of the averaged fields is larger than the
Rossby deformation radius, mesoscale patterns were suppressed
in the analysis results. The 5-year analysis period covered 1826
dates from July 1, 2010 to June 30, 2015.

In the observational data we focused on the in situ SST
and SSS data and remotely sensed SST data were occasionally
used for the comparison. Shipborne profile observations were
acquired from HELCOM/ICES database, downloaded from
https://ocean.ices.dk/helcom/ on 12 February 2018. After
extraction of surface data within the study area, 2915 data
records were retrieved within 2009-2014. Prior to using the data
for the reconstruction, oversampling for each particular time
instance was eliminated by taking averages on the coarse grid
and selected time interval. CMEMS remote sensing SST Level
4 (L4) data were downloaded from the service portfolio http://
marine.copernicus.eu/services-portfolio/access-to-products/ as
the product SST_BAL_SST_L4_NRT_OBSERVATIONS_010
_007_b. FerryBox data were obtained from the same portfolio
as the product INSITU_BAL_NRT_OBSERVATIONS_013_032.
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Climatological monthly temperature and salinity fields were
adopted from the study made by Janssen et al. (1999), covering
the period 1900–1996.

RESULTS

Mean and Standard Deviations of SST
and SSS
The mean fields of surface temperature and salinity, shown
in Figures 2A,B, were calculated as temporal mean values of
individual grid points x̄m over the whole study period. Data
assimilation was not performed; therefore, the presented maps
may include some model bias. Primary purpose of the mean fields
is to set the background for the variability study, i.e., investigate
statistical properties of SST and SSS deviations from their fields.

The maps of mean SST and SSS are dependent on the
average atmospheric conditions during the period summer
2010 – summer 2015. The period covered severe ice winter
(2010/2011), and average (2011/2012, 2012/2013) and mild
(2013/2014, 2014/2015) winters (FMI, 2018). The mean SST map
reveals lower temperature along the Finnish coast; that occurs
during dominating westerly winds favoring upwelling in that
region. This is consistent with mean salinity distribution in the
Gulf of Finland that exhibited pattern typical to the dominance
of reversed estuarine circulation (Westerlund et al., 2019), where
tongue of less saline water near the Finnish coast is not present.
While our SSS map is close to the yearly climatological map
(Janssen et al., 1999) then SST is in the Gulf of Finland higher
by 1–1.5◦C and in the Gulf of Riga by 0.5–1◦C.

Based on all the model values for the period 2010–2015,
we calculated total mean value and the corresponding standard

FIGURE 2 | Maps of mean values (A,B) and standard deviations (C,D) for SST (A,C) and SSS (B,D). Model grid statistics is calculated from 1 July 1 2010 to 30 June
2015. Climatological mean values for the period 1900–1996 (Janssen et al., 1999) are shown in (A,B) by red isolines. The units are ◦C for SST and g kg−1 for SSS.
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deviation σ for SST as 8.2 and 7.0◦C, and for SSS as 5.45
and 1.3 g kg−1. While variability of SST is strongly dominated
by temporal changes, SSS variability reveals dominant spatial

changes. Namely, mean temporal variance σ2
t
(
k
)k

, calculated on
the basis of all spatial points k, comprises 99% of total variance for
SST but only 11% for SSS. The remaining percentage of variance
is due to variability of spatial means. Alternatively, mean spatial
variance σ2

x (i)
i
, calculated on the basis of all temporal instances i,

reveals 97% of total variance of SSS and only 3% of SST. During
individual time instances, spatial standard deviation σx (i) for SST
was found from 0.08 (during winter) to 2.8◦C; SSS values range
from 0.95 to 1.5 g kg−1.

Maps of temporal standard deviations σt
(
k
)
, calculated for

each spatial point k, are presented in Figures 2C,D. These maps
include seasonal cycle but also interannual and shorter period
variations. Despite the small fraction of spatial variance of SST,
some distinct spatial features over the area are evident. Higher
temporal standard deviations of SST (above 7.2◦C) are found
in the shallow areas in the eastern part of the Gulf of Finland
and in the Moonsund located between the large Estonian islands
and the mainland. Spatial variations σt

(
k
)

of SSS are in the
range from 0.14 g kg−1 to 1.5 g kg−1 (Figure 2D), whereas
higher values occur near the entrance of larger rivers. High spatial
variations of standard deviation make difficult using spatial
correlation functions, which calculation require normalizing
covariance with variance.

Covariance and EOF Characteristics
We calculated SST and SSS covariance according to Equation
(3). After EOF decomposition of B using Equation (2), we also
calculated covariance of the sum of six most energetic modes
and of the rest higher modes. Due to orthogonality, covariance is
additive regarding the EOF modes, i.e., the full covariance is the
sum of covariance of the component data sets (six most energetic
modes, and the rest higher modes). In Figure 3 SST and SSS
covariance are presented as a function of space lag between the
model points. We see significant spreading of individual values
of covariance over pairs of points and conclude that calculated
covariance is not homogeneous, which is usually assumed in
implementation of OI.

In the bins of space lags, distribution (histogram) of
covariance of original fields and of the sum of most energetic
EOF modes (not shown) usually does not follow the normal
distribution. Therefore, mean covariance values can be
considered only as indicative, since they differ significantly
from the median values. Still it is clear that big covariance
values occur over large distances, especially for SST. Covariance
of residual fields (sum of higher EOF modes) has a good
normal distribution and it decays fast with increasing space lag.
Correlation (not shown) goes below 0.2 at a distance of 30 km
for both SST and SSS, justifying the use of OI for this part of
the variability.

Spatial EOF mode patterns for 4 leading modes are given in
Figures 4, 5 for SST and SSS, respectively. The one-dimensional
vectors ek of the SST and SSS modes are remapped back into the
two-dimensional geographical framework.

Among the spatial patterns, large-scale physical interpretation
can be easily found for four to six modes. The first, most energetic
modes have nearly “flat” patterns without sign change; their
amplitudes are dominated by a seasonal signal. Higher modes are
considered random due to eddies and other mesoscale processes,
therefore their correlation decays rapidly with increasing distance
(see the earlier sub-chapter). In the SST patterns, the first mode
dominates heavily (97.64% of variance explained) due to the
seasonal cycle (Table 1). In the SSS patterns (Table 2), the share
of different modes is more distributed and the first six modes
explain 72.88% of the total variance.

Temporal variance of the mode amplitudes ã equals to the
eigenvalues of covariance matrix B. Based on the statistical
features of the amplitudes, it is possible to set the “natural” limit
Fk for each of the mode k. During EOF reconstruction, we use
only the modes k where the estimated individual amplitude values
at time i follow the condition

∣∣âi,k
∣∣ < Fk. Since the absolute

values depend on the number of grid point, configuration of
the sea area and other factors, we do not present the numerical
values of Fk. Excluding 10% of the higher and lower values of
“natural” (calculated from full set of model results) amplitudes,
a reasonable limit is Fk = 2 σ (ãk ).

We have presented in this paper the formulae (5)-(7) how
to reconstruct gridded fields from observations made during
one fixed time instance. Actual spatial observations are quite
often not instantaneous in time. The weights of observations
from past and future times depend on the temporal covariances
(or correlations). Within the EOF decomposition, amplitudes of
SST and SSS modes have different temporal correlation patterns,
as shown in Figure 6. For the SST, the first and the second modes
are nearly annually periodic with correlation r > 0.9 and shifted
phases. Moderate semi-annual periodicity (r∼0.2–0.3) appears
on the fifth mode. The first SSS mode has annual harmonic with
r≈ 0.4. The second SSS mode has even stronger annual harmonic
with r≈ 0.6. Based on long correlation times, we consider the
method of EOF reconstruction of time-dependent observations,
presented by formulae (8)-(9), justified for the time window
up to 1–2 months.

Reconstruction Errors: Experiments With
Pseudo-Observations
Dependence of accuracy of EOF reconstruction on the number
and spacing of observation points was firstly studied by grid
configuration of pseudo-observations (see section Estimation
of Reconstruction Accuracy Using Pseudo-Observations) with
variable grid step. At prescribed locations, model data were
extracted on specific time instance; then the result of gridded
reconstruction was compared with the original model data.
Observational grid step 1o was taken as integer n times the model
grid step 1m, 1o = n1m. Observation grid step factor n was
cycled from 1 (observations taken at all the model points) to 11
or more (leaving 2-6 observation points).

We made pointwise comparison of all the 744 spatial points
during 1826 time instances, using 6 EOF modes for the
reconstruction. Frequency histograms of deviations for SST and
SSS are presented in Figure 7 for two spacing options between
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FIGURE 3 | Covariance of SST (A) and SSS (B) as a function of space lag between the model points. Shown are heavily smoothed two-dimensional relative
histograms of the original data (dotted lines, percentiles 90, 95, and 99%) and mean covariance of original data (black line). For SSS are shown also covariance of
the sum of six most energetic EOF modes (red line) and of higher EOF modes (blue line). For SST the latter curves are not distinguishable from mean covariance and
zero, respectively.

the pseudo-observations. We reveal that error histograms are
quite insensitive to the number of observations K, when it is
larger than the number of significant modes L. However, at
small observation amounts the number of larger errors (can be
considered as outliers regarding normal distribution) increases.
On the background of grid points of 37 km spacing, reconstructed
SST and SSS maps are shown for one arbitrary date 19 June

2015 (Figures 8C,D) together with the original model data
(Figures 8A,B).

With decreasing number of observations K, errors slightly
increase when still K > L. For example, SSS absolute error is
less than 0.3 g kg−1 for 88% of cases with K = 51 and 80%
of cases with K = 10. Regarding SST, the errors are less than
0.6◦C correspondingly for 90 and 82% cases. Regression of all
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FIGURE 4 | EOF patterns for four first modes of SST. Shown are the number of mode (1 to 4 as A to D) and explained variance percentage of each mode. Contour
interval for non-dimensional normalized modes (744 points) is 0.02.

the values of both SST and SSS yields tangent between initial
and reconstructed data 0.99, their correlations follow r > 0.95.
Relative errors of all the SST data, compared with horizontal
standard deviation σx (i) of each time instance, are from 6.7%
(observation grid step 37 km) to 8.6% (93 km). Relative errors of
SSS are somewhat larger, correspondingly 18 and 25%. For K < L
the errors increase abruptly and singularity errors may occur in
Equations (5)–(7).

Reconstruction capability from realistic sampling schemes
was evaluated for typical monitoring network (with smaller
number of stations than usual) and for two routes of FerryBox
along Tallinn-Helsinki and Tallinn–Stockholm (Petersen, 2014;
Kikas and Lips, 2016). Pseudo-observations from the selected
configurations were run through all the daily model maps.
The error statistics did not differ much from that of the

above-described observation grid experiments. Inspecting the
reconstructed maps (not shown), even with small number of
observations the reconstructed maps generally match well to the
original maps. The monitoring type of stations has observations
in all the three main areas: Gulf of Finland, Gulf of Riga and
adjacent Baltic Proper. The SST and SSS maps reconstructed from
the pseudo-observations (not shown) match well the original
maps. FerryBox data set has no data in the eastern Gulf of Finland
and in the Gulf of Riga (see an example by Elken et al., 2018),
therefore larger deviations of reconstructed data from initial data
occur in these regions. However, main large-scale SST and SSS
features, present in the initial model data, can be identified in the
reconstructed maps rather well.

For comparison of EOF reconstruction with OI, we set up an
experiment where EOF statistics were calculated during 4 years
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FIGURE 5 | EOF patterns for four first modes of SSS. Shown are the number of mode (1 to 4 as A to D) and explained variance percentage of each mode. Contour
interval for non-dimensional normalized modes (744 points) is 0.02.

from 1 July 2010 to 30 June 2014, and the remaining 1 year period
from 1 July 2014 to 30 June 2015 was dedicated for comparison.
For each set of 1o = n1m, we included all the possible shifts of
observation grid into the comparison. For example, in case of
n = 8 there are 64 options for grid shift. All those shift options
produce different result of reconstruction, because of different
resolution of topographic and coastline features and freshwater
input areas. The points just neighboring the coast were excluded.
The method of OI was used with correlation scale R = 200 km
and noise-to-signal ratio η2 = 0.1 (see section Estimation of
Reconstruction Accuracy Using Pseudo-Observations).

Dependence of RMSD of reconstruction on the spacing for
3 compared methods – EOF, OI-M with modeled mean field,
and OI-C with climatological mean fields – is presented in
Figure 9 as median values taken over all shift options.The spread

TABLE 1 | Characteristics of SST modes.

Mode nr % variance Description

1 97.6% Nearly uniform over space increase or decrease of
SST, represents seasonal heating and cooling.

2 1.3% Faster heating (in spring) or cooling (in autumn) in
the shallow coastal areas, compared with deeper
offshore areas.

3 0.31% Transverse colder or warmer anomaly stripes near
northern or southern coasts, like upwelling and
downwelling.

4 0.14% Longitudinal colder or warmer anomalies appearing
in east-west direction.

5 0.10% Different heating or cooling of the SW Gulf of Riga
and NW-N Gulf of Finland.

6 0.07% Physics not clear.
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TABLE 2 | Characteristics of SSS modes.

Mode nr % variance Description

1 36.2% Increase or decrease of salinity over the whole
study area (all changes have the same sign). Larger
changes occur in the northeastern Gulf of Finland,
near the discharge of the largest rivers in the region.

2 16.9% Transverse anomalies of salinity near northern or
southern coasts, like upwelling and downwelling.

3 7.1% Salinity changes in the freshwater spreading
pathway near the northern coast of the Gulf of
Finland, reminds cyclonic circulation.

4 5.2% Salinity changes near the southeastern coasts,
characteristic to alteration of cyclonic and
anticyclonic circulation.

5 4.1% Physics not clear.

6 3.5% Physics not clear.

of individual shift estimates increases from the spacing 46 km
toward greater spacing and smaller number of pseudo-
observations, especially for the EOF method. In case of SST, EOF
methods produces on the average more accurate reconstruction
than both of the OI methods using the values given above.
Still, during individual time instances the reconstruction results
may have similar difference pattern at large spacing of sampling
(Figures 10A,C) since coastal features may remain unresolved.
We had to choose large correlation scale and noise-to signal
ratio in order to have reconstruction over the whole area even
if the spacing of observations is large; then OI tends to make
heavy smoothing that is reflected in Figure 9A by larger RMSD.
SSS field is dominated by spatial variations; one control value of
such domination is RMSD = 0.411 g kg−1 of “no observations”
(at each grid point, mean value is taken instead of observed
value) that lies in the range of RMSD variation (Figure 9B).

FIGURE 6 | Temporal correlation functions of first five EOF mode amplitudes given in the legend for SST (A) and SSS (B). Horizontal axis shows time lag in days.
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FIGURE 7 | Relative frequency of SST (A) and SSS (B) differences between reconstructed (sum of six EOF modes) and initial field. Shown are results with
pseudo-observation data prescribed by 37 km grid step (51 observation points) and 93 km grid step (10 points). Compared are about million data pairs.

Evaluation reveals that EOF reconstruction has slightly larger
error than OI relative to the modeled mean field. Commonly
used OI with deviations from climatological mean reveals larger
RMSD than EOF; it even exceeds the “no observations” already
with spacing larger than 28 km. These features of RMSD
appear due to the specific topographic and hydrographic features
of the region: fragmented coastline and prevalence of low-
salinity regions with surrounding higher spatial gradients and
temporal standard deviations (Figure 2) near the entrances
of larger rivers (Figure 1). If OI considers and interpolates
the SSS deviations from highly variable spatial mean map
(determined by the model that resolves local features), then such
deviations follow normal distribution without significant outliers

(not shown) and local features appear in the reconstruction
product without remarkable distortion. Deviations from spatially
smooth climatological mean values (Figure 2B) contain a high
number of outliers to the normal distribution, that cause larger
distortions of OI-C reconstruction in the river influence areas
than EOF reconstruction (Figures 10B,D).

Seasonality Issues in EOF
Reconstruction of SST
Among variety of physical processes, original SST data from
model reveal significant seasonal variation in time. Annual cycle
is evident in temporal correlation of the amplitudes of first and
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FIGURE 8 | Snapshot of original model data on 19 June 2015 for SST (A) and SSS (B) and corresponding reconstructed maps (C,D) using pseudo-observations
from a grid with 37 km step shown by dots. Reconstruction was made by 6 gravest EOF modes. The units are ◦C for SST and g kg−1 for SSS.

second EOF mode (Figure 6) that cover 98.9% of total variance.
This cycle is slightly variable in space, whereas highest spatial
variations (not shown) occur during the spring heating period
and smallest variations take place in the winter when SST is close
to or equal to freezing temperature.

It is interesting to consider what will happen to the EOF
reconstruction results when seasonal signal is removed
from space-time matrix X prior to the procedures by
Equations (1)–(7). Following Høyer and She (2007), we
introduce a modified data set where time slices of spatial data
with seasonality removed are defined at time index i as

xs
i = xi − si, (10)

where seasonal data si are evaluated in each model grid point k.
Consider a time series vector xk which values are available on
times ti counted as fractions of decimal year. Based on the total

M data of xk (ti), make an approximation of seasonal cycle by a
biharmonic function

sk (t) = C1,k sin 2πt + C2,k cos 2πt + C3,k sin 4πt

+C4,k cos 4πt + C5,k. (11)

The coefficients from C1,k to C5,k are found to obtain best fit of
sk (ti) to the values xk (ti)in terms of minimizing their RMSD.
The fitting coefficients and resulting seasonal cycle are spatially
variable, whereas earlier and higher SST maxima generally appear
in shallower coastal waters.

Overall variance of SST, determined in reference to the
constant mean value, was 47.35 (◦C)2 whereas spatial variability
due to temporally constant mean values in each grid point
covered 0.3%. By introducing the seasonal cycle removal
procedure by Equations (10)–(11), variance percentage of the
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FIGURE 9 | Dependence of RMSD between reconstructed from pseudo-observations fields and original model output fields of SST (A) and SSS (B) for different
methods: EOF, reconstruction by 6 gravest modes; OI-M, optimal interpolation with modeled mean field; OI-C, optimal interpolation with climatological mean field.
The grid step of pseudo-observations cycled from 1 to 11 model grid steps, all possible shifted configurations of off-shore stations were taken into account. Median
values of RMSD are presented. “No Obs” means the spatial standard deviation of temporal mean values.

input field for the EOF analysis was significantly reduced: from
99.7% for xi to 6.1% for xs

i . The fitting biharmonic seasonal
cycle contained 80.0% of total variance and the remaining 13.8%
appeared in the covariance between xs

i and si .
Although variability of xs

i was reduced as compared with xi,
spatially mean deviation from the seasonal cycle was typically in
the range from −2◦C (mostly in autumn) to +4◦C (in summer).
Spatial standard deviations of xs

i had maximum values during
summer, amounting typically to 2.5◦C. Wintertime minimum of
spatial standard deviation, apparent in the initial xi data, was
not anymore apparent since biharmonic sk (ti) had in winter
problems to follow the constant level of freezing temperature.

Spatial covariance estimates of xs
i (not shown) reveal

significant similarity to the estimates based on the original data
xi (Figure 3A): covariance at distances of several hundreds
of kilometers is close to the covariance at zero lag since
significant part of SST variability is caused by weather events and
interannual variations that occur nearly uniformly over smaller
sub-regions like in our case. Based on the full covariance matrix,
EOF analysis revealed highly similar patterns of leading modes of
xs

i to the modes of xi which are shown in Figure 4. The share
of “flat” first mode (Figure 4A) decreased from 97.6 to 80.5%
after removal of biharmonic seasonal cycle. At the same time,
the shares of higher modes 2–6 increased from 1.91 to 12.79%.
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FIGURE 10 | Snapshot of differences between original model data and reconstructed data on 19 June 2015 for SST (A,C) and SSS (B,D). Pseudo-observations
were taken from a grid with 74 km step shown by dots. Reconstruction was made by 6 gravest EOF modes (A,B) and by OI using the deviations from climatological
mean (C,D). The units are ◦C for SST and g kg−1 for SSS.

In addition, the second and third mode changed their order
and the “upwelling” mode (Figure 4C for xi) got a bit higher
share of variance as the “differential heating” mode (Figure 4B
for xi) since those variations were already partly included into the
spatially variable seasonal cycle.

The original model field X can be approximated by leading
EOF modes using equation (1), whereas the higher eigenvectors
are truncated to zero. Using six leading modes both for xi and
xs

i datasets, the decompositions seem highly similar. However,
evaluation of RMSD allowed detecting of 4% reduction when
seasonal cycle was removed prior to the EOF procedures.

When there are much less observations than the number of
grid points, reconstruction accuracy can be estimated using the
pseudo-observations method. Example of comparison of the two
datasets is presented in Figure 11, based on the “observation”
data that were extracted in seven locations shown in Figure 10.

The reconstruction errors were correlated with r = 0.71, whereas
the regression line was (errors of xs

i ) = 0.965 (errors of xi). Both
reconstructions had very high correlation with the initial model
data r > 0.99 and the scatterplot graphs (not shown) created
the impression that the data sets were nearly identical. Actually,
already small variations in the correlation modify RMSD and in
case of our example, there can be about 25% of RMSD reduction
when seasonality is removed prior to the EOF analysis.

Splitting the Region Into Sub-Areas
In one of the experiments, the whole region presented in Figure 1,
was split in three sub-regions: Gulf of Finland (GOF), Gulf of Riga
(GOR), and NE Baltic Proper (NEBP). Individual EOF modes
were calculated for each of the sub-area. Except for NEBP, the first
two SST modes for GOF and GOR were similar to the patterns
obtained for the whole area. Pairwise correlations of the SST
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FIGURE 11 | Two-dimensional histogram of reconstruction errors within the experiment with pseudo-observations on the observation grid 74 km as shown in
Figure 10. Compared are 678,528 values of reconstruction error in reference to original model data. Reconstruction was based on six EOF modes using the original
approach where seasonality was not a priori removed (abscissa) and the modified approach where biharmonic seasonality was removed prior to EOF analysis
(ordinate). Solid lines represent 90, 95, and 99% percentiles.

amplitudes were r > 0.95 between the GOF, GOR and the whole
region. The whole region and GOR correlations for the first three
SSS modes were r > 0.9 while the first mode of GOR correlated
with GOF with r > 0.72 and with the whole region with r > 0.78.
The first three modes of SSS of the whole region covered 61.4%
of variance. The split regions had the mode coverage: GOF –
69.9%, GOR – 53.7%, NEBP – 72.8%. Although by splitting the
region, mode convergence (share of variance of the lowest modes)
increased slightly, we judged that EOFs of the whole region cover
the regional dynamics in sufficient accuracy. Note, that region
splitting may become important in other regions, where the mode
convergence of the whole region might not be satisfactory.

Examples Using Actual Observations
Taking Into Account Time Dependence of
Observations
It is usual practice, that spatial shipborne monitoring is carried
out by different ships belonging to different institutes and
countries. Covering the whole region may take quite long time.
On an example, given in Figure 12, four ships with ICES
codes 3499, 34AR, ESLV and LAVA made observations during
17 days from 18 May to 3 June 2009. During this spring heating
period, SST generally increased from 7 to 15◦C, but local SST
variations were also evident. Over the time span, observations
in the northern area were taken in the first part when water
was not yet heated as much as by the end of the period.
Considering the observations as instantaneous, reconstruction

using Equations (5)–(7) provided rather cold waters there. In
turn, warm waters were drawn in the coastal areas where
observations were taken at the end of the period (Figure 12A).
EOF reconstruction using the time dependence of observations
based on Equations (8)–(9), setting the reference time in the
middle of the period (Figure 12B), increased the temperature in
the region of earlier observations and decreased in the region
of later observations, reducing this way the artificial contrasts
due to non-synchronous observations. Comparison with satellite
based SST map from CMEMS L4 product (Figure 12C) reveals
good similarity to the time-corrected map. Numerical differences
are mostly less than 1◦C, not exceeding the range of unresolved
here diurnal oscillations (Karagali and Høyer, 2014). From the
number of calculations we got the experience that reference
time may be modified within the observational window without
loosing the realism of reconstruction. However, extrapolation
outside the window should be avoided like in the case of one-
dimensional linear regression.

Automatic Reconstruction of Time Series of Maps
It is technically easy to set up procedures for automatic
reconstruction of time series of maps, using the time dependence
of observations based on Equations (8)–(9). We took the
shipborne profile data from ICES database (see section Regional
Setting of Experiments).

During the reconstruction procedure, EOF amplitudes for
each map were checked against the

∣∣âi,k
∣∣ < Fk = 2 σ (ãk) criteria
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FIGURE 12 | Reconstruction of sea surface temperature (◦C) using data from
ship observations during the spring warming period from 18 May to 3 June
2009. Locations of the data from the ICES database are shown by symbols
presented in the legends. Reconstruction is made using the three leading EOF
modes: (A) considering all non-synchronous data as instantaneous (see three
time intervals in the legend), (B) introducing correction for time dependence,
with reference set to 28 May. For comparison, daily mean SST L4 map
determined by remote sensing from satellites is presented for
28 May 2009 (C).

(see section Covariance and EOF Characteristics) in order to
determine the number of “good modes.” Taking the time window
for one map 1/12 year (about 1 month) and the limit of at
least 8 non-duplicate observations within the time window (time
average was taken over 2 days), we obtained 148 maps for SST and
137 maps for SSS, out of maximum 209 maps. Average number of
data points is 25 and maximum amounts to 83 both for SST and
SSS. We note that large number of observation points does not
necessarily mean high number of good EOF modes. For example,
the observations with highest amount 83 were fragmentarily
located along the coasts as short-scale repeated maps; the number
of good modes was only 3. Good six modes were in other
configuration obtained already from 20 to 30 observation points.

From reconstructed maps, SST and SSS time series were
extracted around monitoring stations LL12 (western Gulf of
Finland, 59.4835 N, 22.8968 E), V15 (Moonsund, 58.8167 N,
23.2167 E), G1 (central Gulf of Riga, 57.6167 N, 23.6167 E), K21
(Pärnu Bay, 58.2167 N, 24.3083 E), F3 (central Gulf of Finland,
59.8383 N, 24.8383 E) and LL3A (northeastern Gulf of Finland,
60.0672 N, 26.3467 E). Such reconstructed time series can be
easily extended to climate studies.

Individual maps, reconstructed by the automatic procedure
(example is given in Figure 13), follow closely the observed
values but also reveal realistic patterns compared to the published
knowledge on Baltic Sea climatology and monthly and instan-
taneous distributions (e.g., Leppäranta and Myrberg, 2009).

DISCUSSION

There is a continued need for producing gap-free gridded
oceanographic data using observations. Although new
observation techniques became available, the problem of
fragmentation remains in oceanographic data management.
Reanalysis is a powerful, but costly method for production of
gridded fields. Widespread statistically based methods like OI
(optimal interpolation), DIVA (Data-Interpolating Variational
Analysis, Troupin et al., 2010) etc. use mainly localized
covariance patterns. Covariance estimates from models reveal
large values over basin scales due to trends, seasonal signal and
basin-wide dynamics (e.g., coherent upwelling-downwelling
near opposite coasts). Such covariance estimates suggest using
of methods that use full covariance fields. In this context, the
classical EOF method is again gaining interest (e.g., Yang et al.,
2017; Pilo et al., 2018), whereas the statistics of the studied field
can be estimated from the model results. Amplitudes of EOF
modes can be approximately estimated from the observational
data set which dimension is much smaller than the number of
model EOF mode grid points.

When using model data to create the EOF statistics, it is
important to know how reliable the estimates of modes and
amplitudes with respect to model uncertainties are. Thorough
treatment of the above question cannot be found in the literature.
However, on the sea surface, temperature and salinity results
from different models are rather well validated by observations
and the model-based covariance patterns can be considered
trustful. As a common practice, modeled covariance have been
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FIGURE 13 | Time series of sea surface temperature (A) and salinity (B) reconstructed from the shipborne data downloaded from the ICES database. Reconstruction
is made for six locations (LL12, V15, G1, K21, F3 and LL3A, see the text for locations) for the times from 2010.5 to 2014.5 with 1/24 year (15.33 days) interval. Time
window for including the observations and evaluating the EOF amplitude rate of change was taken 1/12 years. Presented are the periods when at least 8 points
occur within the time window. Number of good modes was chosen three, but time instances when the highest good mode was two were also included.

used in data assimilation. Fu et al. (2011) compared covariance
patterns from modeled SST and satellite SST, and found them
agreeing well. CMEMS QUID report has presented validation of

SSS against ferrybox data, showing that the SSS patterns were well
simulated by the model. In deeper layers, however, there is usually
larger spread between different model results.
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While ocean data come from different platforms and
observations are non-synchronous, taking into account the
time dependence of observations is a challenge. Amplitudes
of lowest EOF modes reveal distinct temporal correlation
patterns, with time scale several months. This could be used
to handle temporal gaps and/or non-synchronous data, if
they lie within the temporal correlation scale. As a first
step, we introduced linear correction to the EOF amplitude
depending on the difference of observation time relative
to reference time.

We have made comparison of the results from EOF
reconstruction with the results from classical OI method.
Our test region – NE Baltic – is characterized by
fragmented coastline and highly variable topographic and
hydrographic conditions. In such region the spatial changes
of oceanographic variables may have quasi-permanent
anomalies like low salinity near river influence areas
or faster warming and cooling in shallow coastal areas,
compared to the offshore SST variations. Therefore, EOF
reconstruction has a potential to achieve comparable or better
accuracy than OI method.

EOF modes and amplitudes depend on the selection of
domain. We used a sub-region, containing two geographical
regions and their transition area. It was found that some of
the modes (mainly the first mode) do not change significantly
when the domain is separated into smaller parts. If the
convergence of leading EOF modes of large sea area is
low (share of explained variance is small), refinement into
smaller areas might be useful. In our example, the convergence
improved only slightly when partition into three smaller areas
was made. Workable criteria for the region selection is not
yet established, although following geographical regions seems
to be acceptable.

In case of data assimilation into the high-resolution model,
it is reasonable to separate low-resolution component and
make large-scale corrections into that, keeping high-resolution
deviation patterns unchanged. The workable approach for
correction and/or assimilation of the data on the basin scales
is as follows: (1) to separate the coarse-grid part from the fine
grid data by spatial averaging, (2) to perform corrections on the
smaller dimension coarse grid, (3) to interpolate coarse grid data
back to the fine grid and add fine grid deviations determined
from the interpolation of the initial coarse grid. This is based
on the assumption, that correction of basin-scale features does
not influence the mesoscale patterns, apparent on the fine grid
but filtered out on the coarse grid. The EOF approach allows
additional assimilation of mesoscale patterns in the regions of
high data coverage.

We have tested reconstruction of SST and SSS in one sub-
region of the Baltic, based on the in situ observations. The
method itself allows to be applied on different data sets (for
example, including high-resolution remotely sensed SST) of
different variables and their combinations (for example, joint
data vector of temperature and salinity), on the condition that
significant part of variability can be presented by a few leading
modes. There could be obvious extensions of the approach to

cover the whole water column. This could be especially important
to properly match the consequences of large salt water inflows etc.

One straightforward application of the approach could be in
marine ecology, where building the gap-free patterns of nutrients
and biomass variables could allow more precisely estimate the
total amounts and budgets of ecosystem variables, and to evaluate
the values of environmental indicators that are important for
environmental management.

CONCLUSION

We have developed statistically justified EOF reconstruction
method to handle large-scale patterns of observed fields in
the sub-regions. The method uses model-based EOF patterns
to interpolate and extend the observational data over the full
study region. In the smaller sea regions, which are affected by
the same large-scale forcing patterns, the EOF patterns have
obvious physical interpretations and their shape does not depend
very much on the selection of boundaries. When removing the
SST seasonal cycle prior to EOF analysis, spatial patterns of
leading modes remained practically unchanged, share of variance
of the three first modes was reduced from 99 to 88.6% and
reconstruction errors were reduced by about 25%.

Since we use only the first most energetic EOF modes, we can
cover with this method basin and sub-basin scales of variability.
The relative interpolation errors, estimated over the full area,
usually remain below 10% for SST and 20% for SSS, compared
with multi-year standard deviation of all variability relative to
their mean value over the basin. In comparing with OI, EOF is
especially useful for reconstruction with very sparse observations.
In the regions of denser sampling, EOF cannot exactly follow the
observations. Mesoscale deviations from large-scale EOF patterns
follow well-defined covariance decay with space lag; therefore,
they could be treated by optimal interpolation or similar method.
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