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Children are prone to develop dental caries. This is supported by epidemiological

data confirming early childhood caries (ECC) as a highly prevalent disease affecting

more than every second child worldwide. ECC is known to result from an imbalance

between re- and demineralization where demineralization dominates due to frequent

acid production by cariogenic bacteria present in oral biofilms. The application of oral

care formulations containing remineralizing agents helps to prevent dental caries. As

young children are sensitive and usually swallow (intended or unintended) a majority of

toothpaste or other oral care products during daily dental care, all ingredients, especially

the actives, should be non-toxic. Biomimetic hydroxyapatite [HAP; Ca5(PO4)3(OH)]

is known to have favorable remineralizing properties combined with an excellent

biocompatibility, i.e., it is safe if accidently swallowed. Several clinical trials as well as

in situ and in vitro studies have shown that HAP remineralizes enamel and dentin.

Remineralization occurs due to deposition of HAP particles on tooth surfaces forming

mineral-mineral bridges with enamel crystals, but also indirectly through calcium and

phosphate ions release as well as HAP’s buffering properties in acidic environments

(i.e., in plaque). HAP induces a homogenous remineralization throughout the subsurface

enamel lesions. This review summarizes the current evidence showing HAP as an

effective remineralizing agent in oral care products for children. Additional studies

showing also further beneficial effects of HAP such as the reduction of biofilm formation

and the relief of hypersensitivity in children with molar incisor hypomineralization (MIH).

It can be concluded that HAP is an effective and safe remineralizing agent for child

dental care.

Keywords: hydroxyapatite, caries, children, remineralization, teeth, toothpaste, oral care

INTRODUCTION

Daily oral hygiene, especially in the morning and evening, and tooth-healthy dietary attitude are
the key factors to prevent dental caries (1–3). In addition to the use of a suitable toothbrush,
a toothpaste with effective and active anti-caries agents should be used (4–6). For this reason,
fluoride-containing toothpaste formulations have been favored for the past years (6). A dose-
dependent relationship of fluorides is discussed. One assumes that the addition of several
fluoride sources might lead to better results in preventing caries. Hausen et al. (7) have shown
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that the combination of different fluoride-sources does not
lead to a higher caries-preventive effect. Additionally, due to
concerns mainly dealing with safety-problems, many parents try
to avoid fluoride whenever possible (8). Consequently, effective
and safe alternatives to fluorides are needed. Recently published
clinical studies have proven the efficacy of microcrystalline
hydroxyapatite (HAP) with respect to caries prevention (5, 9–
12). HAP is well-known to be biomimetic, or a bionic active
ingredient when used in oral care (13, 14). Human enamel
consists of approximately 97% HAP (15, 16). By synthesizing
this HAP, it can be used as a remineralizing agent in oral care
products (16–20).

The introduction of a safe and well accepted active agent
for caries prevention can help to reduce caries prevalence in
young children which remains high today (1). As fluoride has
been shown to be effective in preventing caries, HAP needs to
be at least as effective as fluoride. The anti-caries efficacy of
HAP has been proven in several randomized clinical trials, while
in situ studies have shown its remineralizing effectiveness. This
evidence was recently published as a systematic review and meta-
analysis that has shown the caries-preventive effect of HAP (5).
Remineralization of demineralized parts of the teeth is important
for the efficacy of anti-caries agents. While the mode of action of
fluoride has been investigated in the past year and was currently
revised (21), using HAP is a quite new approach for preventing
caries (5, 8). As a well-known calcium-phosphate, it can be
considered as safe agent (22).

The aim of this review is to analyze the existing literature
regarding HAP as active ingredient in oral care applications and
to summarize its caries preventive effects with a special focus on
biomimetic remineralization.

MATERIALS AND METHODS

For this narrative review on the remineralizing mode of action
of HAP, literature was obtained from Chen et al. (17), Enax
et al. (14), Limeback et al. (5), and O’ Hagan-Wong et al. (8).
Additionally, same databases and search strategy as presented
elsewhere were used to find more recently published papers
(5). In short, Ovid Medline (PubMed), EMBASE, Scopus, and
Web of Science were chosen as the primary databases. Search
terms and strategy were: “hydroxyapatite” AND (“in vitro study”
OR “in situ study” OR “in vivo study” OR “remineralization”
OR “caries”) AND (“oral care” OR “toothpaste” OR “dentifrice”
OR “mouthwash” OR “mouthrinse”). Literature was screened
with a special focus on the modes of action with respect to
remineralization and caries-prevention of HAP resulting in 29
studies included in this review with respect to (clinical) efficacy.

HYDROXYAPATITE IN PREVENTIVE
DENTAL CARE FOR CHILDREN

HAP is widely used in oral care products and in dentistry. In the
following, the modes of action of HAP, clinical studies, and also
biocompatibility with special focus on children are presented.

Modes of Action of Hydroxyapatite
The modes of action of particulate HAP have already been
described in detail by Enax et al. (14). An update on the modes of
action of particulate hydroxyapatite has recently been published
in a systematic review and meta-analysis by Limeback et al. (5).
Briefly, with a special focus on remineralization, the modes of
action of HAP (Figure 1) is described as follows.

• Formation of a Protective HAP Layer

HAP has a high affinity to human dentin, especially its collagen,
but also to enamel (23, 24). HAP microcrystals adhere to the
crystallites of human tooth tissue (25–27). Recently published
data confirm that HAP particles form mineral-mineral bridges
with enamel crystallites (25, 26). This means that HAP from
oral care products can adhere to and directly remineralize
demineralized tooth tissues at their surface layers (20, 28–30).
Adherence to the surface layer can protect the natural tooth from
subsequent acid attacks, including acids from food substances
(31–33). The HAP layer has also been shown to survive
several acid attacks, using a cyclic pH-model (26). Constant
application of HAP from oral care products will therefore lead to
densification and renewal of the adhering layer, thus enhancing
its protective characteristics.

• Calcium Release and pH-Buffering

HAP does not only form a protective layer at the exposed surfaces
of teeth, but can also be incorporated into dental biofilm (13, 34–
37). Acids derived from either food or bacteria will dissolve the
particulate HAP (34, 36), resulting to release of calcium ions and
increase the plaque pH (34, 35), with the following benefits.

• The acids attack the protective HAP layer, but not directly the
tooth. The tooth will be protected.

• Calcium-release from HAP remineralizes demineralized parts
of the enamel also in its subsurface layers. Additionally,
increase in calcium concentration shifts the chemical
equilibrium of tooth-HAP from dissolution to a more
stable state.

• An increase in the pH protects the tooth from
demineralization by weakening acids. As the critical pH
of enamel is about 5.5, a pH where tooth mineral starts to
dissolve more easily, a minor change can help to protect the
tooth surface.

• Inhibition of Bacterial Plaque Adhesion

Several in situ studies have investigated the reduction of bacterial
adhesion on dental surfaces (enamel, dentin) and the surfaces
of other materials exposed to the oral environment, such as
dental implants (titan) and dental restorations (polymethyl-
methacrylate) (38–42). Most of these studies used chlorhexidine
(0.2%, a strong antibacterial/bactericidal agent) as positive
control. The reduction in number of bacteria on (tooth-)
surfaces after the use of HAP mouthwashes was comparable to
that observed with chlorhexidine (38, 39, 43). Interestingly, in
contrast to chlorhexidine, the mode of action of HAP is not
bactericidal or bacteriostatic (14, 37). It seems that tooth surfaces
modified with HAP-particles prevent the initial adherence of
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FIGURE 1 | Modes of action of Hydroxyapatite (HAP) with respect to caries prevention and remineralization. HAP forms a protective layer on the tooth-surface. HAP is

also known to be a calcium source. Studies have shown that HAP-particles reduce the dental biofilm adhesion. In terms of remineralization, HAP is able to

homogenously remineralize caries-lesion.

bacteria (so called early colonizers) (44) to the teeth. Kensche
et al. showed that bacteria adhere to the free HAP particles in
saliva instead of adhering to the tooth surface, thus reducing
the ability of bacteria to form plaque on the tooth surfaces
(39). By adhering to HAP particles, the bacteria form aggregates
that are easily cleared away from the oral cavity through saliva
swallowing or mouth rinsing together with loose particles (39).
As dental biofilm formation is reduced, this also decreases the
risk of demineralization of dental surfaces by acids derived from
microorganisms (35, 37).

• Deep Remineralization of Caries Lesions

Tooth demineralization occurs all day and is in healthy
conditions in an equilibrium with remineralization. Salivary
ions, especially calcium and phosphate ions, help to remineralize
demineralized surfaces. However, a diet with frequent
carbohydrate exposure leads to a net-demineralization of
dental surfaces. Consequently, the application of remineralizing

agents seems to be important (36). Clinical studies have shown
that HAP-toothpaste is effective in preventing dental caries
(5, 9–12, 45). In situ studies help to investigate the mechanism
of action of HAP in preventing tooth demineralization (20, 29).
Irrespective of the type of application, toothpaste, or gel, HAP
leads to a more homogenous remineralization compared to
fluoride (14). Fluoride remineralization is limited to the surface
layer of the lesion (28–30), while HAP remineralization seems
to be deeper and homogenous throughout the subsurface layer
of the lesion (20, 28–30). The HAP nano- or microparticles
penetrate into the micropores in carious tooth tissue, and
templates de novo hydroxyapatite crystal formation around
each particle, by continuously attracting large amounts of
calcium and phosphate ions from the surrounding solution
into the tooth tissue, thus promoting crystal integrity and
growth (46). This biomimetic mineralization process enables
the regeneration of enamel and dentin. Additionally, HAP will
remineralize the surface of carious lesions. It can be suggested
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that HAP particles are a calcium source-as mentioned above.
The application of HAP can also be seen as “neo”-mineralization
(5, 8).

Anti-Caries and Remineralization Studies
on Hydroxyapatite
Several in vitro studies have shown that HAP remineralizes
demineralized enamel and dentin, and also protects teeth from
demineralization (13, 14). However, for clinical relevance and
evidence, high quality randomized clinical trials are needed
for each active ingredient used in oral care and every other
discipline in medicine. Clinical settings have demonstrated
the ability of HAP to protect teeth from dental caries. Five
randomized controlled trials (RCTs) presented evidence that
HAP has anti-caries properties (5, 8–12, 45). The first being
a placebo controlled clinical trial with children in elementary
school in Japan, published back in 1989 (45). This long-term
3-year clinical trial investigated caries increment and showed
significant reduction in decayed, missing, filled (permanent)
teeth (DMFT) with the use of a HAP toothpaste (5% HAP
content). Two other single-blind, randomized clinical caries
trials that measured incipient and proximal caries concluded
significant caries remineralization effects (11, 12). Both clinical
trials reported direct measurement of anti-caries effects in young
adults and children after exposure to HAP toothpaste with use
of ICDAS (the international caries detection and assessment
system) (47), DIAGNOdent, photographic pixel changes and
interproximal digital radiography. It seems that the use of
multiple measurement methods removed the subjectivity in
assessment of the HAP-induced remineralization effect, and
increased the reliability and sensitivity of the measurement.
Interestingly, from a methodological point of view, Badiee et
al. (13) included fluoride toothpaste as positive control, and
both toothpastes significantly reduced enamel white spot lesions
among patients after orthodontic treatment (12). A long-term
study by Grocholewicz et al. (11) compared the remineralizing
effect of a HAP gel (10% HAP) in combination with ozone gas
therapy, with subject inclusion criteria of ICDAS II > code 1
active caries lesions. Subjects were randomly assigned into three
groups (group I: HAP only, group II: ozone only, group III: HAP
+ ozone), and evaluated after 1 and 2 years. The study showed a
reduction in early caries lesions after the first year, and a decline
in caries was still observed after the second year when using HAP.
Bitewing radiographs confirmed enamel surface and subsurface
remineralization after use of HAP. The HAP anti-caries effect was
suggested to be enhanced by ozone gas application (11).

Two well-designed double-blind RCTs by Schlagenhauf et al.
(10) and Paszynska et al. (9), provided further evidence with
respect to the efficacy of HAP in terms of caries prevention and
remineralization. Both studies used baseline criteria of ICDAS
> code 1 active caries lesions in a long-term observation of
patients at risk for caries. Schlagenhauf et al. (10) concluded
that a toothpaste with HAP (10% HAP) was as effective as a
regular fluoride toothpaste (1,400 ppm fluoride formulated as
amine fluoride and stannous fluoride) in preventing progression
of caries in high caries risk subjects (orthodontic treatment) after

6 months observation (10). A recently published multicenter
RCT by Paszynska et al. (9) on HAP toothpaste (10% HAP)
showed an improvement with respect to remineralization of
caries lesions in primary tooth enamel. The HAP toothpaste was
as effective as fluoride toothpastes (500 ppm fluoride formulated
as amine fluoride) in young children with primary dentition in
double blinded examinations (9). Thus, the HAP toothpaste was
found not inferior to the fluoride control toothpaste after 1-year
observation. The HAP-group presented a slight reduction with
respect to enamel caries (ICDAS II≥ code 1) per surface by 4.2%
compared to the fluoride-group. The exact one-sided upper 95%
confidence limit for the difference in proportion of participants
with increase in ICDAS II score ≥ 1 was 9.8%, which is below
the non-inferiority margin. This demonstrated non-inferiority of
the HAP-containing toothpaste compared to the fluoride control
toothpaste when used for a long-term period (9).

Based on the above overview, it can be concluded that
the use of biomimetic HAP as an active ingredient in oral-
care products may be a useful clinical tool in planning oral
care among high caries risk children. The studies confirm that
patients can use HAP oral care products, and dental professionals
can recommend them confidently for clinical applications in
preventing dental decay, both in children and adults.

Biocompatibility and Safety of
Hydroxyapatite
Biocompatibility is defined as the ability of a biomaterial to
perform its desired function with respect to a medical therapy,
without eliciting an undesirable local or systemic effects in the
recipient or beneficiary of that therapy, but generating the most
appropriate beneficial cellular or tissue response in that specific
situation, and optimizing the clinically relevant performance of
that therapy” (48). As HAP and fluoride are the only active
ingredients used in oral care products with a proven anti-caries
efficacy (5, 6), both will be discussed in the following paragraphs
with respect to their biocompatibility.

Hydroxyapatite

HAP is a calcium phosphate with both a micro- and nano-
crystalline morphology. It is the essential mineral component
of teeth and bone. It has been widely applied as a biomaterial
in medicine and dentistry due to its excellent bioactivity
(the potential to induce calcium phosphate deposits) and
osteoconductivity (the ability to serve as a scaffold for bone
formation) (49, 50). This mineral presents additional favorable
features: it is non-toxic, non-immunogenic, and it does not elicit
significant inflammatory reactions in cells and tissues, which
has been confirmed by numerous in vitro and in vivo studies
(50–55). Consequently, HAP meets the basic biocompatibility
requirements of the definition cited above (48).

HAP can be synthesized in various crystalline morphologies

and particles sizes (from nano- to micrometer size) (25,

41). HAP in nano scale seems to be of particular interest

to scientists studying the issue of material biocompatibility

(56). Nanoparticles present extraordinary features that can

be helpful for development and improvement of applications
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in many branches, including dentistry and medicine (53).
However, especially in dentistry and oral care applications,
micro-sized HAP-particles have been shown to be effective in
remineralization and other processes (26, 29, 37, 39, 57).

HAP, as biomimetic agent, is not limited with respect to
regulatory aspects when used in oral care products, thus different
HAP-containing oral care products (i.e., toothpaste, mouth rinse,
gel) can be combined and used even several times a day. A
review of the literature demonstrates that HAP nanoparticles
are non-toxic (22). HAP nanoparticles have been reported to
cause a rise in the concentration of calcium ions in the cell
cytoplasm. However, in the living organism this excess of calcium
ions may be easily eliminated by the calcium pump located in
the cell membrane (58). HAP is used, also in nano-forms, as
bone-substitute and implant-coating and no adverse effects have
been reported since it is biologically resorbed by osteoclasts and
macrophages (59). An oral administration of HAP is safe when
swallowed as the particles are dissolved in the stomach by the
gastric acid resulting in a release of calcium and phosphate ions
(34, 60). One may think HAP can be taken up by oral mucosa
cells. However, to date and to the best of the authors knowledge,
no study reports that HAP has been detected in oral mucosa
tissues in vivo. Additionally, morphology and size of the calcium
phosphate (nano-) particles seems to have no significant impact
on the biological response of human cells (22). In conclusion,
the risk related to exposure to calcium phosphate, including
hydroxyapatite, in doses that are generally applied in dentistry,
health care products, and cosmetics is very low and according to
the available data it is not clinically significant (13, 22, 56).

Fluoride

Fluoride is the ionic, negatively charged form of fluorine, that
reacts with positive ions such as sodium or calcium to form
stable chemical molecules (61). Fluoride’s ability to inhibit the
progression of dental caries is well documented in the literature,
even though only a small proportion (1%) of the clinical trials
have been published in the past 10 years (6). Fluoride needs to
be applied topically on a regular daily basis to have an anti-caries
effect (4). The anti-caries action of fluoride is mainly based on
the inhibition of enamel demineralization, and the promotion of
enamel remineralization with the help of calcium and phosphate
derived from saliva (21, 62). Antibacterial properties are also
discussed, because fluoride inhibits specific bacterial enzymes,
especially enolase (63, 64). In contrast to this, other studies
came to the conclusion that counterions are responsible for the
antibacterial effect (65).

Despite the beneficial anti-caries effect of fluoride, the
ingestion of fluoride may result in toxic and detrimental effects
(66, 67). An adequate intake of fluoride from all sources has been
calculated to be 50 µg/kg body weight per day at which the risk
of dental fluorosis is set to a minimum (68, 69). Oral hygiene
products (toothpastes, mouth-rinses, and gels) can increase total
fluoride intake over and above foods and beverages, including
water (70). Studies show that parents apply ∼50% more of
the recommended toothpaste-amount for children on their kids
toothbrushes. It has been also shown that children swallow most
of their applied toothpaste leading to an increased risk of dental

fluorosis, when fluoride-toothpaste is used (67, 71). The average
consumption of fluoride due to the toothpaste swallowing while
toothbrushing was estimated to be ∼1.4 µg/kg body weight per
day for adults and 11.5 µg/kg body weight per day for children
(72). Approximately 80% of the fluoride toxicity incidents were
registered in children younger than the age of 6 (73).

The toxicity of fluoride caused by excessive ingestion is
classified into acute and chronic toxicity. The acute fluoride
toxicity usually appears due to the accidental consumption of
fluoride compounds. The minimum toxic dose of fluoride has
been estimated at 5 mg/kg body weight. The lethal dose has been
set between 7 and 16 mg/kg body weight (73). Common signs
and symptoms of acute fluoride toxicity include gastro-intestinal
disturbances (hypersalivation, nausea, vomiting, abdominal pain,
diarrhea), hypocalcemia, muscle tetany, drop in the blood
pressure, hyperkalemia, cardiac arrhythmia, coma, and failure of
the renal and respiratory system terminating in death (74).

With respect to fluoride toxicity, five possible mechanisms are
discussed: (73).

• formation of hydrofluoric acid in a humid environment and
the burn of tissues as result of low pH;

• impaired nerve function due to hypocalcemia resulting from
the reaction of fluoride with calcium ions;

• electrolyte imbalance due to hypocalcemia and hyperkalemia
consequently leading to cardiac arrhythmia;

• inhibition of cell enzymes;
• oxidative stress duo to excessive production of free radicals

The effects of chronic toxicity depend mainly on the amount
and duration of fluoride exposure. The earliest indicator of
chronic fluoride toxicity is dental fluorosis, which appears
when the chronic intake of fluoride exceeds 1 mg/l or
0.1 mg/kg daily during the period of tooth development.
Excessive fluoride ingestion may also lead to skeletal fluorosis,
structural and functional changes in the kidneys, irritation of
the gastro-intestinal tract, suppression of the immune system
and degenerative changes in the nervous system (74). The US
National Toxicology Program recently published a draft report
critically evaluating the evidence for human developmental
neurotoxicity of fluoride in animal and human (75). However,
in a critique of the human evidence some researchers claimed
that the literature did not support the presumption that fluoride
should be assessed as a human developmental neurotoxicant
at the current exposure-levels in Europe. Following this, Guth
et al. came to the conclusion that from the current available
data, no final conclusion on the safety of fluorides could be
made and more research is needed (76). In addition to the
documented severe adverse effects of fluoride, unwanted side
effects are also reported from dentistry: Fluoride is known to
corrode implants and also negatively impact the application of
orthodontic treatments (31, 77–79). In contrast to this, HAP has
shown excellent biocompatibility in these settings (31, 77).

Hydroxyapatite in Oral Care Products
Oral care products containing HAP as the active ingredient are
marketed as toothpastes, mouthwashes, dental lotions, polishing
pastes, whitening liquids, and oral care gels. The first clinical
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TABLE 1 | pH-values of commercially available toothpastes, mouthwashes, and gels for children.

Product Manufacturer Active ingredient (compound and content) pH-value

Toothpaste

Blend a med Blendi Gel Procter & Gamble Sodium fluoride, 500 ppm fluoride 6.3

elmex Kids toothpaste CP GABA Olaflur (amine fluoride), 1000 ppm fluoride 5.7

Davids sensitive + whitening toothpaste Davids Hydroxyapatite, NA 8.1

Kinder Karex toothpaste Dr. Kurt Wolff Hydroxyapatite, 10% 7.2

Natural Kids Toothpaste RiseWell Hydroxyapatite, NA 7.5

Mouthwash

elmex Junior mouthwash CP GABA Olaflur (amine fluoride), 250 ppm fluoride 4.5

Listerine smart Kidz Johnson & Johnson Sodium fluoride, 100 ppm fluoride 3.2

Odol-med 3 Junior-tooth GSK Consumer Healthcare Sodium fluoride, 225 ppm fluoride 5.9

Gel

Sensodyne Pronamel fluorid gelée GSK Consumer Healthcare Sodium fluoride, 12,500 ppm fluoride 5.5

elmex gelèe CP GABA Olaflur, Dectaflur (both amine fluorides), sodium fluoride, 12,500 ppm fluoride 5.2

Kinder Karex tooth-protection gel Dr. Kurt Wolff Hydroxyapatite (15%), Calciumlactate and Calciumcarbonate 7.9

ApaCare Intense repair Cumdente Hydroxyapatite, 10% 7.6

trial on caries prevention with a HAP toothpaste was performed
in Japan with school children. This placebo-controlled trial has
shown the high potential of HAP to prevent dental caries (45).
These results were corroborated in further studies, including
randomized clinical trials (9–12, 80, 81).

Most toothpastes available over the counter contain mainly
fluoride as caries-preventive agent. Fluorides have been shown
to be effective in preventing dental caries (6). However, most
of the studies (∼ 80%) supporting this fact were published 30+
years ago (81). Additionally, many discussed modes of action of
fluoride (e.g., increase in acid-solubility) are questionable (21).
It is also known that fluorides need calcium and phosphate ions
from saliva to be effective (62). A randomized clinical trial (three
arms) with a 3-year follow-up period published by Hausen et al.
in demonstrated that the addition of several fluoride compounds
does not prevent dental caries more efficiently than brushing
with toothpaste containing a single fluoride compound (7). It
should be noted that the daily amount of fluoride intake is
restricted because of its known toxicity (82, 83). Recent studies
showed also the potential of fluorides to corrode dental braces
and implants (31, 78, 79, 84). Besides, young children do swallow
most of their toothpaste (67). Caution is needed when fluoride
is ingested regularly. Studies in areas where fluoride from water
was ingested frequently showed cognitive impacts (for example
reduction in IQ) when babies were exposed prenatally (85)
and postnatally (86) to higher fluoride concentrations. Further
studies have been published showing negative impact of fluoride
on general health (82, 87–89). These research data led to an
increased concern about cumulative fluoride exposure from all
sources. Consequently, safe and effective alternatives to fluorides
are needed (5, 8). This alternative may be calcium-based active
agents (1, 14).

Toothpastes contain several different components to improve
their efficacy as oral care products an HAP is becoming a
preferred multifunctional agent (14, 61, 90, 91). From the view
of a developer of cosmetic and medical products, toothpastes are

one of the most challenging products. Most of the components
are provided as powders. Consequently, a high proportion of
powders needs to be formulated in water, which is in most cases
the basic constituent of most toothpastes that are available. One
important characteristic of toothpastes and mouthwashes with
respect to oral health is the pH value (92). In healthy condition,
the pH of the oral cavity is around 7.2. Acidic conditions,
especially with a pH < 6, will eventually lead to enamel
dissolution. Consequently, the pH of oral care-products should
be higher or ideally not lower than approximately pH = 7.2.
While this is true for HAP-containing oral care products, most
fluoride products for children are acidic (see Table 1). However,
it should be taken into account that not only toothpaste-pH is
important for de-and remineralization of enamel and dentin,
but also the characteristics of the dental biofilm (i.e., bacterial
composition, metabolites, acidic or acidogenic biofilm), salivary
composition (i.e., calcium, phosphate, carbonate), salivary flow
and the interaction of them all.

The importance of the use of HAP in toothpastes has
been shown in several different clinical settings as well as
different well-published in vitro studies (5). HAP is not only
effective in remineralizing enamel of permanent teeth, but also
enamel of the primary dentition (20, 29, 30). Additionally,
research has been performed on dentin, and root caries
remineralization (24, 28, 93). The efficacy of HAP has been
proven in different settings, including remineralizing settings,
cyclic demineralization-remineralization settings, and most
important in net-demineralization settings (5). The results from
either toothpaste or mouthwash studies can be transferred to
either of those product categories as it has been shown that HAP
adheres to and remineralizes tooth surfaces with both types of
application (toothpaste and mouthwash).

Other Application Fields of Hydroxyapatite
Besides reversing the formation of initial caries lesions (through
remineralization) and preventing new caries development, HAP
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has other effects that are utilized for applications in dentistry.
When added to oral care products it helps to whiten teeth,
relief sensitivity, rebuild and protect dental hard tissues against
erosion. Recently published studies report the whitening effect of
HAP-containing oral care products (94–97). HAP adheres to the
teeth and, as white particulate active, it leads to a changed light-
scattering (94). Following this, teeth appear whiter. HAP has also
been shown to relief dentin hypersensitivity. The first clinical trial
on HAP toothpastes against tooth sensitivity was published in
1987 by Huettemann and Doenges from the university hospital
in Giessen, Germany (57). Their main finding was that HAP
toothpaste relieved dentin hypersensitivity, even better than the
local anesthetic benzocain used in other toothpastes. In a network
systematic review, Hu et al. found that nano-HAP toothpastes
may be the best desensitizing toothpastes for treatment of dentin
hypersensitivity, followed by arginine toothpaste (81). When
added to high concentration professional bleaching gels, HAP
can reduce the dentin hypersensitivity often associated with teeth
whitening (98). HAP has also been used to enhance the success of
HAP-coated dental implants (99), improving bone repair during
oral surgery or periodontal surgery (100), and improving dental
restorative materials (101). HAP has anti-gingivitis properties
by reducing plaque levels (102, 103). Further in situ studies
demonstrated that HAP in mouthwashes was as effective as
0.2% chlorhexidine in reducing dental biofilm adhesion (38, 39).
Clinical studies also showed this anti-gingivitis effectiveness with
HAP in toothpaste (103, 104). As HAP is a white particulate

crystal, teeth will appear whiter after application (94). A recently
published RCT also shows the benefit of HAP in reducing

pain sensitivity in children suffering from MIH (molar incisor
hypomineralization) (105).

CONCLUSIONS

Oral care products containing HAP have been proven to
be safe and effective in terms of preventing dental caries.
The modes of action of HAP pave the way for the caries
preventive effect of this biomimetic agent. Remineralization
of dental caries is one of the well-known mechanisms.
HAP has been shown to remineralize both dentin and
enamel. Other benefits of HAP have been published, one
of which is the reduction of sensitivity also associated
with hypomineralized teeth (81, 105). As calcium phosphate,
HAP is safe when swallowed and no unwanted effects are
documented (22).
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