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Introduction:Development of drugs often fails due to toxicity and intolerable side
effects. Recent advancements in the scientific community have rendered it
possible to leverage machine learning techniques to predict individual side
effects with domain knowledge features (i.e., drug classification). While several
factors can be used to anticipate drug effects including their targets, pathways,
and drug classes, it is unclear which domain knowledge is most predictive and
whether certain domain knowledge is more important than others for different
side effects.

Methods: The goal of this project is to understand the predictive values of drug
targets, drug classification (i.e., level 2 ATC codes), and protein-protein interaction
networks (i.e., PathFX targets and network proteins) for machine learning
prediction of 30 frequently occurring drug-induced side effects.

Results: We compared the prediction accuracy for individual side effects of
trained models across five domain knowledge combinations and discovered
that level 2 ATC codes have the highest predictive value across the domain
knowledge features. Logistic regression coefficient analyses further suggest
that side effects are more dependent on drug targets and drug classes, and
less so on PathFX targets and network proteins.

Discussion: Our quantitative assessments may inform the development of safe
and effective drugs by understanding the domain knowledge features underlying
frequently occurring drug-induced side effects.

KEYWORDS

machine learning (ML), drug development, drug safety, domain knowledge analysis, drug
target, protein-protein interaction (PPI) networks, drug side effect prediction

1 Introduction

The development of drugs often fails during clinical trials due to toxicity and intolerable
side effects. Sun et al. (2022) analyzed clinical trial data from 2010 to 2017 and found that
over 30% of drugs failed due to unmanageable toxicity. Furthermore, off-target toxicity from
drugs can trigger dangerous side effects and cause clinical trial failure (Lin et al., 2019). For
instance, the kinase inhibitor Sunitinib is known to trigger cardiotoxicity through its
interaction with proteins outside of what the drug was intended to bind (Force and
Kolaja, 2011). Currently, there are strict guidelines and protocols set in place by the
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United States Food and Drug Administration (FDA) to ensure drug
safety and efficacy. Despite this, many drugs that are approved on
the market have intolerable adverse side effects documented.
Notably, propranolol hydrochloride, despite receiving approval
from the FDA in 2014 for the treatment of infantile
hemangiomas (Kurta et al., 2018), has been associated with sleep
disturbance, agitation, and bronchial hyperreactivity (Ji et al., 2018).
These findings suggest that innovation in drug development related
to improved safety and efficacy could advance therapeutic
development.

Multiple data-driven resources have made it possible for the
scientific community to better explore the relationship between drug
target (DT) associations to various side effects. Kuhn et al. (2015)
generated the Side Effect Resource (SIDER) database, which documents
results from public free-text data sources (i.e., literature and package
inserts) using Natural Language Processing. Separately, protein-protein
interaction (PPI) networks, such as PathFX, seek to understand drug-
induced effects by constructing drug pathways and integrating gene-
disease phenotype associations from multiple databases (Wilson et al.,
2018). These drug pathways provide druggable targets and proteins
downstream of targets associated with drug phenotypes. We also
previously discovered that proteins downstream of druggable targets
were more predictive of drug side effects as compared to DTs for severe
adverse drug reactions (ADRs) listed on drugs’ labels (Wilson et al.,
2022). This analysis used ADR-associated network proteins in building
models and prioritized rare ADRs that have sufficient predictive power
to affect the regulatory review process. DrugBank also contains domain
knowledge about each drug, such as its Anatomical Therapeutic
Chemical (ATC) classification and drug development group status
(i.e., approved, experimental), which many have used for
anticipating side effects from within-class drugs (Wishart et al., 2006).

DTs are often the starting place for predicting drug side effects.
Campillos et al. (2008) demonstrated that shared drug side effect profiles
were predictive of DTs. Moreover, Xie et al. (2009) explored protein-
drug interaction networks of Cholesteryl Ester Transfer Protein
inhibitors and identified a panel of off-target interactions that
influenced side effects. LaBute et al. (2014) trained a L1-regularized
LRmodel based onUniProt ID numbers ofDTs to predict 85 side effects
from SIDER grouped into 10 ADR phenotype groups and achieved a
model AUC of 0.61–0.74 during a 10-fold cross-validation. However,
drugs may have undocumented off-targets responsible for their effects,
making DTs alone insufficient for side effect prediction.

Additional domain knowledge could improve anticipation of
side effects without knowing all off-targets. Huang et al. (2011)
developed a logistic regression model by integrating ADR
information, DT data, PPI networks, and gene ontology term
annotations to predict cardiotoxicity and achieved a performance
of 0.675 in performance accuracy, the median area under the curve
(AUC) of 0.771, and sensitivity of 0.632. However, this analysis was
limited to predicting cardiotoxicity. They discovered that off-target
proteins had more predictive power than documented on-target
drug-protein interactions related to cardiotoxicity. Kim et al. (2016)
leveraged ATC codes and DT information to uncover off-target
tissue effects using a tissue protein-symptom matrix and predicted
unintended drug side effects by off-target tissues. Further, Zhao et al.
(2018) evaluated the predictive power of five domain knowledge
features, namely DTs, ATC code, structure similarity, literature
association of drug-protein interactions, and drug fingerprint

similarity for the prediction of drug side effects with four
machine learning (ML) models and achieved the highest
performance when all five domain knowledge features were
integrated, yielding an accuracy of 0.775. Recently, Liang et al.
(2020) trained a random forest (RF) model by sampling negative
cases using the random walk with restart algorithm. Furthermore,
they incorporated various domain knowledge, including drug
fingerprint, ATC codes, literature association of drug-protein
interactions, drug structure, and DTs for the prediction of drug
side effects with an RF model yielding nearly perfect performance
(accuracy = 0.975). Overall, these findings suggest that incorporating
DTs, PPI networks, and ATC codes for predicting drug side effects
may be useful for the prediction of side effects, and leveraging more
domain knowledge features may help further strengthen model
performance.

Given recent successes with the integration of multiple drug data
types and our previous discovery of the predictive utility of network
proteins, we sought tomeasure the relative predictive value ofDTs, drug
class, and drug network proteins for the prediction of frequently
occurring individual side effects in SIDER. Since ATC codes have
been leveraged in building models to predict drug side effects (Liang
et al., 2020), incorporating such domain knowledge inMLmay provide
us further insights into drug classes associated with specific organ
systems that can influence frequently occurring individual side effects. A
novel aspect of this project lies in the utilization of network proteins
identified by PathFX. Briefly, PathFX is a pathway modeling tool for
predicting drug-induced phenotypes by first identifying high-quality
PPI networks around druggable targets and using functional
enrichment to predict drug-associated phenotypes, while controlling
for biases in network methods such as hub proteins and differential
annotation in pathway phenotypes (Wilson et al., 2018). This tool is
available through the command line application (Wilson et al., 2018),
web server (Wilson et al., 2019), and a dockerized container including
PathFX version 2 (Wilson et al., 2021). As PathFX-based predictions
have been the focus of our previous work, we wanted to evaluate the
utility of all network proteins instead of phenotype-specific proteins and
to test our model against a broader range of side effects. By
incorporating PathFX network proteins in our model, we sought to
uncover certain proteins downstream of druggable targets that may
influence certain side effects. The exploration of these three domain
knowledge features has the potential to provide valuable insights for
personalized medicine by identifying certain features that can influence
drug side effects, which can assist clinicians in making informed
decisions for prescribing medicine to patients. By understanding the
predictive value of DTs, drug class, and drug network proteins, we can
inform the therapeutic development of safer andmore effective drugs to
enhance patient outcomes and minimize ADRs.

2 Methodology

2.1 Extracting model inputs from data
sources

2.1.1 Extracting DrugBank identifiers of the 30most
common side effects from SIDER 4.1

First, we downloaded SIDER 4.1 datasets (http://sideeffects.
embl.de/download/) and prioritized two of them: 1) Medical
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Dictionary for Regulatory Activities (MedDRA) all side effects
(meddra_all_se.tsv.gz) and 2) drug names (drug_names.tsv). The
MedDRA all side effects dataset contains all side effects of FDA-
approved drugs documented inMedDRA. The first and last columns
of the MedDRA all side effects dataset were extracted, which
represent the drug ID and its associated drug side effect,
respectively. Then, we mapped each drug ID to the drug name
using the drug names dataset. We counted the occurrence of all side
effects and noticed a drop in the number of associated drugs to
1,250 below the 30th rank. As such, we extracted the drug names
associated with the 30 most common side effect counts from SIDER
individually for further analysis.

Next, we standardized drug names from SIDER to a DrugBank
identifier (DBID), which consists of a DB prefix and suffix of
5 numbers. Standardizing drug names to their respective DBID
can increase the accuracy of mapping drugs across datasets by
mitigating data loss due to differences in naming and spelling.
To accomplish this, we downloaded a dataset that contains the
common names and synonyms of a drug to its DBID (drugbank_
vocabulary.csv). A default dictionary was generated by extracting the
drug names as the key and its associated DBID as the value. The drug
names from this dictionary were mapped to the drug names in
SIDER 4.1 to standardize them to DBIDs.

2.1.2 Running PathFX on all drugs in DrugBank
5.1.6 to obtain associated DTs and network of
proteins

To extract associated DTs and PathFX network proteins for our
ML input matrix, we analyzed all available drugs in DrugBank
version 5.1.6 using PathFX on the Hoffman 2 cluster1. Briefly,
PathFX generates a PPI network around DTs based on the
amount and quality of evidence supporting the PPIs. Next,
PathFX uses a modified Fisher’s exact test to discover biological
phenotypes associated with the drug’s network (full description in
Wilson et al., 2018). Importantly, PathFX can only generate a
network when a drug has documented drug-binding proteins,
and those proteins are connected to the PathFX interactome. Of
the 13,474 drugs listed in DrugBank, PathFX generated a network
file and phenotype association table for 7,012 drugs - 2,232 of which
are approved on the market and 4,780 which were experimental.

2.1.3 Extracting domain knowledge features to
dictionaries from DrugBank 5.1.6

We sought to extract domain knowledge features associated with
each DBID by storing them in dictionaries (key = DBID, value =
domain knowledge feature) and subsequently appending the DBID
(row) and domain knowledge features (columns) to generate the ML
matrix. To assess the utility of domain knowledge for side-effect
prediction, we considered 5 comparisons: 1) ATC level 2 codes only
(ATCmodel), 2) DrugBank targets only (DTmodel), 3) DrugBank +
PathFX targets and network proteins (DT/PathFX model), 4)
DrugBank targets + ATC (DT/ATC model), and 5) DrugBank +
PathFX targets and network proteins + ATC (DT/ATC/PathFX
model). The level 2 ATC code consists of the first three characters of

the ATC code. Since we were interested in understanding whether
drug classification associated with specific organ systems influenced
the prediction of common side effects, we determined that level
2 ATC codes (pharmacological and therapeutic subgroup
classification information) were sufficient in providing the
necessary specificity for our interests as a domain knowledge
feature. There are currently 94 distinct level 2 ATC codes, each
one of them indicating the system of action of the drug and its
associated pharmacological and therapeutic properties. For
example, C08 are calcium channel blockers that influence the
cardiovascular system. We extracted both the level 2 ATC codes
and DTs and generated a set dictionary with its associated DBID
from DrugBank version 5.1.6. All PathFX targets and network
proteins were extracted from the “merge_neighborhood_.txt” files
for all 7,012 drugs using the os.walk function. Ultimately, these sets
were merged using the union operator to generate the dictionaries
for the five experimental conditions.

2.2 Matrix generation and filtering for the
30 most common side effects

For each of our five combinations of domain knowledge, we
generated a ML input matrix where each row indicated a drug and
the columns included a label of 1 (presence) or 0 (absence) of a
domain-knowledge data type: 1) DrugBank target, 2) a PathFX
target or network protein, or 3) a level 2 ATC code. We repeated this
process for the top 30 side effects and created 150 data matrices in
total (30 side effects x 5 combinations of predictor variables). Since
SIDER 4.1 only documents side effects observed in FDA-approved
drugs, we generated a subset of the matrix by excluding drugs that
were not FDA-approved (i.e., experimental drugs). As adverse drug
events (ADEs) are influenced by absorption, distribution,
metabolism, and excretion (ADME) processes, we included genes
related to these processes (CYPs, DPYD, TPMT, UGTs, and SULTs)
that were documented in DrugBank.

2.3 Machine learning model implementation

We selected six ML models from scikit-learn capable of
performing binary classification for initial evaluation and
selection. Specifically, we selected the logistic regression (LR)
model, Random Forest Classifier (RFC), Support Vector
Machine, Decision Tree Classifier, Naive Bayesian Classifier, and
K-Nearest Neighbor model on an 80/20 train-test split with random
undersample of negative cases using the imblearn.under_sampling
function to evaluate its accuracy in predicting dizziness, the side-
effect associated with the most drugs, on DTs of FDA-approved
drugs.

Next, we used the two highest-performing models from our
initial evaluation and compared their performance on 30 individual
side effects for model selection. We ran these models on an 80/
20 train-test split with a random undersample of negative cases to
balance their count with that of positive cases. This process was
bootstrapped 100 times to evaluate its performance for predicting
the 30 most common side effects in SIDER 4.1 using DTs only. Since
the matrix contains more negative cases than positive ones,1 https://www.hoffman2.idre.ucla.edu/
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bootstrapping the negative cases can expose the model to a broader
range of negative instances to improve its generalization. We
compared the predictive value of both models on these side
effects and selected the model that had the higher average
accuracy across the 30 individual side effects.

We trained our model on five combinations of domain knowledge
features on our highest performing classification model identified.
Notably, we trained our model according to the training conditions
listed in Figure 1 on the following groups: 1) level 2 ATC codes (ATC
model), 2) DTs (DTmodel), 3) DTs and PathFX proteins (DT/PathFX)
model, 4) DTs and ATC codes (DT/ATC), and 5) DT, PathFX proteins,
and ATC (DT/PathFX/ATC) model. The model prediction accuracy
across these five combinations of domain knowledge was extracted for
further analyses.

2.4 Analysis of model performance

The initial unfiltered matrix contains both drugs approved on
the market and experimental drugs, which may confound the
model’s performance. To evaluate the confounding effects of
experimental drugs, we compared the performance of the two
models that contained 1) all drugs and 2) FDA-approved drugs
using a dependent samples t-test.

We excluded all the experimental drugs in our matrix for
subsequent analyses to ensure an accurate representation of these
data. This is because SIDER does not document the side effects of
experimental drugs, and therefore, the relationship between side
effects and targets of unapproved drugs is not well established. Thus,
including experimental drugs in our analyses could generate
misleading results.

We performed an Analysis of Variance with Repeated Measures
(ANOVA-RM) to test our hypothesis that there are between-group
differences across the five combinations of domain knowledge for
the prediction of individual side effects before proceeding further
with subsequent analyses. Then, we performed a dependent samples
t-test to assess specific between-group differences and investigated
trade-offs in performance across the five combinations of domain

knowledge. This approach was chosen because we did not expect
one model to be uniformly more performant across all side effects.
We benchmarked DTs and evaluated the change in model
performance for predicting individual side effects with the
addition of domain knowledge independently for the following
groups: 1) DTs and PathFX proteins (DT/PathFX) model, 2) DTs
and ATC codes (DT/ATC) model, and 3) DTs, ATC Codes, and
PathFX proteins (DT/PathFX/ATC) model. We chose a significance
level of 0.05 for all our tests.

2.5 Extracting LR coefficients to evaluate
confounding effects and drug to side-effect
associations

We extracted the LR coefficients from the trained model to
understand which domain knowledge variables the model
prioritized. In this project, the p variable of the LR model Eq. 1
represents the probability that the side effect of interest will occur.
The p threshold of our LR model is set to 0.5, in which any value
greater than 0.5 will be classified with an output label of 1 (presence
of side effect). The LR model assigns a coefficient to each variable
based on the outcome variable as shown in Eq. 1, where the β terms
represent the coefficients and X represents the value of the predictor
variable. Positive β terms suggest that an increase in the
corresponding predictor variable leads to an increase in the
outcome variable. Conversely, negative β terms imply that an
increase in the corresponding predictor variable leads to a
decrease in the outcome variable. The magnitude of the
coefficient reflects the strength of the relationship between the
predictor and outcome variable. These coefficients are then
extracted to evaluate 1) the confounding effects of DTs
unapproved in the market and 2) the validity of the suggested
drug-to-variable relationship for individual side effects through case
studies.

p � 1

1 + e− β0+β1X1+β2X2+. ....+βnXn( ) (1)

FIGURE 1
A high-level overview of our model construction and evaluation process to identify the predictive value of domain knowledge features on the
30 most frequent occurring drug side effects in SIDER.
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2.6 Software and code

The data collection, processing, and model training were
conducted in Python version 3.7 using Jupyter Notebook version
6.3.0. The packages deployed for this project included: 1) Pandas,
Numpy, and Pickle for data processing, 2) Matplotlib and Seaborn
for data visualization, 3) Imbalanced-learn to balance the binary
cases, 4) Scikit-learn for modeling processed data and evaluating
results, and 5) Scipy for statistical analyses.

3 Results

3.1 Data characteristics

SIDER 4.1 documented 309,848 side effects across 1,430 drugs.
SIDER splits side effects based on their classification in the medical
dictionary for regulatory activities (MedDRA) as either 1) preferred
terms (PTs), which is a distinct medical concept for the associated
side effect (i.e., nausea), or 2) lowest level terms (LLTs), which
parallels how information is communicated to patients (i.e., feeling
queasy). Each LLT is linked to only one PT, whereas each PT has at
least one LLT. Because of this, nearly all drugs to side effect
combinations may be documented multiple times. We extracted
the top 30 most common side effects based on both PTs and LLTs
from SIDER, with dizziness having the highest count (n = 2,826,
including all mentions of LLTs and PTs) and musculoskeletal
discomfort having the 30th-most count (n = 1,255) in our
analysis. Below the 30th rank, the number of associated drugs
dropped below 1,250, and to focus our analysis, we emphasized
the top 30 drugs. After mapping to DrugBank identifiers and
retaining unique drugs based on both LLTs and PTs, the side
effect associated with the highest number and lowest number of
unique drugs in our analysis is nausea (n = 1,207) and arthralgia (n =
588), respectively. We next matched SIDER drugs to DBIDs for
integration with other data sources. Of the 1,430 drugs listed in
SIDER, 1,079 of them mapped to a DBID. The percentage of drugs
matched to a DBID ranged from 79.7% to 86.7% per side effect. Our
original ML input matrix consisted of 7,012 drugs with documented
targets or PathFX network proteins—2,232 approved drugs and
4,780 experimental, unapproved drugs. The percentage of DBIDs
from SIDER that matched our ML input matrix, which consisted of
DBIDs associated with a documented target or PathFX network
proteins, ranged from 90.4% to 95.4% depending on the domain
knowledge (some drugs did not have documented targets or PathFX
networks). The sample size for each bootstrap iteration was double
the number of positive DBIDs matched to the ML input matrix, as
each side effect was trained on a balanced set of positive and negative
DBIDs. The specific sample size ranged from 908 to 1,800 samples
depending on the side effect. For instance, the bootstrap size for
nausea was 1,800, as there were 900 DBIDs associated with this side
effect that mapped to our ML input matrix. We curated a total of
88 level 2 ATC codes, 3,819 DTs, and 6,467 PathFX network genes
with DTs which were included in our input matrix for further
analyses. Importantly, the genes associated with ADME processes,
such as CYPs, DPYD, TPMT, UGTs, and SULTs, were included in
our input matrix if they were documented in DrugBank (PathFX
uses all DrugBank information as input for network modeling).

3.2 Logistic regression and random forest
outperform other ML models for initial side
effect prediction

We first benchmarked six ML models on the most common
side effect documented in SIDER: dizziness. We specifically
modeled dizziness using 1) Logistic Regression (LR) model, 2)
Random Forest Classifier (RFC), 3) Support Vector Machine, 4)
Decision Tree Classifier, 5) Naive Bayesian Classifier, and 6)
K-Nearest Neighbor model and discovered that RFC had the
highest, and LR had the second highest performance as shown in
Table 1. Thus, we considered these two models in subsequent
additional analyses.

3.3 Logistic regression has the highest
average prediction accuracy across side
effects

We analyzed the top 30 most frequent side effects in SIDER,
using targets alone to predict the occurrence of the side-effect
compared to non-side-effect associated drugs using both
approved and experimental drugs. We further completed these
prediction tasks using RFC and LC models and measured their
accuracy across side effects. The LR model had a higher average
accuracy (0.67) compared to the RFC (0.66) for prediction across
all 30 side effects. The side-effect with the highest LR prediction
accuracy was thrombocytopenia with a prediction accuracy of
0.71. The side-effect with the lowest LR prediction accuracy was
infection with a prediction accuracy of 0.6.

3.4 Drugs targets of unapproved drugs
confounded LR performance

We analyzed the confounding effects of unapproved DTs by
predicting the 30 most common SIDER side effects on DTs with LR
on a 100-repeat bootstrap for all drugs and approved drugs only.
The model accuracy was higher when all drugs were included
across all side effects compared to approved drugs only.
Specifically, the mean model accuracy ranged from 0.768 to
0.833 in all drugs, and 0.612 to 0.702 in approved drugs. We
hypothesized that DTs for unapproved drugs were distinct from
approved drugs and influenced model performance. Of the
3,819 DTs curated; 2,543 and 2,505 DTs were associated with
approved and investigational drugs, respectively. Of the
unapproved drug targets (1,229/2,505, 49%) were shared with
approved drugs. For this analysis, we considered the
investigational targets sufficiently distinct to remove them.
However, future work could include investigational drugs that
targeted any targets shared with approved compounds. We further
extracted the 10 most common regression coefficients exclusive to
unapproved DTs and discovered that at least 5 of them were
assigned a relatively negative coefficient number, suggesting that
the model prioritized these targets for predicting non-side-effect-
drugs. LR models for certain side effects, such as nausea, headache,
and diarrhea, assigned strong negative coefficient values for all
10 most common unapproved DTs as shown in Table 2.
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3.5 Statistical analyses reveal three trends
across different combinations of domain
knowledge using LR to predict common
ADEs

We repeated LR analysis for all 30 side effects using 5 different
combinations of domain knowledge (see methods 2.1.4): 1) level 2 ATC
codes (ATC model), 2) DTs (DT model), 3) DTs and PathFX proteins
(DT/PathFX) model, 4) DTs and ATC codes (DT/ATC), and 5) DT,
PathFX proteins, and ATC (DT/PathFX/ATC) model after comparing
ML models and dropping unapproved drugs. We then performed an
ANOVA-RM across all experiment groups to assess between-group
differences across side effects. The results show significant between-
group differences across all groups for the prediction of 30 individual
side effects, with F-values ranging from 20.5 to 140.8, and p-values from
9.87E-75 to 2.42E-15 as shown in Table 3.

After identifying the presence of between-group differences across
side effects, we performed several paired t-tests to identify trends among
different combinations of domain knowledge. First, we compared the
predictive power of level 2 ATC codes andDT for the 30most common
SIDER side effects. ATC codes were shown to be more predictive than
DT for 17 drug side effects, with the largest difference in prediction
accuracy between ATC codes and DTs occurring for the side effect,

infection. DT was more predictive than ATC codes for only 8 side
effects, with the largest difference in prediction accuracy between DTs
and ATC codes being for the side effect, arthralgia. There were no
significant differences in predictive power between ATC codes and DT
for 5 side effects, which include constipation, abdominal pain, diarrhea,
musculoskeletal discomfort, and vomiting. Overall, the predictive power
was shown to be similar between level 2 ATC codes and DTs with t-test
statistics ranging from −10.61 to 13.46, p-values from 4.19E-24 to
7.91E-01, and the average difference in accuracy being 0.01.

Next, we were interested in understanding the influence of
incorporating level 2 ATC codes in addition to both DT and DT/
PathFX models. The results of the LR analysis showed that the
average prediction accuracy for the DT model was 0.67, while the
average prediction accuracy for the DT/ATC model was 0.70.
Consequently, the average prediction for the DT/PathFX model
was 0.66, while the average prediction accuracy for the DT/PathFX/
ATCmodel was 0.68.We then performed a paired t-test to assess the
effect of incorporating ATC codes with DTs benchmarked with DTs
on predicting the 30 most common SIDER side effects using LR at
the significance level of 0.05. Incorporation of level 2 ATC codes in
the DT model significantly improved model performance across all
side effects, with t-test statistics ranging from −15.26 to −3.52, and
p-values from 9.58E-28 to 6.57E-04. Incorporation of level 2 ATC

TABLE 1 Prediction performance of dizziness using FDA-approved DTs with multiple ML models.

Binary classification
model

Precision Recall F-1 Score Accuracy

Negatives
(n = 156)

Positives
(n = 162)

Negatives
(n = 156)

Positives
(n = 162)

Negatives
(n = 156)

Positives
(n = 162)

Logistic Regression 0.64 0.67 0.69 0.62 0.66 0.65 0.65

Random Forest 0.64 0.67 0.68 0.64 0.66 0.65 0.66

Support Vector 0.63 0.65 0.63 0.65 0.63 0.65 0.64

Decision Tree 0.61 0.67 0.72 0.55 0.66 0.60 0.63

Naive Beysian 0.73 0.57 0.29 0.90 0.42 0.70 0.60

K-Nearest Neighbors 0.56 0.69 0.82 0.39 0.67 0.50 0.60

TABLE 2 Most frequent targets for experimental drugs and their regression coefficients in three example side effects: Nausea, Headache, and Diarrhea.

Target Count Nausea coef. Headache coef. Diarrhea coef.

CCNA2 66 −0.29 −0.14 −0.35

PKIA 60 −0.43 −0.42 −0.28

BACE1 56 −0.29 −0.18 −0.42

map 46 −0.40 −0.44 −0.51

MMP3 44 −0.29 −0.03 −0.31

thyA 44 −0.47 −0.32 −0.06

CTSK 44 −0.49 −0.32 −0.31

NCOA1 42 −0.26 −0.14 −0.14

CELA1 34 −0.29 −0.33 −0.55

MMP8 30 −0.49 −0.35 −0.26
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codes in the DT/PathFX model significantly improved performance
across all side effects, with t-test statistics ranging
from −11.60 to −2.36, and p-values from 3.78E-20 to 2.02E-02
(Table 3).

Further, we performed a paired t-test to evaluate the predictive
power of PathFX targets and network proteins on the 30 most
common SIDER side effects when benchmarked with DTs alone.

The addition of PathFX targets and network proteins improved LR
model performance for seven side effects, which include: pruritus,
vomiting, gastrointestinal disorder, dermatitis, insomnia, infection,
and hypotension (Table 3).

After comparing the performance of the DT/PathFX and DT
model for predicting 30 side effects, we compared the performance
of the DT/ATC model to the DT/PathFX/ATC model to assess the

TABLE 3 ANOVA-RM LR prediction of 30 common side effects. The highest performing model value are bolded for each side effect. Each cell represents the
prediction accuracy of individual common side effects from 100 bootstrapped samples trained on 1) DTs (DT model), 2) level 2 ATC codes (ATC model), 3) DTs and
PathFX network proteins (DT/PathFX model), 4) DT and level 2 ATC codes (DT/ATC model), and 5) DT, PathFX network proteins, and level 2 ATC codes (DT/PathFX/
ATC model). F-values indicate the ratio of variability between conditions to within conditions. p-values reflect the probability of obtaining the observed
differences in means given the null hypothesis is true.

Side effect DT model ATC model DT/PathFX model DT/ATC model DT/PathFX/ATC model F-value p-value

thrombocytopenia 0.71 0.70 0.67 0.73 0.69 85.36 3.15E-52

constipation 0.70 0.70 0.69 0.73 0.70 33.62 3.71E-24

somnolence 0.70 0.72 0.68 0.73 0.70 61.63 1.85E-40

tachycardia 0.70 0.69 0.67 0.72 0.68 48.88 2.08E-33

asthenia 0.69 0.72 0.69 0.73 0.71 90.37 1.61E-54

diarrhea 0.69 0.69 0.68 0.72 0.70 54.47 1.43E-36

dyspepsia 0.69 0.66 0.67 0.71 0.67 67.63 1.38E-43

arthralgia 0.69 0.65 0.67 0.74 0.69 132.52 1.01E-71

dizziness 0.68 0.68 0.65 0.69 0.68 38.68 2.46E-27

nausea 0.68 0.70 0.66 0.70 0.69 69.35 1.84E-44

rash 0.68 0.69 0.66 0.71 0.68 96.80 2.24E-57

abdominal pain 0.68 0.68 0.66 0.70 0.68 32.21 2.98E-23

headache 0.67 0.66 0.62 0.69 0.65 140.80 9.87E-75

dyspnoea 0.67 0.69 0.65 0.70 0.68 59.05 4.47E-39

anaphylactic shock 0.67 0.66 0.63 0.69 0.66 51.44 7.12E-35

paraesthesia 0.67 0.66 0.66 0.70 0.67 31.03 1.74E-22

urticaria 0.66 0.67 0.66 0.69 0.68 20.47 2.42E-15

body temperature increased 0.66 0.67 0.66 0.69 0.68 22.36 1.16E-16

dermatitis 0.66 0.68 0.68 0.70 0.68 71.06 2.51E-45

fatigue 0.66 0.67 0.64 0.69 0.67 60.49 7.54E-40

musculoskeletal discomfort 0.66 0.67 0.65 0.71 0.66 59.86 1.64E-39

hypersensitivity 0.64 0.66 0.61 0.66 0.62 110.46 3.82E-63

pain 0.64 0.66 0.63 0.66 0.65 33.01 9.05E-24

nervous system disorder 0.64 0.62 0.64 0.67 0.67 57.35 3.74E-38

vomiting 0.67 0.67 0.69 0.69 0.70 47.31 1.69E-32

dermatitis 0.66 0.68 0.68 0.70 0.68 71.06 2.51E-45

hypotension 0.66 0.70 0.68 0.69 0.71 45.80 1.28E-31

pruritus 0.64 0.66 0.66 0.67 0.68 37.13 2.24E-26

gastrointestinal disorder 0.64 0.66 0.67 0.66 0.69 38.19 4.96E-27

insomnia 0.64 0.69 0.67 0.68 0.68 47.39 1.51E-32

infection 0.61 0.69 0.63 0.65 0.66 125.66 3.81E-69
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impact of ATC codes and determine if the same side effects would be
affected. Interestingly, the DT/PathFX/ATC model only improved
prediction for six out of the seven side effects listed in Table 3. One
unique observation is in the case of dermatitis, where the DT/
PathFXmodel exhibited higher prediction accuracy compared to the
DTmodel. However, the DT/ATCmodel surpassed the DT/PathFX/
ATC model for LR prediction of dermatitis, suggesting a stronger
ATC class-driven effect.

Three distinct trends for LR prediction across the 30 side effects
were identified by analyzing the model accuracy of the DT, DT/
PathFX, DT/ATC, and DT/PathFX/ATC models as listed below.

• Trend 1 (6 side effects): DT/PathFX model accuracy is greater
than the DT model. Both these model performances improve
with the addition of ATC codes, with the DT/PathFX/ATC
model demonstrating the highest performance.

• Trend 2 (23 side effects): DT model accuracy is greater than
the DT/PathFX model. Both these model performances
improve with the addition of ATC codes, with the DT/ATC
model demonstrating the highest performance.

• Trend 3 (1 side effect): DT/PathFX model accuracy is greater
than the DT model. Both these models improve with the
addition of ATC codes, with the DT/ATC model
demonstrating the highest performance.

3.6 Trend 1 case study: LR prediction of
gastrointestinal disorder is enhanced when
level 2 ATC codes and PathFX targets and
network proteins is incorporated with DTs

Gastrointestinal disorder LR prediction accuracy increased
when using all domain knowledge (accuracy = 0.69) compared
with DTs only (accuracy = 0.64) and DTs with ATC codes

(accuracy = 0.66) as shown in Figure 2. To better understand
how LR prioritized domain knowledge, we extracted the top and
bottom 30 LR coefficients for this side effect (4) and discovered that
20/30 of the largest positive coefficients were level 2 ATC codes with
the largest being A10. The 30 most negative LR targets had 7/
30 coefficients that were level 2 ATC codes, and 1/30 that were
proteins adjacent to DTs (network downstream proteins). Overall,
ATC class association and certain DTs were shown to be strong
predictors of gastrointestinal disorder.

We sought literature support for the importance of features
prioritized by the LR model with all domain knowledge included.
We specifically emphasized the DT, ATP binding cassette subfamily
B member 11 (ABCB11), and the level 2 ATC code A10 because they
had the highest coefficient values assigned in the DT/ATC/PathFX
model, which had the highest performance. The evidence from the
literature supports the relationship between the LR model
coefficients of these variables. Chen et al. (2016) studied the
effects of ingesting anti-tuberculosis drugs on Chinese individuals
with the ABCB11 SNP rs2287616 and observed some adverse effects
including gastrointestinal disorders, arthralgia, and pruritus. The
Level 2 ATC code A10 is associated with drugs used in diabetes. An
example of a drug associated with the A10 ATC code is Metformin,
which is prescribed for individuals with diabetes to help control their
blood sugar levels. This drug has commonly been associated with
side effects of gastrointestinal disorder along with nausea, vomiting,
and diarrhea, with a prevalence of 2%–63% (Siavash et al., 2017).
Additionally, we were interested in understanding the role of
cytochrome P450 3A4 (CYP3A4) in influencing drug-induced
gastrointestinal disorder as it is prominent in phase 1 metabolism
and accounts for a majority of gastrointestinal CYP activity
(Thummel, 2007). Interestingly, Ketoconazole has been associated
with inhibiting CYP3A4 activity in the intestinal tract, leading to a
persistent inhibition of first-pass CYP3A4 metabolism and potential
gastrointestinal disorder (Gibbs et al., 2000).

TABLE 4 Top and bottom 10 LR coefficients from theDT andDT/ATC/PathFXmodel for the side effect of Gastrointestinal Disorder. Positive coefficients suggest that
the feature is positively associated with the side effect. Conversely, negative coefficients imply the feature is negatively associated with the side effect. All level
2 ATC codes adhere to the format of a letter followed by two numbers (i.e., A10). Underlined features are PathFX network proteins. The other features are DTs.

Gastrointestinal disorder

DTs only (DT model) Drug and PathFX targets and ATC codes (DT/ATC/PathFX model)

Positive features Coefficients Negative
features

Coefficients Positive
features

Coefficients Negative
features

Coefficients

XDH 1.56 NR3C1 −1.30 A10 1.97 SLC22A11 −1.17

DCK 1.28 CYP1B1 −1.03 ABCB11 1.59 folP −1.05

HTR1B 1.20 folP −0.97 A06 1.58 SLC10A1 −1.05

OPRK1 1.18 AR −0.96 R03 1.38 GABRA1 −1.04

DPP4 1.14 ATP1A1 −0.95 A07 1.22 D01 −0.89

CYP3A4 1.14 CYP4A11 −0.93 J01 1.21 NR3C1 −0.80

SLC6A3 1.13 HTR2C −0.90 L01 1.20 SLC12A3 −0.78

BCL2 1.11 ESRRG −0.90 J05 1.13 A03 −0.76

PTGS2 1.10 CNR1 −0.90 J02 1.08 HTR6 −0.73

GNRHR 1.09 CYP2B6 −0.89 N03 1.08 pbpC −0.68
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Further, we evaluated the relationship of negative coefficients of
the DT folP and level 2 ATC code D01 on the side effect of
gastrointestinal disorder. We selected folP because its coefficient
values were consistently in the bottom 3 most negative values across
the DT and DT/ATC/PathFX models. D01 was selected for further
evaluation since it was the most negative level 2 ATC code listed in
the DT/ATC/PathFX model. The evidence from the literature does
not well support the relationship between the LR model coefficients
of the negative variables we selected. The folP gene encodes for
Dihydropteroate synthase (DHPS), an enzyme involved in the
synthesis of folate in bacteria. According to Yoshida et al. (2022),
inhibition of DHPS activity by Dapsone improves gastrointestinal
symptoms in children with immunoglobulin A vasculitis (Yoshida
et al., 2022), which contradicts the relationship that the LR model
identified. The ATC code D01 is associated with Antifungals for
dermatological use. Currently, the association between D01 drugs
and gastrointestinal disorders is not well understood. However, the
ATC code A03 is associated with drugs for functional
gastrointestinal disorders, which is the 2nd most negative ATC
code classified by the DT/ATC/PathFX model.

3.7 Trend 2 case study: DTs with ATC codes
had the highest prediction accuracy for
hypersensitivity

For hypersensitivity, the DT/ATC model had the highest
prediction accuracy (accuracy = 0.66, Table 3). The

DT/ATC/PathFX model had lower prediction accuracy than DT
alone (accuracy = 0.62 compared to accuracy = 0.64) as shown in
Figure 2. To better understand this trend, we extracted the top and
bottom 30 LR coefficients for this side effect (Table 5) and counted
the number of features that weren’t DTs in the 1) DT/ATC/PathFX
and 2) DT/ATC models. We discovered that 15/30 of the largest
positive variables and 3/30 of the negative variables were level 2 ATC
codes in the DT/ATC/PathFX model. However, in the DT/ATC
model, only 14/30 of the largest positive coefficients and 2/30 of the
most negative coefficients were level 2 ATC codes. Consistent with
gastrointestinal disorder, these findings suggest that ATC class
association and certain DTs are strong predictors of hypersensitivity.

We again sought literature evidence to support features that
were prioritized by the LR model. Specifically, we selected the DT
prostaglandin D2 (PGD), which was the 10th highest feature in the
DT model, and ATC code J01, which was the 10th highest feature in
the DT/ATC model, for further investigation. While limited studies
have documented the direct effect of drug-induced hypersensitivity
from PGD interactions, studies have shown that the PGDmetabolite
levels in urine are associated with the severity of hypersensitive
reactions to ingested foods (Maeda et al., 2017). The ATC code J01 is
associated with antibacterials for systemic use. Currently, there are
drugs within the J01 ATC category that have been associated with
hypersensitivity reactions, including Penicillins (Weiss and
Adkinson, 1988), Cephalosporins (Moreno et al., 2008), and
Sulfonamides (Slatore and Tilles, 2004). While we expected
classical hypersensitivity HLA genes to be associated with drug
side effects, our models surprisingly did not prioritize them as our

FIGURE 2
LR model accuracy for side effects of gastrointestinal disorder, dermatitis, and hypersensitivity across DT, DT/PathFx, DT/ATC, and DT/ATC/PathFX
models. The square, triangle, and circle represent the mean prediction accuracy for side effects of gastrointestinal disorder, dermatitis, and
hypersensitivity, respectively. Error bars represent one standard deviation of uncertainty.
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analysis was limited to DTs documented in DrugBank or network
proteins with high-quality associations to DTs. Two drugs from
DrugBank have at least one HLA gene (HLA-A, HLA-DQB1, and
HLA-DQA2) as their targets (insulin pork, coccidioides, and
immitis, spherule), but these drugs were not associated with side
effects in SIDER, so they were skipped. Interestingly, 39 HLA genes
were identified in the PathFX network with 20 drugs having at least
one association with those genes. Out of these 20 drugs, only three of
them (Copper, Dasatinib, and Ponatinib) were documented in
SIDER with Dasatinib being the only drug associated with
hypersensitivity.

We subsequently evaluated the influence of DT ATP1A1
(ATPase Na+/K+ transporting subunit alpha-1) which was the
10th lowest feature in the DT/ATC model, and ATC code H02,
which was the 9th lowest feature in the DT/ATC/PathFX model, on
the side effect of hypersensitivity. Since ATP1A1 is involved in ion
transport, it is not specifically associated with modulating
hypersensitivity reactions to drugs; however, our model predicts
that this protein could have a role in the hypersensitivity reaction.
To our knowledge, there is currently no known association between
ATP1A1 and drug-induced hypersensitivity reactions. The ATC
code H02 is associated with corticosteroids for systemic use. There
are several drugs within the H02 ATC category that have been used
to treat hypersensitivity, including Methylprednisolone (Ocejo and
Correa, 2019) and Dexamethasone (Johnson et al., 2018).

3.8 Trend 3 case study: LR prediction of
dermatitis is increased when level 2 ATC
codes are incorporated with DTs

Dermatitis LR prediction accuracy is increased when level
2 ATC codes are incorporated with DTs. Interestingly, both

PathFX proteins and ATC codes improve LR performance
(accuracy = 0.68) compared to DTs alone (accuracy = 0.66), but
do not improve accuracy as much as level 2 ATC codes and DTs
(accuracy = 0.70) as shown in Figure 2. To better understand this
trend, we extracted the top and bottom 30 LR coefficients from the
DT, DT/ATC, and DT/ATC/PathFX models for this side effect
(Table 6) and counted the number of non-DT features. We
discovered that 21/30 of the largest positive variables and 6/30 of
the negative variables were level 2 ATC codes when both PathFX
proteins and ATC level 2 codes were included. However, when
PathFX network proteins were eliminated from the LR model, only
17/30 of the largest positive coefficients and 6/30 of the most
negative coefficients were level 2 ATC codes. Given its high
absolute coefficient values, our findings suggest that ATC class
association is more associated with dermatitis than individual
DTs and network proteins.

We sought literature support for the DT, Gonadotropin-
releasing hormone receptor (GNRHR), and the level 2 ATC code
D07, both of which had positive coefficients for predicting the side
effect of dermatitis. We selected GNRHR as the DT of interest
because it had the highest positive coefficient value amongst all
targets in the DT/ATC model. Further, we selected D07 because it
was assigned the highest coefficient across all level ATC codes for
predicting dermatitis. While there are currently limited studies that
demonstrate the relationship between GNRHR and drugs on the
side effect of dermatitis, Han et al. (2023) recently administered the
GnRH antagonist Relugolix which revealed lichenoid dermatitis
with eosinophils 9 weeks post-treatment. Relugolix has been
demonstrated to lower testosterone levels fast (Shore et al., 2020).
This effect may increase the risk of developing dermatitis, as
previous studies show that male atopic dermatitis patients have
lower testosterone levels when compared to controls (Gratton et al.,
2022). The ATC code D07 is associated with Corticosteroids for

TABLE 5 Top and bottom 10 LR coefficients from the DT, DT/ATC, and DT/ATC/PathFX model for the side effect of hypersensitivity. Positive coefficients suggest
that the feature is positively associated with the side effect. Conversely, negative coefficients imply the feature is negatively associated with the side effect. All
level 2 ATC codes adhere to the format of a letter followed by two numbers (i.e., A10). Underlined features are PathFX network proteins. The other features are DTs.

Hypersensitivity

DTs only (DT model) DTs and ATC codes (DT/ATC model) Drug and PathFX targets and ATC codes
(DT/ATC/PathFX model)

Positive
targets

Coef. Negative
targets

Coef. Positive
targets

Coef. Negative
targets

Coef. Positive
targets

Coef. Negative
targets

Coef.

DNMT1 1.16 CYP3A43 −1.19 V08 1.53 CYP3A43 −1.09 DPP4 1.30 folP −1.32

DCK 1.15 SLC16A10 −1.17 HTR1D 1.37 ADRA2C −1.09 J05 1.22 CYP3A43 −0.93

rpsI 1.01 CYP2B6 −1.15 G01 1.26 TEK −0.96 A02 1.22 AR −0.90

CHRNA3 1.01 IFNAR2 −0.96 ADORA2A 1.26 M09 −0.89 MPO 1.20 HTR1E −0.87

MTOR 1.00 ABCC10 −0.92 A04 1.12 TNF −0.87 M03 1.18 ampC −0.83

UGT1A9 0.98 IDH1 −0.83 DNMT1 1.11 ABCC10 −0.82 V03 1.12 A12 −0.82

GNRHR 0.97 ADRA2C −0.82 XDH 1.09 ALK −0.81 L01 1.11 GNRHR2 −0.80

ADRB2 0.97 NTRK1 −0.81 TSPO 1.07 CACNA1G −0.77 J02 1.08 KCND3 −0.79

HTR3A 0.92 ADRA1D −0.80 ABCB11 1.07 HSD3B1 −0.75 J01 1.06 H02 −0.78

PGD 0.91 SULT2A1 −0.80 J01 1.06 ATP1A1 −0.73 J04 1.01 HTR6 −0.77
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dermatological preparations. This class of drugs, including
Hydrocortisone (Sears et al., 1997), Betamethasone (Jensen et al.,
2009), and Clobetasol (Alam et al., 2013), have been used for
dermatitis treatment. However, contact sensitivity to such drugs
could lead to adverse effects, such as stasis dermatitis, perineal
dermatitis, and chronic actinic dermatitis (Coondoo et al., 2014).

We further investigated the DT, folP, and level 2 ATC code, R06,
both of which had negative coefficients for the prediction of
dermatitis. We selected folP because its coefficient values were
consistently in the bottom 3 most negative values across the DT/
ATC and DT/ATC/PathFX models. R06 had the largest negative
coefficient in the DT/ATC model. Dapsone, an FDA-approved for
dermatitis, competitively inhibits the action of DHPS to reduce
inflammation associated with dermatological conditions (Kurien
et al., 2022). The ATC code R06 is associated with Antihistamines.
Currently, there are several antihistamines that have been found to
be effective in improving dermatitis symptoms, including Cetirizine
(Hannuksela et al., 1993), Loratadine (Herman and Vender, 2003),
and Fexofenadine (Kawashima et al., 2003).

4 Discussion

Side effects in FDA-approved drugs continue to be a major
concern despite the strict guidelines and protocols in place during
the drug development and approval process. These side effects can
significantly impact the quality of life for its users. Recent
advancements in the scientific community have sought to address
these issues through the development of various tools and resources
such as the PathFX algorithm, SIDER, and DrugBank databases.
Specifically, the PathFX algorithm identifies potential connections
between drugs, targets, and downstream proteins associated with a
phenotype. SIDER documents drug side effects from public free-text

data sources (i.e., literature and package inserts) using Natural
Language Processing. The DrugBank database assigns a
standardized ID to all drugs and provides extensive information
about each one of them, such as its associated ATC code, DT, and
description. These resources provide crucial information in
enhancing our understanding of the relationships between drugs
and side effects, thereby facilitating future developments of safe and
effective drugs. We, and others, have used this domain knowledge to
better predict DTs with varying success. Previously we had
discovered that proteins downstream of druggable targets that
were associated with severe, adverse reactions, were predictive of
drug outcomes (Wilson et al., 2022). We were eager to understand
whether these findings applied to cases across milder, and more
frequent side effects.

This project analyzed the predictive value of three types of
domain knowledge—DTs, PathFX network proteins, and ATC
codes - for the prediction of the 30 most common side effects
from SIDER. We used the DT model as a benchmark to evaluate the
predictive value of three domain knowledge combinations 1) DT/
PathFX 2) DT/ATC, and 3) DT/PathFX/ATC. Our results showed
the following key observations based on the three trends identified:
1) incorporation of PathFX targets and network proteins resulted in
improved prediction for side effects for 7 out of 30 side effects, 2)
level 2 ATC codes enhanced LR model performance for prediction
of all 30 side effects, and 3) despite the DT model performing worse
than the DT/PathFX model, the DT/PathFX/ATC model did not
substantially improve model performance compared to the DT/ATC
model for LR prediction of dermatitis. Overall, these observations
suggest the following: 1) pathway information and PPIs can be
useful for the prediction of certain side effects, 2) drug classification
information positively impacted the accuracy of side effect
predictions, and 3) incorporation of both PathFX targets and
level 2 ATC codes may not significantly influence the prediction

TABLE 6 Top and bottom 10 LR coefficients from the DT, DT/ATC, DT/ATC/PathFX model for the side effect of dermatitis. Positive coefficients suggest that the
feature is positively associated with the side effect. Conversely, negative coefficients imply the feature is negatively associated with the side effect. All level 2 ATC
codes adhere to the format of a letter followed by two numbers (i.e., A10). Underlined features are PathFX network proteins. The other features are DTs.

Dermatitis

DTs only (DT model) DTs and ATC codes (DT/ATC model) Drug and PathFX targets and ATC codes
(DT/ATC/PathFX model)

Positive
targets

Coef. Negative
targets

Coef. Positive
targets

Coef. Negative
targets

Coef. Positive
targets

Coef. Negative
targets

Coef.

AGTR1 1.38 folP −1.07 D07 2.24 R06 −1.12 D07 2.38 folP −1.30

DCK 1.35 SLC47A2 −1.01 GNRHR 1.47 SLC16A10 −1.11 N03 1.81 V04 −1.09

ORM1 1.32 CFTR −0.95 N04 1.44 SLC10A1 −1.07 N02 1.56 SLC22A11 −0.98

ABCC4 1.14 ABCG2 −0.95 C09 1.43 folP −1.04 M03 1.52 SLC18A2 −0.95

TSPO 1.13 PPARA −0.92 A04 1.40 ABCC10 −1.00 B01 1.38 CYP3A43 −0.94

HTR3A 1.12 SLC16A10 −0.91 J02 1.38 TNF −0.94 C09 1.32 S02 −0.92

UL30 1.09 SLC18A2 −0.90 C03 1.38 V04 −0.92 G02 1.23 R06 −0.91

MPO 1.09 PGR −0.89 N03 1.35 CYP2B6 −0.90 L02 1.21 JAK2 −0.87

FDPS 1.07 SLC10A1 −0.89 G04 1.26 SLC18A2 −0.88 HTR2B 1.16 FXYD2 −0.86

PDE3A 1.03 IFNAR2 −0.89 A08 1.25 PPARA −0.88 J05 1.15 L03 −0.86
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accuracy compared to level 2 ATC codes alone for prediction of
certain side effects. We further extracted the top and bottom 30 LR
coefficients of three individual side effects from each identified trend
to gain a better understanding of the features that our models
prioritized. The LR model prioritized both DTs and level 2 ATC
codes, further implying that drug-target interactions and drug
classification may be informative in understanding side effects.
Since drugs within the same class share common characteristics
in terms of their mechanism of action, chemical structure, or
intended therapeutic use, this may suggest that therapeutic
targeting of certain organ systems is sufficient for causing side
effects, irrespective of distinct DTs. Further, drugs with shared
ATC codes often share DTs, and these shared properties between
level 2 ATC codes and DTs could potentially explain the similarities
in their predictive power. However, the LR model did not often
prioritize PathFX targets and network proteins, which suggests that
pathway information and protein interactions may be relatively less
influential in predicting individual side effects. Indeed, in our initial
PathFX analysis, we discovered that downstream proteins were
more predictive for certain disease indications, and it’s reasonable
that frequent side effects may not be well-explained by additional
downstream proteins. This is further supported by Huang et al.
(2011), who noted that off-target proteins were more predictive of
drug-induced side effects, though this was limited to cardiotoxicity.

There are some limitations to our method. First, our trained
models can be potentially better fine-tuned to achieve more optimal
performance. While we were primarily interested in investigating
how model performance changes across different combinations of
domain knowledge, fine-tuning the model to improve the
performance of our model may lead to a more accurate
representation of coefficient assignments in the LR model. The
suboptimal accuracy of our model may have led to our model
inaccurately assigning negative coefficients. For example, in the
hypersensitivity case study, there was no known association
between ATP1A1 and drug-induced hypersensitivity reactions to
date. As such, future work will explore training models that include
all domain knowledge and employ a feature selection approach to
optimize model performance. By doing so, we aim to better
understand the predictive value of domain knowledge features for
each individual side effect. Second, our trained LR model only
considers three areas of domain knowledge (DTs, PathFX targets,
network proteins, and level 2 ATC codes), which may limit its
performance potential. Further, compared to our previous
discovery, we did not restrict PathFX proteins to side-effect-
associated proteins. Third, our analyses were limited to only the
top 30 most common side effects. Future work can expand the scope
to explore a broader range of side effects. Fourth, we limited our
analyses to drug targets of approved drugs and excluded those that
were unique to unapproved drugs. As such, future work could
include investigational drugs with comparable or related targets.
Fifth, although various research groups have achieved success in
leveraging level 4 and 5 ATC codes in predicting drug side effects
(Cami et al., 2011; Zhao et al., 2018; Galeano and Paccanaro, 2022),
we opted to use level 2 ATC codes. Given that we were primarily
interested in learning whether classification associated with specific
organ systems influenced the prediction of common side effects, we
determined that level 2 ATC codes provided the necessary specificity
for our interests. As such, future work can explore whether the

predictive value of ATC codes changes with more specific terms.
Lastly, we discovered literature evidence for only a handful of LR
coefficient associations; they supported the features prioritized by
our models, but investigations are needed to further validate the
coefficient associations identified by the LR model and affirm the
importance of model-prioritized features.

Previous studies have explored the use of ATC codes and DT
information to predict general or specific drug-induced side effects.
However, these studies did not specifically focus on common drug-
induced side effects. Kim et al. (2016) analyzed the utility of drug off-
targets in predicting side effects by identifying relationships in the
tissue protein-symptom matrix. While this study leveraged DT
information to uncover off-target tissue effects, it does not
directly address the predictive power of DT information for the
prediction of individual side effects. Further, Zhao et al. (2018)
evaluated the predictive power of five domain knowledge features,
namely DTs, ATC code, structure similarity, literature association of
drug-protein interactions, and drug fingerprint similarity for the
prediction of drug side effects with four MLmodels. The RFCmodel
achieved the highest performance when all five domain knowledge
features were integrated, yielding an accuracy of 0.775. Despite
achieving a higher prediction accuracy through the integration of
multiple domain knowledge features, Zhao et al. (2018) did not
specifically aim to assess its utility in predicting individual side
effects. Lastly, Huang et al. (2011) trained an LR model that
combined DT data, PPI networks, and gene ontology annotations
for the prediction of side effects of experimental drugs and achieved
an accuracy of 0.675 for the prediction of cardiotoxicity. However,
the study’s claim of predicting cardiotoxicity with experimental
drugs may be limited. First, Huang et al. (2011) used drugs from
SIDER, which primarily documents the side effects of FDA-
approved drugs. Second, their study depended on molecular
docking information, and they did not incorporate protein
structural information in their model. Last, they only trained
their model to predict one type of side effect: cardiotoxicity.

Compared to other cited examples, we are generally on par with
or exceed other approaches, with the exception of Liang et al. (2020),
who trained RF models that yielded nearly perfect performance
(accuracy = 0.975). The moderately high but consistent
performances across approaches with distinct domain knowledge
underscore the difficulty in predicting drug side effects generally.
Additionally, in our comparison of the value of each component of
domain knowledge, we discovered that none of DT, ATC, or PathFX
had a drastic improvement in performance with relatively minor
changes in AUC values. This result suggests some redundancy in
domain area knowledge. Of the five domain knowledge features in
Zhao et al. (2018), the exclusion of DTs and ATC codes had the least
impact on the overall model. This suggests that the inclusion of
additional domain knowledge, such as drug similarity, literature
association of drug-protein interactions, and protein structural
information, can potentially improve the performance of our
model. Further, Huang et al. (2011) discovered that additional
off-target information was of high predictive value for predicting
side effects. Given the various approaches to predicting drug-
induced side effects, future work could emphasize discovering
negative examples that are distant from positive cases based on
drug features, as exemplified in Liang et al. (2020). Additionally, the
inclusion of predicted drug-binding protein targets could be a
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potential avenue for exploration as it has exhibited relatively high
predictive value, as shown in Huang et al. (2011). In ongoing work,
we are actively exploring the utility of predicted drug-binding
proteins for improving PathFX predictions, but that work was
outside the scope of this initial analysis.

In this study, we are interested in identifying associations between
common drug-induced side effects and domain knowledge features to
inform the development of novel therapies with known or tolerable side
effects. Although previous studies have leveraged DTs, ATC codes, and
PPI networks for the prediction of side effects, limited studies have
assessed the predictive value of ATC codes, DT information, and
PathFX targets and network proteins for predicting individual side
effects. Consistent with our hypothesis, this study showed that LR
model performance changes with the inclusion of domain knowledge
for prediction across 30 individual side effects. LR coefficient analyses
further suggest that side effects may be more heavily influenced by DT
and classification information. For us and others, these findings
highlight the importance of considering organ-system information in
engineering pathways and considering potential off-targets that could
be connected to side-effect outcomes. Bridging these gaps could
advance network methods to have better predictive utility and
generally enhance our ability to anticipate common drug-induced
side effects and inform future drug development.
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