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A simple but novel study was conducted to investigate whether an imager-type

spectroradiometer instrument like MODIS, currently flying on board the Aqua and Terra

satellites, or MERIS, which flew on board Envisat, could detect absorbing aerosols if

they could measure the Q Stokes parameter in addition to the total radiance I, that

is if they could also measure the linear polarization of the light. Accurate radiative

transfer calculations were used to train a fast neural network forward model, which

together with a simple statistical optimal estimation scheme was used to retrieve three

aerosol parameters: aerosol optical depth at 869 nm, optical depth fraction of fine mode

(absorbing) aerosols at 869 nm, and aerosol vertical location. The aerosols were assumed

to be bimodal, each with a lognormal size distribution, located either between 0 and

2 km or between 2 and 4 km in the Earth’s atmosphere. From simulated data with

3% random Gaussian measurement noise added for each Stokes parameter, it was

found that by itself the total radiance I at the nine MODIS VIS channels was generally

insufficient to accurately retrieve all three aerosol parameters (∼15–37% successful), but

that together with the Q Stokes component it was possible to retrieve values of aerosol

optical depth at 869 nm to ± 0.03, single-scattering albedo at 869 nm to ± 0.04, and

vertical location in ∼65% of the cases. This proof-of-concept retrieval algorithm uses

neural networks to overcome the computational burdens of using vector radiative transfer

to accurately simulate top-of-atmosphere (TOA) total and polarized radiances, enabling

optimal estimation techniques to exploit information from multiple channels. Therefore

such an algorithm could, in concept, be readily implemented for operational retrieval of

aerosol and ocean products from moderate or hyperspectral spectroradiometers.
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1. INTRODUCTION

The Moderate Resolution Imaging Spectroradiometer (MODIS)
is a scientific instrument that was launched into Earth orbit
by NASA in 1999 on board the Terra satellite, and in 2002
on board the Aqua satellite. The instruments measure total
radiances at varying spatial resolutions (2 bands at 250 m, 5
bands at 500 m, and 29 bands at 1 km) in 36 spectral bands
ranging in wavelength from 0.4 µm to 14.4 µm. Together the
two instruments image the entire Earth every 1–2 days. They
are designed to provide information about large-scale global
dynamics including changes in Earth’s cloud cover, radiation
budget, and processes occurring in the oceans, on land, and
in the lower atmosphere. The MEdium Resolution Imaging
Spectrometer (MERIS) was deployed on board the European
Space Agency’s Envisat platform from 2002 until 2012. The
MERIS instrument employs spectrometers that measure reflected
sunlight in several spectral bands between 390 and 1,040 nm. Its
main purpose was to study/monitor the health of open ocean
and coastal water bodies. The success of the MODIS and MERIS
spectroradiometers was followed up by VIIRS, OLCI (by ESA),
and SGLI (by JAXA). But apart from SGLI, which has two bands
that can measure polarization, these instruments only measure
the total radiance, or the I Stokes parameter.

In this study we asked a simple question: what if MODIS
(or MERIS) could measure polarization? To be more specific,
what advantage would be obtained from measuring the Q =

I‖ − I⊥ Stokes parameter in addition to the total radiance (or
intensity) I = I‖ + I⊥? In remote sensing, the goal is to retrieve
atmosphere/surface parameters from measurements by solving
the so-called inverse problem.

Currently, in order to invert the total radiance measured
by MODIS, traditional methods rely on two steps: (i) an
“atmospheric correction” to obtain the surface reflectance
(over land) or the remote sensing reflectance (over water),
and (ii) an inversion of the signal so obtained to retrieve
land (water) parameters (Gordon and Wang, 1994; Gordon,
1997). Advantages of the traditional method are that it is
(i) operationally fast, (ii) relatively simple to implement,
and (iii) works well in many scenarios. Two disadvantages
of the traditional approach are that the simplified two-step
approach can lead to retrieval inaccuracies and/or negative water-
leaving radiances, and that error budget calculations become
cumbersome. Alternatively, it has been shown that simultaneous
retrieval of atmosphere/ocean properties using statistically-based
optimal estimation techniques can improve retrieval accuracy
and also allow for adequate error budget calculations (Stamnes
et al., 2005; Spurr et al., 2007; Li et al., 2008). The disadvantages of
statistically-based techniques are that they are operationally slow
and relatively complex to implement.

However, even with optimal estimation, remote sensing
measurements that rely only on the total radiance are fraught
with uniqueness problems. In order to retrieve information about
absorbing aerosols over coastal waters as well as over bright
targets such as snow and ice, polarization measurements are
very important, because it is difficult to infer the aerosol single-
scattering albedo from spectrometers such asMERIS andMODIS

that measure the total radiance only. Accurate retrieval of
aerosol vertical location and single-scattering albedo is important
for calculating warming/cooling rates, for ocean color remote
sensing, and to retrieve surface properties of bright targets like
snow and ice. Aerosol vertical location is also important for
understanding atmospheric circulation, transport and evolution
of aerosols, including changes in single-scattering albedo.

Some previous studies have looked into the use of
polarization. For example, Hasekamp et al. (2011), while
looking at multi-angular measurements, considered also the case
of adding polarization to I-only retrievals and found improved
agreement with ground-based (AERONET) data. Di Noia et al.
(2017) found that use of a neural network to provide an initial
guess for an iterative algorithm led to a decrease in processing
time and an increase in the number of converged retrievals. And
neural networks have been used to directly retrieve products,
e.g., ozone column amounts from ground-based irradiance
measurements (Fan et al., 2014) or satellite water-leaving
radiances (Fan et al., 2017), and have also been used with optimal
estimation, e.g., retrieval of snow products from ground-based
total radiance measurements (Tanikawa et al., 2015).

Given this background, the goal of the study is to use a vector
radiative transfer model for the coupled atmosphere-surface
system in conjunction with optimal estimation to investigate how
polarization measurements can be used to overcome uniqueness
problems associated with total radiance-only retrieval of aerosol
parameters. This approach can also be used to explore how future
instruments, which would measure also the Stokes parameters Q
andU in addition to the total radiance I, may enhance our ability
to retrieve accurate aerosol parameters over turbid coastal waters
and bright targets like snow and ice.

Although we focus solely on the Q component in this study,
the U component is also important except in the principal plane.
For example, POLDER-1 on ADEOS, which was in operation
from October 1996 to June 1997, by NASDA (now JAXA), was
the first satellite sensor to measure Stokes components I,Q, and
U. The POLDER-2 sensor on ADEOS-II (Leroy and Lifermann,
2000), and POLDER-3 (Herman et al., 2005) on PARASOL have
been operational in space. It is also noteworthy that the JAXA
SGLI sensor on GCOM-C also measures I,Q, and U (Imaoka
et al., 2010), and was successfully launched in late December of
2017 and will begin operation in Spring of 2018.

2. STUDY DESIGN

The goal is to explore the feasibility of retrieving the optical
depth at a reference wavelength (τλref ), the (absorbing) fine mode
optical depth fraction (fτa ), and the vertical location (zi) of the
aerosol by employing a bimodal mixture of lognormal aerosol
size distributions. One population is assumed to consist of non-
absorbing coarse mode (sea-salt type) particles and the other one
of absorbing fine mode (soot type) particles.

The SeaDAS aerosol models (see Figure 1) are based on
AERONET data (Ahmad et al., 2010), and they include a non-
absorbing coarse mode (sea-salt) particle type as well a weakly
absorbing finemode particle component consisting of an external
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mixture of 0.5% soot particles and 99.5% dust particles (Shettle
and Fenn, 1979). In order to create an aerosol model that includes
significant absorption, we modified the fine mode of the SeaDAS
aerosol model to use 100% soot particles.

Thus, we have a bimodal aerosol mixture consisting of a total
of N = Na + Nc particles per unit volume in a layer of thickness
1z, where Na and Nc are concentrations of absorbing fine
mode and non-absorbing coarse mode particles. Computation
of aerosol inherent optical properties (IOPs) involves definitions
of σn,i = scattering cross section, αn,i = absorption cross
section, and kn,i = σn,i + αn,i = extinction cross section, where
i = a stands for “absorbing fine mode,” and i = c stands for
“non-absorbing coarse mode.”

Standard mixing formulas (weighted by number
concentrations) are used to combine the absorption and
scattering cross sections as well as the moments of the scattering
phase matrix elements (Stamnes et al., 2017). Hence, the IOPs of
the mixture are (subscriptm stands for mixture):

1τm = km1z =
[

Nakn,a + Nckn,c
]

1z = [ka + kc]1z

= 1τa + 1τc, (1)

Na = fNN, Nc = (1− fN)N, N = Na + Nc, (2)

ka = kn,aNa, kc = kn,cNc, km = ka + kc, (3)

fτa =
1τa

1τm
, (4)

̟m =
̟aka + ̟ckc

km
=

fN̟akn,a + (1− fN)̟ckn,c

fNkn,a + (1− fN)kn,c

= ̟afτa + ̟cfτa
1τc

1τa
, (5)

χm,ℓ =
fN̟akn,aχa,ℓ + (1− fN)̟ckn,cχc,ℓ

fNσn,a + (1− fN)σn,c
, (6)

where 1τm = layer optical depth; km = extinction coefficient;
̟m = single-scattering albedo; χm,ℓ = phase function Legendre
polynomial expansion coefficient; fN = fraction of fine mode
(absorbing) particles in number-density space, fτa = optical
depth fraction of finemode absorbing aerosols (hereafter referred
to as “fine mode fraction”). For each element of the scattering
phase matrix, a mixing rule similar to Equation (6) is applied.

For simplicity, we assumed that the underlying ocean
consisted of pure sea water, although in future work embedded
impurities could be added.

To simplify the study we created a synthetic dataset by
randomly varying the following input parameters to our vector
radiative transfer code (C-VDISORT, Cohen et al., 2013):
{θ0, θ ,1φ, τλref , fτa , zi (i = 0, 1)}, where θ0 is the solar zenith
angle (fixed at 30◦), θ is the sensor polar viewing angle, and 1φ

is the sun-sensor difference in azimuth angle. The sensor viewing
angle range is θ : [30◦, 60◦], 1φ: [120◦, 150◦]. Our retrieval

parameters (RPs) are represented by the set {τλref , fτa , zi (i =

0, 1)}, where τλref is the aerosol optical depth at λref with range
[0.001, 0.5]; f is the bimodal aerosol fraction with range [0, 1];
and zi (i = 0, 1) is the vertical location of aerosols in either layer
z0 [0, 2 km] or layer z1 [2, 4 km], represented by an integer value
z0 = 1 and z1 = 3.

Our question may now be restated as: can aerosol
optical depth, fine mode fraction, and vertical location, i.e.,
{τλref , fτa , zi (i = 0, 1)}, be inferred from synthetic “MODIS” data
of I and Q?

3. NEURAL NETWORK FAST FORWARD
MODEL AND NEURAL NETWORK BASED
FIRST GUESS BY DIRECT INVERSION

The fast radiative transfer forward model is based on radial basis
functions generated by a neural network in order to speed-up the
forward computations and thereby the inversion. The forward
model (C-VDISORT) computations are normally, the most time-
consuming step by far in the inversion process. However, we
found it possible to increase the speed on the order of 1,000
times or more by using a synthetic dataset produced by C-
VDISORT to train a Radial Basis Functions Neural Network
(RBF-NN) (Broomhead and Lowe, 1988). This speed-up enables
processing of imaging data from spectroradiometers like MODIS
and MERIS that collect millions of pixels per image. The RBF-
NN forward model replaces the C-VDISORT forward model
(thousands of lines of code) with the following single equation
(Stamnes and Stamnes, 2015):

pi =

N
∑

j=1

aij exp[−b2
Nin
∑

k=1

(Rk − cjk)
2]+ di (7)

where N is the total number of neurons and Nin is the number
of input parameters. The Jacobians K, needed in the optimal
estimation (see Equation 10 below), are obtained by calculating
the partial derivatives with respect to the retrieval parameter Rk:

Kk =
∂pi

∂Rk
= −2b2(cjk − Rk)

×

N
∑

j=1

aij exp[−b2
Nin
∑

k=1

(cjk − Rk)
2]. (8)

The training of the RBF-NN determines the coefficients aij,
b, cjk, and di appearing in Equations (7) and (8). Here we
should note that if the goal is to retrieve the state parameters
directly, e.g., from measurements of TOA total radiances, then
the input parameters Rk in Equation (7) would be the TOA Stokes
parameters at the desired wavelengths as well as the solar/viewing
geometry, and the output parameters pi would be the desired
retrieval (state) parameters (Stamnes and Stamnes, 2015). In this
study we use this approach to obtain a neural network based first
guess as the starting point for a nonlinear optimal estimation (see
Equation 10 below). We will compare the neural network based
first guess with a “naive” first guess which is fixed to be close to
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FIGURE 1 | SeaDAS bimodal aerosol model (Ahmad et al., 2010). (Left) Size distributions of the fine and coarse aerosol modes which are assumed to be

log-normally distributed in volume space with a fixed width of 0.437 for the fine mode and 0.672 for the coarse mode. (Middle) The ten different aerosol fine mode

fractions in volume space: fV = 0, 1, 2, 5, 10, 20, 30, 50, 80, 95%, and eight different relative humidities: 30, 50, 70, 75, 80, 85, 90, 95%. We used the SeaDAS

median radius at a relative humidity of 70% for this study. Thus the fine mode mean radius was 90 nm, and the coarse mode median radius was 755 nm. And for this

study the fine mode complex refractive index was set to that of 100% soot to represent an absorbing particle. (Right) “Continuum” of models obtained by

interpolation between the discrete SeaDAS models. Note that the aerosol fine mode fraction in volume space was retrieved in this study, except it was expressed in

terms of the fine mode optical depth fraction.

the midpoint of the range of retrieval parameters, and represents
little a priori knowledge about the system.

On the other hand, if the goal is to use the RBF-NN as a fast
interpolator to obtain the TOA Stokes parameters and associated
Jacobians (see Equation 8), then the input parameters Rk are
the state parameters and the solar/viewing geometry, and the
output parameters pi are the TOA Stokes parameters (Stamnes
and Stamnes, 2015). Since our primary goal in this study was to
use the RBF-NN as a fast forward model, the input parameters Rk
in Equation (7) are the state parameters and the solar/viewing
geometry, and the output parameters pi are the desired TOA
Stokes parameters, I and Q at the nine MODIS VIS channels
centered at 412, 443, 488, 531, 547, 667, 678, 748, and 869 nm.

A training dataset of 20,000 randomly generated state vectors
was used to train the RBF-NN forward model. We added random
Gaussian measurement noise with a standard deviation of 3% to
this training dataset, and trained the inverse neural network to
go from the TOA I and Q radiances to the retrieval parameters.
We then constructed a different “truth” dataset of 20,000 scenes,
to which we also added 3% random Gaussian noise. Having two
separate datasets for training and truth helps to test that the
neural network training was sufficiently robust.

In Figure 2 we compare C-VDISORT and RBF-NN results
for the Stokes parameter I. A similar comparison for the Stokes
parameter Q is provided in Figure 3. The performance of the
neural network is evaluated statistically by direct comparison to
C-VDISORT for randomly-selected inputs within the training
range. This comparison shows that the correlations exceed 0.999
for all nine channels for the I as well as the Q Stokes component.

4. OPTIMAL ESTIMATION/INVERSE
MODEL

Our goal is to use C-VDISORT/RBF-NN and Optimal
Estimation/Levenberg-Marquardt (OE/LM) inversion to

explore the retrieval feasibility. We assume that the state vector
consists of three aerosol parameters: the optical depth τλref at
λref , the (absorbing) fine mode fraction fτa , and the vertical
location zi of the aerosols. Hence, the state vector becomes:

x = {τλref , fτa , zi (i = 0 or 1)}. (9)

We employed OE/LM inversion to find the “optimum” result
from the simulated measurements of I and Q. Hence, in each
iteration the next estimate of the state vector was given by
Rodgers (2000) and Stamnes and Stamnes (2015)

xi+1 = xi + [(1+ γi)S
−1
a + KT

i S
−1
m Ki]

−1

× {KT
i S

−1
m (ym − yi)− S−1

a (xi − xa)} (10)

where ym and yi are actual and simulated measurements, and
xa and Sa are the a priori state vector and the covariance
matrix, respectively. xi+1 and xi are the state vectors at the
current and the previous iterations. Sm is the measurement error
covariance matrix, which was set equal to the squares of 3% of
the Stokes parameters to be consistent with the measurement
error used in this study. As the Levenberg-Marquardt (LM)
parameter γi → 0, Equation (10) becomes a standard Gauss-
Newton optimal estimation whereas for a large value of γi
Equation (10) tends to the steepest descent method. Note that
the fast C-VDISORT/RBF-NN forward model returns simulated
Stokes parameters (yi → pi, Equation 7) and Jacobians Ki,
(Equation 8) required to update the state vector estimate (xi)
using Equation (10).

It should be emphasized that the results reported in this
paper are based on synthetic data generated for MODIS channels
centered at 412, 443, 488, 531, 547, 667, 678, 748, and 869
nm. Although, optical depth retrievals are reported at only the
reference wavelength λref = 869 nm, results at other wavelengths
follow from the aerosol model used, specified in Table 1, and the
three retrieved aerosol parameters.
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FIGURE 2 | Comparison of RBF-NN forward model results for I with C-VDISORT results for the nine MODIS VIS channels used in this study.

5. RESULTS

A simple study was conducted to explore the advantage of
making use of polarization information. To this end a synthetic
dataset was created to simulate the top of the atmosphere
(TOA) Stokes parameters I and Q for a range of aerosol optical
depths (τλref ), and optical depth fraction fτa of absorbing fine
mode aerosol particles embedded in a background molecular
atmosphere. As mentioned above an efficient forward model
was created using a RBF-NN and shown to have good accuracy.
The neural network coefficients of the RBF-NN were found
using Matlab’s newrb function in the Neural Network toolbox.
An optimal estimation scheme (see section 4) was employed
to retrieve τλref , fine mode fraction fτa , and vertical location of

the absorbing aerosols. The resulting retrievals are shown in
Figures 5–8.

The “Levenberg-Marquardt” (LM) Marquardt (1963)
algorithm is somewhat ambiguous in certain respects. Hence,
there may be detail-specific implementation differences between
different LM algorithms. Overall, however, we expect that if
the algorithm is properly implemented and there is enough
information content to perform the retrieval, then these details
should mainly affect its performance in terms of efficiency,
e.g., the number of iterations needed, as opposed to the final
answer, which, if the algorithm has converged, should be equal
to the Gauss-Newton optimal estimation result. For example,
the threshold for calculating when to increase or decrease
the step size γi, and by how much, as well as the handling
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FIGURE 3 | Comparison of RBF-NN forward model results for Q with C-VDISORT results for the nine MODIS VIS channels used in this study.

of retrieval parameter values that drift “out-of-bounds,” are
implementation-dependent.

The first guess x0 was calculated using Equation (7) in a
direct neural network inversion mapping directly from polarized
radiances to retrieval parameters as explained in section 3, called
the neural network based first guess. Thus, as seen in Figure 4,
with our neural network based first guess, we are able to retrieve
optical depth, single-scattering albedo, and vertical location using
the set of I and Q measurements at nine VIS channels in the
optimal estimation. This result in Figure 4 is thus considered to
be our best achievable result, and will be used as our benchmark
in the remainder of this paper. It should be noted that the prior
xa is always set equal to the full range of the retrieval parameters.
The first guess is either the “naive” assumption, taken to be the
midpoint of the range of the aerosol retrieval parameters [x0 =

(0.25, 0.5, 2.0)], or else is set equal to the result from the neural

network direct mapping, i.e., the neural network based first guess.
The a priori covariance matrix Sa is assumed to be a (Rodgers,
2000) diagonal matrix that is a function of the a priori vector xa:

Sa = (10 xa)
2 I. (11)

Thus, the covariance matrix of a priori values, Sa, has an assumed
variance of (10xa)

2 with all non-diagonal elements set equal to
0. These large variance values imply that we are placing little
emphasis on the a priori component, since we want to investigate
the information contained in the measurements of the system
itself.

Figure 5 is based on using both I and Q in the optimal
estimation retrieval, as in Figure 4, but not using the neural
network based first guess. Instead the first guess was our “naive”
assumption, so that x0 = (0.25, 0.5, 2.0). The retrieval result for
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TABLE 1 | The aerosol complex refractive index at the 9 MODIS VIS channels

used in this study is based on the SeaDAS model (Ahmad et al., 2010 and see

also Figure 1), so that the spectral dependence of the complex refractive index is

assumed to be true for a given relative humidity, in other words taken as a priori

information.

λ [nm] nr ni Cext[×104 nm2] ̟

FINE MODE (ABSORBING AEROSOL)

412 1.750 0.45860 9.712 0.4528

443 1.750 0.45510 9.471 0.4483

488 1.750 0.45022 9.076 0.4411

531 1.750 0.44505 8.664 0.4337

547 1.750 0.44128 8.502 0.4314

667 1.750 0.43025 7.295 0.408

678 1.750 0.43000 7.189 0.4056

748 1.750 0.43000 6.546 0.3889

869 1.750 0.43031 5.556 0.3596

COARSE MODE (NON-ABSORBING AEROSOL)

412 1.500 0 990.228 1

443 1.500 0 996.174 1

488 1.500 0 1005.15 1

531 1.500 0 1013.53 1

547 1.499 0 1016.79 1

667 1.490 0 1040.37 1

678 1.490 0 1043.58 1

748 1.487 0 1057.25 1

869 1.480 0 1083.43 1

The 869 nm wavelength is used as the reference wavelength for the total aerosol optical

depth in this study. The resulting single-scattering properties of extinction cross section,

Cext, and single-scattering albedo, ̟ . We used the same size distribution widths as in the

SeaDAS aerosol models, and the median radii for the fine and coarse modes correspond

closely to those of the SeaDAS aerosol models with a relative humidity of 70%. Thus the

fine mode effective radius is approximately 145 nm with an effective variance of 0.21, and

the coarse mode effective radius is approximately 2.334 µm with an effective variance of

0.568. The fine mode complex refractive index matches that of the soot component of

the fine mode in SeaDAS, while the coarse mode complex refractive index matches that

of the coarse mode (sea-salt particle) used in SeaDAS.

this case is seen to be quite good compared to the benchmark.
We were able to retrieve both the aerosol optical depth and the
fraction, and, in most cases, also the vertical location. This result
suggests that either the neural network based first guess is not
providing any additional information, and/or there is enough
information provided by the set of I and Q measurements to
successfully retrieve the three aerosol parameters.

Figure 6 shows how a total radiance-only inversion would
perform in the absence of a neural network based first guess, by
instead using our “naive” first guess. In contrast with Figure 5,
which also was based on the use of a “naive” first guess, we
note that the additional information provided by the Q Stokes
parameter is very helpful when the first guess is inferior. A
comparison of Figure 6with Figure 7, which compares favorably
with the benchmark, shows that an accurate first guess is of
crucial importance if the retrieval is based solely on the total
radiance.

Figure 7 is also based on using only the total radiance I in
the OE/LM optimization scheme. However, the neural network
based first guess obtained by use of measurements of both I and
Q was employed. The good results obtained from an optimal
estimation based solely on I may be surprising, but it is quite

reasonable that a starting point close to the solution will help
a system converge. Hence, as long as the first guess provides
a good estimate, or there is sufficient a priori information, the
radiance-only retrieval is expected to work reasonably well for
this system. This result also suggests that the direct inversion
provided by our neural network based first guess is providing
actual information about the system. A comparison of the two
retrievals that both use the “naive” first guess, Figures 5, 7,
demonstrates that the I, Q set contains enough information
to significantly improve retrievals of aerosol single-scattering,
without depending on a good first guess or a priori information
(beyond the assumed aerosol model that is used), implying that
the additional information in the measurements leads to fewer
possible solutions. However, retrieval of aerosol vertical location
is poor when using the “naive” first guess, suggesting that it
may cause a bias, or that our optimal estimation scheme is
not completely optimized. However, perfect optimization of the
estimation algorithm is beyond the scope of this study, as it
is mainly for demonstration purposes, and there are certainly
improvements that could be made. The improvement based on
the first guess provided by direct inversion using a neural network
strongly suggests that the information about aerosol location is
also captured by the measurements.

Finally, a summary of the results is provided in Figure 8

which shows that addition of the Q Stokes parameter is required
to obtain reliable retrievals of aerosol optical depth, single-
scattering albedo (calculated from the aerosol optical depth and
fine mode fraction using Equation 5), and vertical location.
Success was defined as being within ± 0.03 for the total aerosol
optical depth at 869 nm, within ± 0.04 for single-scattering
albedo (ssa) at 869 nm and either as correct or incorrect for
the aerosol vertical location. The use of I and Q with a NN-
based first guess based on I and Q enables retrieval of all
three of these parameters 65% of the time, whereas the total
radiance-only retrieval can only achieve this accuracy in about
37% of the cases with the same NN-based first guess. As seen
in Figures 6, 7, the total optical depth is generally retrievable
if only the total radiance is available (79% successful), although
that performance is improved to 96% for I and Q with the NN-
based first guess. However, the retrieval of the single-scattering
albedo is significantly improved with polarization information:
74% of cases are retrieved within ± 0.04 with I and Q and the
NN-based first guess, compared to 45% using total radiance-only
and the same first guess. We can see that the optimal estimation
scheme is likely either not completely optimized, or is being
biased by the naive first guess, since there is a large discrepancy
between the performance using I and Q measurements with
and without the neural network first guess. However, the results
show that the retrieval of absorbing aerosol parameters using
I and Q measurements is significantly better than that using I
measurements alone.

6. CONCLUSIONS

In this study, we have explored the feasibility of retrieving
accurate values of aerosol optical depth, the fine mode fraction
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FIGURE 4 | Benchmark retrieval: A synthetic optimal estimation based retrieval of aerosol optical depth at 869 nm and the fraction of absorbing aerosols for MODIS

assuming the instrument could measure the Q Stokes parameter in addition to I in nine VIS channels. This retrieval uses the I and Q measurements, and a neural

network based first guess using direct inversion. This retrieval is used as a best-case scenario and is considered the benchmark for the other scenarios.

FIGURE 5 | Same as Figure 4 except with a “naive” first guess. A retrieval that makes use of both I and Q, despite using a “naive” first guess, nonetheless appears to

work reasonably well for retrieving optical depth and single-scattering albedo, but not aerosol vertical location.

and hence single-scattering albedo, and the vertical location of
absorbing aerosol particles from measurements of the I and Q
components of the Stokes vector. We have found that use of
total radiance-only (the I component) is generally insufficient
to retrieve accurate values of these three retrieval parameters.
It appears, however, that use of an accurate first guess based
on a neural network direct inversion using both I and Q,
provides significant improvement. Based on this accurate first
guess, retrievals based on total radiance-only yield good results.
Hence, use of accurate forward model simulations of the

polarized radiation could improve retrievals based on existing
optimal estimation schemes, which employ total radiance-only
measurements. In fact, little modification to the existing schemes
would be required, since only the neural network derived first
guess (using both I and Q measurements) would need to be
added. However, use of Q and I in combination leads to
significantly improved retrievals of aerosol fine mode fraction
(and thus single-scattering albedo), and vertical location in
the case of the neural network derived first guess, and can
also retrieve all three aerosol parameters with the “naive” first
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FIGURE 6 | Total radiance-only retrieval except with an “naive” first guess. Identical to Figure 5 except only I was used in the retrieval, not Q. Identical to Figure 7

except a “naive” first guess was used. The total radiance-only retrieval is able to retrieve aerosol optical depth fairly reliably, but not aerosol single-scattering albedo or

vertical location.

FIGURE 7 | Total radiance-only retrieval. Identical to Figure 4 except only I was used in the retrieval, not Q. By using the neural network based first guess, we are able

to retrieve aerosol optical depth and also vertical location when using total radiance-only in the OE/LM retrieval step, but the aerosol single-scattering albedo is more

difficult to retrieve.

guess, corresponding to little a priori knowledge of the system.
The improvement resulting from the use of a neural network
based first guess, and the OE/LM retrieval with both I and Q,
implies that there is significant information contained in the
set of I and Q measurement pairs, and that the remote sensing
capability of spectroradiometers (like MODIS and MERIS) could
be significantly enhanced by measuring Q in addition to I. This
proof-of-concept algorithm demonstrates that it is possible to
use neural networks not only for the first guess, but also for the
forward model that generates TOA total and polarized radiances,

which can enable operational processing of high-density imaging
data from moderate and hyperspectral resolution imaging
sensors measuring total and polarized radiances using optimal
estimation.

7. FUTURE WORK

Future work would involve quantifying the amount of
information content added by the Q Stokes parameter including
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FIGURE 8 | The percentage of success for each of the four retrieval schemes is summarized for each retrieval parameter. Success is defined as being within ± 0.03

for the total aerosol optical depth at 869 nm, within ± 0.04 for single-scattering albedo (ssa) at 869 nm and either as correct or incorrect for the aerosol vertical

location. The retrieval using I and Q with a NN-based first guess using I and Q is able to retrieve all 3 of these parameters 65% of the time, whereas the total

radiance-only retrieval can only achieve this accuracy in about 37% of cases. As seen in Figures 6, 7, the total optical depth is generally retrievable if only the total

radiance is available (79% successful), although that is improved to 96% successful for I and Q with the NN-based first guess. However, the retrieval of the

single-scattering albedo is significantly improved with polarization information: 74% of cases are retrieved within ± 0.03 with I and Q and the NN-based first guess,

compared to 45% using total radiance-only and the same first guess.

for ocean-color retrieval parameters, and whether it is possible
to discriminate between two fine mode mixtures of absorbing
and non-absorbing aerosols. It would also be interesting to
explore the use of more sophisticated and powerful multi-
layer neural networks for the direct inference of the retrieval
parameters (Fan et al., 2017). This proof-of-concept algorithm
could also be applied to real data, although work would be
needed to identify the proper set of aerosol models based on
available a priori information, since some assumptions about
the aerosol models may still be required (e.g., for total radiance
measurements made from a single angle, parameterizing the
median radius and spectral complex refractive index as a function
of relative humidity, like in the SeaDAS aerosol models, although
depending on the channels used perhaps the relative humidity
parameter could also be retrieved). In addition to exploring the
added aerosol information provided by the U Stokes parameter,
we note that multi-angular and/or hyperspectral measurements
would also provide additional information about each pixel,

the processing of which would also greatly benefits from fast
methods of computing the TOA total and polarized radiance.
Lastly, although we used a fixed random Gaussian measurement
noise profile with a standard deviation of 3% for both Stokes
parameters, the accuracy of retrieved aerosol/ocean products
could be analyzed as a function of instrument performance.
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