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Periodontitis is a widespread inflammatory disease that leads to loss of the tooth

supporting periodontal tissues. The few therapies available to regenerate periodontal

tissues have high costs and inherent limitations, inspiring the development of new

approaches. Studies have shown that periodontal tissues have an inherent capacity

for regeneration, driven by multipotent cells residing in the periodontal ligament (PDL).

The purpose of this review is to describe the current understanding of the mechanisms

driving periodontal wound healing and regeneration that can inform the development

of new treatment approaches. The biologic basis underlying established therapies such

as guided tissue regeneration (GTR) and growth factor delivery are reviewed, along with

examples of biomaterials that have been engineered to improve the effectiveness of these

approaches. Emerging therapies such as those targeting Wnt signaling, periodontal cell

delivery or recruitment, and tissue engineered scaffolds are described in the context

of periodontal wound healing, using key in vivo studies to illustrate the impact these

approaches can have on the formation of new cementum, alveolar bone, and PDL.

Finally, design principles for engineering new therapies are suggested which build on

current knowledge of periodontal wound healing and regeneration.

Keywords: periodontal regeneration, guided tissue regeneration (GTR), periodontal wound healing, tissue

engineering, scaffolds, periodontal stem cells, growth factors

INTRODUCTION

The functional periodontium is comprised of alveolar bone, cementum, and the interposed
periodontal ligament (PDL) (Figure 1A). This complex is essential for biomechanical tooth
function and structural support of the gingival tissues, the junctional epithelium, and connective
tissue attachment, which form a barrier against infiltrating bacteria (1). Periodontitis is a
destructive inflammatory disease occurring in response to bacterial biofilms on the tooth surface
(2) (Figure 1B). While biofilm removal mitigates inflammation and disease progression, loss of
alveolar bone surrounding the tooth and destruction of the cementum lining the tooth root surface
is irreversible. Following non-surgical biofilm removal (scaling and root planing) or after reflection
and replacement of gingival tissues to access root surface biofilms, epithelial tissue forms against the
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tooth root, and fibrous connective tissue fills the residual bone
defects (3, 4). While such treatments help resolve inflammation,
the reparative tissues that form against the root may be prone
to future breakdown and reoccurrence of periodontitis (5, 6).
Resective therapies aiming to eliminate bone defects and these
epithelial and connective tissues are effective in preventing
the recurrence of periodontitis (Figure 1C) but fail to restore
biomechanical tooth support and leave tooth roots exposed to
the oral cavity (7, 8). As an alternative, reconstructive therapies
aimed at periodontal tissue regeneration are an attractive
approach for restoring both form and function, and ultimately
ensuring long-term periodontal health (9) (Table 1).

An extraordinary volume of work has been performed
to understand periodontal wound healing, uncovering an
endogenous regenerative potential in the periodontal tissues.
Guided tissue regeneration, a biomaterial-based approach for
rebuilding new periodontal tissues, has been in clinical use
for decades. Yet, numerous studies are published each year
presenting novel biomaterials and therapies with purported
improvements over existing regenerative treatments. Few of these
approaches are tested in vivo. Fewer still report on key outcomes
that indicate full periodontal tissue regeneration. While in vitro
studies are important for determining cytocompatibility and
possible bioactivity, the complex nature of periodontal tissues
and wound healing mean that promising benchtopmaterials may
not perform well within standardized animal models, let alone in
clinically relevant defects.

The purpose of this review is to describe key principles of
periodontal wound healing and regeneration that can inform the
design and testing of new engineered therapies. Insights can also
be gleaned from periodontal development and the structures of
mature periodontal tissues, both of which have been reviewed
elsewhere (10–12). Pre-clinical studies of engineered biomaterials
for periodontal regeneration are also highlighted to illustrate
advances in the field thus far.

PERIODONTAL WOUND HEALING AND
GUIDED TISSUE REGENERATION

The tooth root represents an anatomic challenge for formation of
new cementum with associated PDL fibers that also connect to
alveolar bone. Early attempts in periodontal tissue regeneration
utilized autologous bone grafts, showing new bone formation
could occur in periodontal defects when grafting was coupled
with careful surgical techniques and strict patient maintenance
(13, 14). Despite this promise, studies also showed that
regeneration of the periodontal attachment did not always
accompany bone growth, as downgrowth of epithelium between
the root surface and new bone could occur rather than formation
of new cementum and an interposed PDL (15, 16).

Both root dentin and cementum are avascular and contain
few cells, while PDL, gingival connective tissue, epithelium,
and alveolar bone each contain large populations of cells with
proliferative capacity (17). Early work with these cell populations
led to the hypothesis that the cell type which first reached the
root surface during wound healing would dictate the nature of the

new tissue that formed (18). In this case, a therapeutic approach
which promoted selective cell repopulation of wounds by cells
from both PDL and bone, rather than bone alone, or gingival
connective or epithelial tissue, would promote periodontal tissue
regeneration. Cells in the PDL, in particular, were considered
to have osteogenic, fibrogenic, and cementogenic potential,
suggesting that their presence would be required for formation
of a functional periodontal attachment (18). This hypothesis was
tested in a series of studies using extracted tooth roots, where the
root surface was either debrided of all soft tissues and cementum
or the cementum and PDL was left intact. When transplanted
into bone, roots with existing PDL showed formation of a layer
of new cementum over the old cementum surface together
with new PDL fibers inserting into cementum and bone, while
root surfaces where PDL was removed underwent resorption
or became ankylosed to host bone (19). When teeth were
transplanted into gingival connective tissue, root surfaces with
existing PDL also formed new cementum and PDL fibers,
while unattached gingival tissue grew adjacent to roots without
PDL (20). Critically, new cementum and PDL could form on
root surfaces previously affected by periodontitis if the roots
remained submerged beneath the gingiva (21). However, if roots
became exposed to the oral cavity, downgrowth of epithelial
tissue occurred and subsequently less new cementum and PDL
formed (21). In summary, these studies suggested that cells from
either alveolar bone or gingival connective tissue could not
form new cementum and PDL, but that cells in the PDL could
form these tissues, even the PDL from teeth previously affected
by periodontitis. Furthermore, rapidly proliferating gingival
epithelial or connective tissue cells, if not excluded from the root
surface, would interfere with the regenerative process mediated
by the PDL.

These studies led to the development of guided tissue
regeneration (GTR) as a treatment approach for restoring a
functional periodontal attachment. Initial studies in animals
(22–24) and humans (25, 26) used thin, cell occlusive barrier
membranes secured around the roots of teeth to allow migration
of cells from bone and PDL into defects while preventing
epithelial downgrowth and gingival connective tissue from
contacting the root (Figure 2). While these GTR barriers
promoted formation of new cementum, PDL, and bone, complete
periodontal tissue regeneration was inconsistent. Bone formation
did not always parallel formation of cementum and PDL (27),
and new cementum was often the cellular subtype rather than
the acellular form typically associated with inserting PDL fibers
(24, 28). The regenerative capacity of remaining bone and PDL
in large periodontal defects and the surface characteristics of
periodontitis-affected roots were considered as possible factors
limiting GTR outcomes (29). Further studies showed that defect
configuration, surgical factors, and barrier design also played
a critical role in determining the extent of guided periodontal
tissue regeneration.

During periodontitis, bacteria and endotoxin infiltrate tooth
root surfaces. Mechanical removal of the affected root surface
leaves a layer of mineralized, amorphous debris (smear layer)
with mechanical and biochemical properties unfavorable for
periodontal cell attachment (30). Application of acids or
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FIGURE 1 | Cross-section illustrations and representative photographs of the teeth and periodontal tissues in (A) health, (B) periodontitis, and (C) after resective

surgery. (A) The healthy periodontal tissues consist of cementum (C) lining the dentin (D) of the tooth root, the alveolar bone (AB), and the interposed periodontal

ligament (PDL) which supports the overlying gingival connective tissue (GCT) and epithelium (GE). (B) Periodontitis is characterized by a destructive inflammatory

response to bacterial biofilms (BB) on the tooth and tooth root surface that damages and destroys the periodontal tissues. (C) Therapies that remove the bacterial

biofilm and affected tissues leave teeth exposed to the oral cavity and with reduced biomechanical support.

chelating agents to the root surface smear layer exposes dentin
collagen fibrils which may facilitate periodontal ligament cell
attachment and subsequent formation of cementum and PDL
(31). However, animal studies indicated that root surface
demineralization played a key role at an earlier stage of healing,
promoting wound stability through linkage of the fibrin clot
to exposed collagen fibrils on the root surface and inhibiting
epithelial downgrowth (32). Despite this promise, clinical studies
using root demineralization showed mixed results (33). While
root surface modification appears to improve early matrix
protein and cell adhesion, this treatment alone may not provide
sufficient wound stability to inhibit epithelial downgrowth while
supporting migration of periodontal progenitor cells, a role for
which GTR barriers are well suited (34). This was confirmed in
additional studies showing no benefit of root demineralization
when PDL cells were absent (35, 36). Demineralized roots
lacking epithelial downgrowth were also frequently affected with
root resorption and ankylosis (37), which may have been a
consequence of gingival connective tissue or bone-derived cells
reaching the root surface instead of cells from the PDL (38).

The principles underlying successful GTR have been
extensively explored in the canine supraalveolar periodontal
defect model, where defined defects are created surgically and
little spontaneous tissue regeneration occurs (39). Placement
of barriers over these defects inhibited epithelial downgrowth
and promoted bone formation, but these two outcomes were
not necessarily associated with formation of new cementum
with inserting PDL fibers (40, 41). The condition of the root
surface under the GTR barrier also affected tissue formation, as
heparin-treated roots supported less tissue regeneration, likely
due to poor attachment of the initial fibrin clot and subsequent
loss of wound stability (40). Preventing gingival connective
tissue infiltration, in particular, appeared necessary for maximal
new cementum formation (42). In contrast, using non-occlusive
barriers with 300µm pores led to increased soft tissue stability
and reduced incidence of barrier exposure at the expense of new
bone and cementum formation (42) Functionally oriented PDL
could form between new cementum and bone without opposing
occlusal forces, as opposing teeth were removed or reduced in
height and animals fed a soft diet (42, 43).
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TABLE 1 | Current and emerging approaches for periodontal tissue regeneration.

Bone replacement grafts

Autogenous bone grafts

Allografts (freeze dried and demineralized freeze dried bone)

Xenografts

Synthetic grafts

Root surface demineralization

Guided tissue regeneration barriers

Non-resorbable barriers (ePTFE and dPTFE)

Resorbable barriers (synthetic polymers, collagen)

Bioactive factors

Growth factors (i.e., PDGF-BB, FGF-2)

Differentiation factors (i.e., BMP-2, BMP-7, GDF-5)

Enamel matrix derivative

Peptides and small molecule drugs

Wnt pathway-targeting factors

Autologous platelet concentrates

Cell transplantation and recruitment

Combination therapy

Tissue engineered scaffolds

ePTFE, expanded polytetrafluoroethylene; dPTFE, dense polytetrafluoroethylene; PDGF,

platelet derived growth factor; FGF, fibroblast growth factor; BMP, bone morphogenetic

protein; GDF, growth/differentiation factor.

The architecture of periodontal defects has long been
recognized as an important predictor of the healing response. For
autologous bone grafts, the predictability of tissue regeneration
was tied to the configuration of the periodontal defect: bone
fill increased as the surface area of the surrounding bony
walls increased, while an increased surface area of the exposed
root negatively affected bone formation (44). In contrast, in
the supra-alveolar defect model, extensive regeneration could
occur in the absence of supporting bony walls as long space
maintenance was provided by stable GTR barriers (45). However,
when barriers were compressed or displaced, the extent of
tissue regeneration was directly associated with the wound area
maintained under the barrier (43). In clinical practice, defect
configuration is still likely to influence GTR outcomes. Unless
using a stiff self-supporting barrier, such as titanium-reinforced
ePTFE, barrier stability and subsequent space maintenance will
rely on the residual bony walls or the presence of materials
such as particulate bone grafts underneath the barrier (46).
Studies in the supra-alveolar defect model also showed that
placement of slowly or non-resorbing biomaterials underneath
GTR barriers could limit the volume of new bone growth (47),
further highlighting the challenges inherent in using biomaterials
to direct periodontal wound healing.

The supraalveolar defect model has also been used to identify
the temporal contributions of cells in the residual PDL and
alveolar bone during GTR (48). During the first 2 weeks of
healing, cells migrated from both tissues into the wound space
to form provisional tissue matrices of both bone and PDL. By
4 weeks, the framework of new tissues was established and had
begun to mature. Cells from the PDL appeared responsible for
both new cementum and PDL formation, and alveolar bone-
derived cells formed the bulk of new bone. However, the limited

labeling techniques available in this large animal model meant
that the contribution of PDL cells to regenerated bone or the role
alveolar bone cells in new cementum and PDL formation was
still unclear (48). Earlier studies using 3H-thymidine (49, 50) or
bromodeoxyuridine (BrdU) (51) labeling in large animal wounds
also observed migration of proliferating cells from residual PDL
and bone into protected wound spaces. In these studies, resident
cells in only a small portion of the PDL adjacent to the wound
were activated, and once in the defect, proliferating cells derived
from PDL or bone could not be distinguished from each other.

A similar sequence of wound healing events was also found
during GTR at naturally occurring periodontal defects (52, 53).
Initially, wounds consisted of fibronectin and vitronectin-rich
granulation tissue, with bands of collagen type I forming at bone
and tooth surfaces by 2 weeks. Provisional tissues with increased
collagen types I and III content were present by 4 weeks. New
cementum formation began at the margins of residual PDL and
occurred independent of bone formation. New bone formed
in distinct regions, first along the root surface and then later
within the residual bone defect, suggesting both PDL and bone
cells contributed to new bone formation. Initially, new collagen
fibers in the PDL region were disorganized or parallel to the
tooth, disconnected from perpendicularly inserting fibers at the
periphery of new cementum and bone. While the bulk of new
tissues were formed by 4 weeks, longer healing times were
required for maturation of a fully organized PDL.

Altogether, these studies highlight the importance of wound
stability and space maintenance during the critical early healing
period. The volume of newly formed tissues is established within
this 4–6 week period, and tissues continue to mature thereafter,
a finding confirmed by other studies in large animal models (54–
56). Exposure of barriers to the oral cavity, possibly due in part
to poor integration with overlying gingival tissue and limited
vascularization, leads to rapid bacterial colonization of the barrier
and an intense host inflammatory reaction which limits tissue
regeneration (57).

Wound stability and space maintenance is critical for
inhibiting epithelial downgrowth and allowing repopulation
of the root surface and periodontal defect by cells from the
PDL and bone which then form new periodontal tissues. Cell
differentiation, proliferation, and migration is clearly required
for resident periodontal cells to accomplish this task. Thus,
identifying the location and characteristics of progenitor cells in
the PDL which supply cementoblasts, fibroblasts, and osteoblasts
is an important and longstanding challenge.

PERIODONTAL PROGENITOR CELLS

Early studies in mice characterized PDL cell behavior using
uptake of 3H-thymidine to track cell division and migration (58).
A slowly dividing cell population with progenitor-like behavior
was identified adjacent to PDL blood vessels, activating following
injury to proliferate and migrate into periodontal wounds (59).
In healthy periodontal tissues, these slowly dividing cells also
provided a source of cells that proliferated and migrated within
the PDL toward cementum and bone (60, 61). Cell movement
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FIGURE 2 | (A) Illustration of guided tissue regeneration with a barrier membrane (blue line) which allows cells from the PDL (a) and alveolar bone (b) to fill the wound

space while excluding cells from the gingival connective tissue (c) and gingival epithelium (d). (B) Clinical photographs of a periodontal defect after reflection of the

gingiva and debridement of the bone defect and root surface, and (C) after placement of a titanium-reinforced expanded polytetrafluoroethylene (ePTFE) guided tissue

regeneration barrier.

also occurred from vascular channels in the alveolar bone into
the PDL, indicating either an additional source of periodontal
progenitor cells in the alveolar bone or the presence of an open
system encompassing both PDL and bone (62). Later studies
showed that the PDL perivascular region contained cells positive
for STRO-1 and CD146, markers for pericyte stem/progenitor
cells in other mesenchymal tissues (63). Cells isolated using these
markers and cultured in vitro were shown to have stem cell
properties, including the ability to form PDL and cementum-like
tissues when implanted in vivo (64).

The development of mouse genetic models and advanced
labeling techniques has allowed improved tracking of periodontal
cell populations and enabled progress in distinguishing between
periodontal progenitors and their differentiated progeny through
lineage tracing. Alpha-smooth muscle actin (αSMA), a marker
for perivascular cells in multiple tissues, was used to trace
PDL cells within transgenic mice where mature osteoblasts and
cementoblasts or PDL fibroblasts were also labeled with separate
markers (65). During normal growth and development, αSMA-
lineage PDL cells migrated from their perivascular location
in the PDL and differentiated into osteoblasts, cementoblasts,
and PDL fibroblasts. After injury, αSMA-lineage cells in the
PDL and gingiva also proliferated and differentiated to form
new periodontal tissues. While useful for tracking this PDL
cell sub-populations, αSMA labeling was limited by marking
additional cells, including myofibroblasts and cells in the gingival
connective tissue, and may not have labeled quiescent progenitor
cell populations (65, 66).

A recent study identified a PDL progenitor cell population
concentrated around neurovascular bundles in the apical PDL
of mouse molars characterized by expression of Gli1, a target
of the Sonic hedgehog signaling pathway (67). During tissue
homeostasis, progeny of Gli1-expressing PDL cells proliferated
and migrated throughout the periodontal tissues, acting as
the source for the vast majority of cementoblasts, osteocytes,
and PDL fibroblasts (Figure 3), mirroring a similar observation
published decades earlier that showed a highly proliferative
cell population in the apical PDL which migrated coronally
through the PDL (68). In contrast, expanding αSMA-lineage cells
contributed to only a small percentage of periodontal cells during

homeostasis and were also labeled as a Gli1-lineage population,
suggesting they were a subset of Gli1-positive progenitor cells.
NG2, PDGRα, and LepR lineage cells, populations identified
as progenitors in other tissues, had far less contribution to
periodontal cell turnover and were also marked as Gli1-lineage
cells. After periodontal injury,Gli1-lineage cells rapidly expanded
to provide the majority of PDL fibroblasts and osteoblasts which
formed new tissues. A further study clarified that while the
number of Gli1-expressing progenitor cells decreased over time
in mouse molar PDL, their progeny progressively increased near
sites of active cementum formation (69). These Gli1-lineage cells
were responsive to Wnt signaling, decreasing in number when
β-catenin was deleted and increasing in number when β-catenin
was constitutively activated or when sclerostin antibody, a Wnt
pathway agonist, was applied. These increases or decreases in
Gli1-lineage cell numbers were accompanied by an increase or
decrease in cementum formation.

Lineage tracing has also been used to investigate the
osteogenic potential of periodontal cell populations in tooth
extraction sites. Wnt-responsive cells, indicated by expression
of Axin2, were present in small numbers in healthy periodontal
tissues (70, 71). After tooth extraction, Axin2-lineage cells that
remained in the residual PDL proliferated and migrated into
the socket. Later, once the socket was filled with mineralized
tissue, Axin2-lineage cells were present in the bone matrix
and expressed osteoblast markers. Transplanting tooth roots
with residual PDL from green fluorescent protein (GFP)-labeled
mice into bone defects in non-GFP mice also resulted in new
bone formation by GFP-positive osteoblasts (70). This finding
confirms previous work where transplanted molars from GFP-
transgenic rats formed new bone in subcutaneous tissue of non-
GFP rats (72, 73). A recent study also transplanted molars from
Gli1-transgenic mice to wild type mouse subcutaneous tissue
and observed the generation of Gli1-lineage osteoblasts and
osteocytes from PDL tissue (74).

Emerging techniques may better distinguish between different
PDL cell populations and their roles in wound healing.
Single cell RNA sequencing (scRNA-seq) of mouse PDL
cell populations identified mature cells with a fibroblast or
mineralized tissue signature together with intermediate and
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FIGURE 3 | (A) Cross-section of a mouse mandibular molar 3 days post injection (P.I.) of tamoxifen which labeled all progeny of Gli1-expressing cells (Gli-1-lineage)

with fluorescent marker tdTomato (red). All cell nuclei are stained blue with DAPI. (A1) An inset from (A) showing some Gli-1-lineage cells present in the apical PDL.

(A2, A3) Few cells Gli-1-lineage cells were labeled in the pulp (A2) and alveolar bone (A3). (B) By 30 days P.I., Gli1-lineage cells were present throughout the PDL. (C)

At 60 days P.I., the majority of PDL cells and cementocytes (C1) and many osteocytes (C3) were Gli1-lineage, while few dental pulp cells were labeled (C2). Figure

reproduced with permission from (67).

progenitor cell populations (75). CD90 (Thy1), a common
marker for mesenchymal stem cells, was highly expressed in
progenitor cells, while Axin2-lineage cells were found within
both differentiated and progenitor cell populations. Labeling
in mice confirmed that Axin2-lineage cells actively formed
cementum, PDL, and bone during both tooth development
and homeostasis. In contrast, CD90-expressing cells were active
only during development and decreased in number over time.
Mechanical stimulation of periodontal tissues could reactivate
CD90-lineage cells but combined inflammatory and mechanical
stimulus inhibited their activity.

In summary, recent studies have confirmed the presence
of progenitor cell populations in the mature PDL which
differentiate to supply osteoblasts, fibroblasts, and cementoblasts
during both periodontal homeostasis and wound healing.
Challenges remain in finding a true PDL stem cell in the mature

PDL or identifying all PDL progenitor cell subpopulations
and distinguishing these progenitors from their progeny.
Currently, no marker can differentiate between cementoblasts
and osteoblasts, or between cementoblasts that form different
cementum subtypes. The contributions of progenitor cell
populations in alveolar bone and gingival tissue to periodontal
wound healing are also unclear. Endogenous cell labeling is
limited in larger animal models in which GTR, growth factors,
or tissue engineered scaffolds can be tested in more clinically
relevant periodontal defects. Thus, much is still unknown on how
progenitor cells in residual periodontal tissues interact with or
can be targeted with engineered therapies.

Moving forward, critical questions should guide the
development of new therapeutic approaches for periodontal
tissue regeneration. Can new GTR barriers be designed to better
take advantage of the endogenous wound healing potential of
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periodontal cell populations while providing space maintenance
and wound stability? Which signaling factors mediate activation
and differentiation of periodontal progenitor cells and how can
they be harnessed for clinical periodontal regeneration? Will
tissue engineered scaffolds enhance or impede the regenerative
capacity of residual periodontal tissues?

ENGINEERING BARRIERS FOR
ENHANCED GUIDED TISSUE
REGENERATION

GTR remains a viable clinical strategy with documented long-
term success (76). Studies also show GTR leads to improved
tooth survival, reduced periodontal disease recurrence, and
lower overall treatment costs (5). However, GTR with current
barrier membranes is technically demanding and suffers from
frequent post-operative complications, outcomes which may
be associated with barrier material properties (77). Expanded
polytetrafluoroethylene (ePTFE) is the most studied GTR barrier
material, with over 30 years of clinical use (25). ePTFE barriers
are generally biocompatible, eliciting a mild foreign body
reaction that is similar to collagen barriers (78, 79). However,
any exposure of ePTFE to the oral cavity results in rapid bacterial
colonization of the porous barrier surface. Dense PTFE barriers
(dPTFE), which contain submicron pores on an otherwise
smooth surface, are less susceptible to biofilm formation upon
exposure (80), but may not provide the same wound stability,
as overlying tissues show minimal adhesion (81). Non-resorbing
PTFE barriers also require an additional surgical procedure for
removal of the barrier, typically performed 4–6 weeks after
initial placement. The volume of tissue formed during these
first weeks of healing is a significant predictor of long-term
tissue regeneration (46, 82), emphasizing the brief, but critical
timeframe where space maintenance and wound stability is
required for optimal GTR outcomes.

Resorbable barriers eliminate the need for a second
surgical procedure and have generally shown similar clinical
outcomes to ePTFE barriers (83). Barrier dissolution and
subsequent wound epithelialization after exposure to the oral
cavity also minimizes bacterial colonization (84). Collagen
barriers have attractive properties, supporting host cell
binding, integrating into periodontal tissues, and allowing
vascular infiltration (84, 85). The stiffness and degradability
of collagen-based barriers can be tuned by crosslinking
collagen fibers to create a slower degrading material with
improved mechanical properties (86). While crosslinked
collagen barriers may have improved space maintenance and
barrier capabilities, they can also produce a greater foreign
body reaction and exhibit delayed barrier vascularization and
tissue integration (87, 88). Synthetic polymer barriers have
also been widely investigated and are typically composed
of aliphatic polyesters to produce various degradation
profiles (89). Some resorbable polymer barriers can elicit
a significant foreign body reaction (90), and degradation
products can also result in a localized inflammatory response
(91). Nevertheless, both synthetic and crosslinked collagen

barriers are generally biocompatible and can maintain barrier
function for extended periods of time (92, 93). However, any
clinical benefit for active barrier function beyond 6 weeks is
uncertain, as long-term retention of biomaterials at periodontal
defects could interfere with periodontal tissue remodeling and
maturation (94).

Most resorbable barriers lack mechanical properties that
would ensure space maintenance at large, non-contained
periodontal defects. Thus, particulate grafts are widely used
in conjunction with these barriers to improve barrier stability
(95). Grafts with osteoconductive properties may support bone
formation and indirectly promote new cementum and PDL
formation through improved wound stability. However, grafting
materials can also interfere with migration and provisional tissue
formation from remaining cells in the PDL and bone, hindering
tissue regeneration (47, 94).

A wide variety of engineered barriers have been investigated
for periodontal GTR. Significant challenges remain in identifying
a biomaterial which is stiff enough to provide space maintenance
yet is adaptable to a wide range of defects and resorbs in the
appropriate time frame with a minimal inflammatory reaction
(96). An additional challenge which has received far less attention
is barrier-soft tissue integration. Maintaining an epithelial seal
at the junction of the barrier and the tooth surface as well
gingival tissue coverage during healing, all while allowing
periodontal tissues formation underneath, is a complex task
for a single biomaterial. Many experimental barriers with a
wide range of physical properties and biologic functionalization
have been tested with in vitro assays [refer to reviews (93,
96, 97)]. Fewer novel barrier materials have undergone in
vivo testing, possibly due to the financial and regulatory
challenges of utilizing large animal models to create appropriate
periodontal defects.

A notable example of a rationally designed barrier with in vivo
testing was a bi-layered barrier with a porous calcium scaffold
undersurface to promote clot retention and enhance wound
stability (98). Polylactic-co-glycolic acid (PLGA) was combined
with calcium phosphate (CaP) to create a moldable, degradable
biomaterial with the porous layer facing the tooth roots and
a flat, smooth outer layer serving as a barrier against gingival
cell infiltration. This barrier alone was sufficient to promote
functional periodontal regeneration in canine periodontal defects
together with restoration of large bone volumes, a finding
attributed to the sufficiently stiff, space-maintaining nature of
the barrier. The micro/nano-topography of the CaP-coated
macroporous inner surface may also have promoted cell and
clot adhesion while providing space for new tissue formation,
maximizing the host regenerative potential.

A similar barrier composed of polyhydroxybutyrate and
hydroxyapatite (HAp) was designed to provide a stiff but
degradable barrier with an inner porous surface (99) (Figure 4).
However, gingival recession and barrier exposure occurred early
on during the healing process and minimal periodontal tissues
were formed under the barrier. This barrier material may have
not supported adhesion of overlaying gingival tissues, leading
to soft tissue recession and barrier exposure. Furthermore, this
barrier was too stiff to mold to the teeth and defect, so exposure
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FIGURE 4 | (A) Furcation defects were created at canine molars and rigid polyhydroxybutyrate and hydroxyapatite barriers were placed and secured. (B) Barrier

exposure and progressive gingival recession was present after 30 and 120 days of healing. (C) (A) Micro-computed tomography image shows the barrier (*) resting

against the tooth root with an empty space between (arrow). (B) Dense inflammatory cell infiltrate was present in the connective tissue adjacent to the barrier (*). (C)

Connective tissue (large star) occupied the space between the barrier (*) and regenerated bone (arrow). Figure adapted with permission from (99).

of the barrier border may have led to bacterial infiltration and
inflammation in the wound space.

Electrospinning has been widely investigated as a method
for fabricating barrier membranes, providing enhanced
control of barrier composition and microstructure. Fibrous
electrospun mats mimic key extracellular matrix (ECM)
physical characteristics that direct cell activity, and electrospun
fibers can be used to load antibiotics, growth factors, or
small molecule drugs for release via fiber surface degradation
or from within hollow fibers (100, 101). A wide variety
of electrospun barrier have been developed and tested
in vitro [see reviews (96, 102)]. However, in vitro results
showing topographical cell guidance or barrier-mediated cell
differentiation may have limited clinical potential, as these

functions seem to play a minor role in the clinical success of
GTR barriers.

One electrospun barrier, composed of poly (lactic acid) (PLA)
and β-tricalcium phosphate (β-TCP) dip-coated in poly (ethylene
oxide) to increase hydrophilicity, was recently developed and
tested as a GTR barrier in both a porcine animal model
and in a clinical trial (103). The electrospun barrier was able
to provide space maintenance and promoted new bone and
cementum formation in the animal defect. In the clinical
study, the novel barrier performed to a similar level as a
commercially available PLA barrier with no incidence of barrier
exposure, suggesting that the hydrophilic barrier surface may
have promoted connective tissue cell attachment and subsequent
tissue stability.
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Improved barriers alone may not be able to fully overcome
the limitations of GTR. Even with optimal space maintenance
and wound stability, wound repopulation and differentiation of
bone and PDL progenitor cells may be limited by the distance
between residual tissues and the barrier surface. Additionally,
host cells may be unable to recreate oriented periodontal tissues
in large defects without additional guidance. Thus, delivery
of biologic factors for cell recruitment and differentiation or
cell delivery have been extensively explored. Scaffolds that
fill the space of the periodontal defect to provide physical
guidance have also been intensively investigated. The functional
periodontal attachment is extraordinarily complex. Accordingly,
scaffold-based tissue engineering strategies for restoring these
tissues have increased in complexity, with the premise that
controlling more of the individual biologic processes occurring
during tissue regeneration will improve the predictability of
regenerative treatments.

PERIODONTAL GROWTH FACTORS AND
BIOACTIVE SUBSTANCES

Growth Factors in Periodontal Wound
Healing
Amplifying or targeting the cells and signaling factors
which drive periodontal cell proliferation, migration, and
differentiation is an attractive strategy for promoting tissue
regeneration. Soluble factors stored within the extracellular
matrix of PDL, cementum, and bone are released during
periodontal wound healing. Paracrine signaling between local
and infiltrating cells and periodontal progenitor cells also
occurs, altering the course of tissue regeneration. Growth factors
mobilize and promote the proliferation and differentiation of
host cell populations in the PDL and bone. Other compounds
and small molecule drugs can target key cells or pathways to
improve healing.

Soluble factors released during the initial stages of wound
healing, such platelet derived growth factors (PDGF),
transforming growth factor-β (TGF-β), fibroblast growth
factors (FGF), epidermal growth factor (EGF), and insulin-like
growth factors (IGF), are thought to induce PDL cell migration,
proliferation, and ECM protein synthesis (104, 105). Despite
numerous studies applying these factors in periodontal defects,
little is known about their temporal expression and relative
roles in driving key in vivo periodontal events. In mature
periodontal tissues, fibroblasts, cementoblasts and osteoblasts
express TGF-β1 and TGF-β receptors TGFβR-II and -III and
(106, 107). Growth factor receptors PDGF-Rβ, TGF-β RI, and
TGF-β RII are expressed strongly in regenerating tissues found
underneath GTR barriers (108). PDGF-Rβ and PDGF-A and
-B chains are also expressed during early wound healing of
gingival connective tissue and diminish by the time granulation
tissue has replaced the fibrin clot at 7 days (109). Basic FGF
(bFGF or FGF-2) is secreted by PDL cells and endothelial
cells in both healthy and diseased PDL tissues (110) but this
expression may decrease with age (111). PDL cells also express
IGF1 receptor (IGF1R), and IGF-I, -II, and IGF binding proteins

(IGFBPs) are present in the PDL and cementum, with strong
expression at the PDL-cementum interface (112). IGF-I and -II
localization in the PDL and IGF1R expression in PDL cells and
cementoblasts also increases during root and bone resorption
and the subsequent repair process occurring during orthodontic
tooth movement (113).

Bone morphogenetic proteins (BMPs), members of the TGF-β
superfamily, are powerful inducers of cellular differentiation.
Multiple BMPs play complex, complementary roles during
periodontal development (114, 115). Intact PDL tissue
contains BMP-2 and−4 (116), and BMP-2,−4 and−7 are
present adjacent to and within newly formed cementum,
PDL and bone in regenerating periodontal defects (117, 118).
However, the signaling activity of specific BMPs during
endogenous periodontal tissue regeneration is still unclear.
Furthermore, application of recombinant BMPs is likely
to induce differentiation of cells not already committed
to periodontal repair, rather than providing a favorable
environment for differentiated periodontal cells to form new
tissues (119). The ability of BMP-2 to promote significant bone
formation in periodontal defects is well established (120, 121).
On the other hand, cementogenesis does not necessarily parallel
BMP-2-mediated bone formation and BMP-2 application can
increase the incidence of ankylosis and root resorption in some
large animal models (122–124). In supra-alveolar periodontal
defects, BMP-2 delivery together with macroporous PTFE or
resorbable synthetic barriers was more effective in regenerating
bone vs. barriers without BMP-2 (125, 126). However, ankylosis
was more common with BMP-2 administration, and new
cementum formation was not further increased vs. GTR and was
not associated with new inserting PDL fibers. BMP-7 (osteogenic
protein-1, OP-1) has been shown by some investigators to be
more cementogenic than BMP-2 (127, 128) and othermembers of
the BMP family have shown ability to promote periodontal tissue
regeneration, including BMP-3 (osteogenin), BMP-6, BMP-12,
and growth/differentiation factor-5 (BMP-14) (129–132).

Numerous studies have shown the benefits of single growth
factor administration in promoting periodontal wound healing
(133, 134). PDGF-BB, PDGF-BB with IGF-1, FGF-2, and GDF-5
have reached clinical trials [see reviews (135–137)], and rhPDGF-
BB with a β-TCP particle carrier is currently FDA approved for
use in periodontal defects1. A recent phase III trial compared
FGF-2 to enamel matrix derivative (EMD), with greater bone
formation at sites treated with FGF-2 (138). Combining a growth
factor with potent mitogenic properties such as PDGF with a
BMP is an attractive approach for coordinating cell recruitment
and proliferation with differentiation. Studies in bone healing
demonstrate that combinations PDGFs, TGF-βs, FGFs or IGFs
with BMPs can have additive, synergistic, or even inhibitory
effects based on the time of application, dosage, or anatomic
site (139). The coupling of angiogenic (i.e. vascular endothelial
growth factor—VEGF) and osteoinductive factors to promote
bone formation has also been extensively explored (140) and is
an emerging approach in periodontal tissue regeneration.

1https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=
P040013
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Biomaterials for Controlled Growth Factor
Delivery
A key challenge for periodontal growth factor therapy is
identifying temporal release profiles and combinatorial growth
factor approaches to best control wound healing. Common
hurdles facing soluble factor delivery in other tissues, such as high
cost and significant side effects associated with supraphysiologic
doses, are also relevant for periodontal tissue regeneration. A
further challenge for signaling factor application in periodontal
regeneration is coordinating retention and release while ensuring
space maintenance and wound stability, a complex task which
may be addressed by various engineered biomaterials.

Growth factors are typically dissolved in a liquid than mixed
with particulate grafts, such as β-TCP or bone allografts, which
provide a surface for growth factor adsorption and act as an
osteoconductive, space-maintaining scaffold. However, growth
factors show variable levels of adsorption to CaP and bone
surfaces and exhibit a burst release behavior (141–143). This
release profile may be beneficial for growth factors such as FGF-
2 and PDGF which appear to have their greatest impact during
the initial stages of healing by stimulating cell recruitment and
proliferation, but may be a less effective carrier for factors that
target cellular differentiation. BMP-2 is typically delivered within
an absorbable collagen sponge (ACS) which prolongs retention
through BMP-collagen binding (144). However, the ACS has
minimal space maintaining properties (145), and the large doses
of BMP-2 required for biologic activity leads to significant
portions of BMP-2 being immediately released from the ACS,
resulting in BMP proteolysis and adverse side effects (146,
147). Studies in periodontal defects have indicated the BMP-2
retention and release differentially affects cementum and bone
formation, with a fast release profile favoring bone formation
while an extended release leading to improved cementum
formation (148, 149), highlighting the unique challenges of
periodontal bioactive factor delivery.

Various natural and synthetic materials have been tested
for controlling localization and release of single growth factors
in vivo. Controlled BMP-2 release in periodontal defects has
been tested with various collagen or gelatin hydrogels (148,
149) and calcium phosphate particles (150). FGF-2 loading
and release has been tested with heparin and porous α-TCP
particles (151) and gelatin sponges with β-TCP particles (152).
Polymer microspheres have been used to load PDGF in the
microsphere shell for early release and simvastatin the core to
promote more sustained release (153). Microspheres composed
of methacrylated dextran and gelatin have been tested for
controlled release of IGF-I (154) or to deliver and release BMP-2
from gelatin hydrogels (155).

Early studies indicated that delivery of more than one
growth factor did not necessarily lead to improved periodontal
tissue regeneration. Application of IGF-I and/or PDGF-BB in
periodontal defects showed that PDGF-BB alone, but not IGF-
I, promoted new bone, cementum and PDL formation (156).
Combined delivery of both growth factors led to non-significant
increases in new tissue formation, pointing to the possibility of a
synergistic effect when more than one growth factor was applied.
Dual delivery of BMP-2 and BMP-7 to furcation defects, building

on the osteoinductive properties of the former and cementogenic
effects of the later, was tested in furcation defects (128). However,
combined application led to less bone and cementum formation
compared with delivery of either BMP alone.

Tailored polymer and CaP materials may afford increased
control over multiple factor release to further improve wound
healing. PLA-PLGA microspheres loaded with simvastatin
and/or PDGF promoted significantly more new cementum
when both factors were delivered together (153). Chitosan
β-glycerophosphate hydrogel scaffolds were investigated for
controlled delivery of BMP-7 with the antibiotic ornidazole,
with results showing that scaffolds with BMP-7 led to more
bone and cementum formation, with no apparent benefit for
added ornidazole (157). Composite PLGA-PLLA electrospun
meshes were engineered with a core-shell structure to provide
shell loading of FGF-2 for burst release and BMP-2 loaded in
the core for sustained delivery to fenestration defects (158).
Meshes without growth factors showed similar healing outcomes
as empty defects, while dual loaded scaffolds promoted host
mesenchymal cell ingrowth and new bone, cementum, and PDL
formation. In another study, BMP-2 or FGF-2 were suspended
in a PGA solution and placed on root surfaces together with
PLGA microparticle-CaP cement composite to fill the remainder
of the periodontal defect (159). BMP-2 led to improved bone
regeneration while FGF-2 administration led to new cementum
and PDL formation and similar levels of bone formation as
BMP-2. Combined BMP-2 and FGF-2 delivery was also tested
in a large animal periodontal defect where BMP-2 was loaded
into the cement composite and FGF-2 applied directly to the
root surface (160). Defects treated with CaP cement and both
growth factors showed similar volume of new bone compared
to CaP cement alone, but dual growth factor delivery led
to increased cementum and PDL formation and decreased
epithelial downgrowth. Finally, a tri-layer chitin-PLGA hydrogel
scaffold was designed to target each periodontal tissue: cementum
(bioactive glass particles and rhCEMP1), PDL (FGF-2), and
bone (bioactive glass particles and platelet rich plasma) (161).
Early bone formation was similar in scaffolds with or without
additional growth factors, but dense, mature bone was only
present at later time points in the presence of growth factors.
Similar cementum and PDL formation were described for all
scaffolds, regardless of growth factor incorporation.

Combinations of other bioactive molecules and small
molecule drugs have been tested for their ability to promote
periodontal tissue regeneration. Porous PLA scaffolds were used
for delivery of parthenolide, an anti-inflammatory drug, together
with chitosan microspheres loaded with naringin, a flavonoid
with osteogenic properties, with dual drug loaded scaffolds
showing increased bone formation over unloaded scaffolds,
while new cementum and PDL formation was not described
(162). A tri-layer chitosan membrane was developed for
rapid release of epigallocatechin-3-gallate, an anti-inflammatory
compound, and sustained release of lovastatin to act as a
controlled-release osteogenic drug (163). When used as a
GTR barrier, the experimental barrier promoted increased
bone formation in comparison to a collagen barrier, while
both barriers led to similar cementum and PDL formation.
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A chitosan β-glycerophosphate hydrogel was used to load
aspirin and erythropoietin to provide anti-inflammatory and
angiogenic/osteogenic stimuli respectively (164). Application in
an periodontitis model showed that combined delivery of both
drugs prevented more alveolar bone loss than either drug alone.

Delivery of bioactive peptides and gene therapy can overcome
difficulties with growth factor protein stability while allowing
enhanced control over multiple factor localization and release.
A polydopamine-apatite composite material with bioactive
peptides derived from BMP-7 and/or VEGF was tested in
fenestration defects (165). Both peptides together promoted
more bone formation compared to either peptide alone, while
cementum and PDL formation was not reported. Delivery of
viral vectors or vector-transduced cells expressing single factors
PDGF-B, BMP2, BMP-7, or FGF-2 in a variety of carriers
have shown promise in promoting new bone and cementum
formation (166–169). Mesoporous bioactive glass/silk was used
to deliver PDGF-B and/or BMP-7 encoding adenoviruses
(adPDGF-B and adBMP-7) to dehiscence defects (170). Scaffolds
with adPDGF only demonstrated similar bone formation as
empty scaffolds, while inclusion of adBMP-7 increased new bone
volume. The height of newly regenerated periodontal tissues
(new cementum and bone with interposed PDL) was greatest
when both adPDGF-B and adBMP-7 were delivered to defects.
Adenovirus vectors for PDGF and BMP-7 expression were also
immobilized on PCL/PLGA scaffolds and promoted increased
periodontal bone formation over scaffolds alone (171).

Enamel Matrix Derivative (EMD)

Purified enamel matrix proteins (EMPs), termed enamel matrix
derivative (EMD), are a widely used biologic factor for clinical
periodontal tissue regeneration. EMD is commercially available
as a suspension of EMPs in propylene glycol alginate (PGA)
(Emdogain R©), a formulation which supports the precipitation
and adherence of EMPs to the root surface during healing (172).
The underlying rationale for the use of EMD is replicating
events of periodontal development (173), a topic which has
been extensively reviewed in other publications (10, 174). Briefly,
EMPs are secreted by epithelial lineage cells (ameloblasts) during
tooth formation. Hertwig’s epithelial root sheath (HERS), a
structure which directs root development through epithelial-
mesenchymal signaling (175), may also secrete EMPs or
structurally similar proteins to direct cementum formation (173,
176).

The role of endogenous EMPs in periodontal wound healing
is not well understood. Remnants of HERS, the epithelial rests
of Malassez (ERM), are present in the PDL and are thought to
help maintain PDL width by inhibiting dento-alveolar ankylosis
and root resorption (175). In vivo, ERM cells may also retain
the ability to secrete EMPs or EMP-like proteins (177, 178).
While studies note a relationship between the presence of ERM
and localized cementum repair (179), others have noted that
periodontal tissue repair can occur independent of the number
of ERM (180), and remodeled or regenerated PDL tissue may
not contain ERM (181, 182). Regardless of its endogenous
activity, EMP or EMD application promotes formation of new
cementum and bone and has the ability to inhibit epithelial

downgrowth and bacterial activity, improve angiogenesis, and
alter immune cell signaling (183). Initial animal studies also
showed the EMD promoted formation of acellular cementum,
rather than the cellular form, in monkey dehiscence defects
(184). However, human histologic studies have demonstrated
formation of cellular cementum or a mix of acellular and
cellular cementum after application of EMD, similar to that seen
after GTR (185–187). While the exact mechanisms underlying
EMD’s bioactivity are still unclear, studies indicate that EMD
may contain components with TGF-β and BMP-like activity
(188, 189) and can induce expression of these factors by
periodontal cells (190–192) which may provide a plausible
biologic mechanism for some of its biologic activities.

Application of EMD alone is typically relegated to well-
contained defects, as the viscous nature of the PGA carrier does
not aid in space maintenance. Pre-clinical studies have shown
that EMD was more effective in narrow vs. wide intrabony
defects (193), and was inferior to GTR in Class III furcations
(194, 195). A recent systematic review of clinical studies also
found that defect morphology had a significant influence on
clinical bone gain following regenerative therapies, including
EMD application (196). The combination of EMD with various
bone grafts has been widely explored as an approach to improve
space maintenance and wound stability. Animal studies have
shown an improvement in intrabony defect healing over EMD
alone (197, 198), a finding confirmed by some systematic reviews
of clinical studies (199, 200), but not others (201). Modifications
to gingival flap design have also been investigated as a means
to improve wound stability when applying EMD (202, 203).
However, these approaches are only indicated for certain defects,
with addition of bone grafts and/or barriers recommended when
bony walls are absent (204).

Recent work has tested EMD in modified formulations and
its interaction with various biomaterials in order to further
improve regenerative outcomes. In vitro studies have examined
the cellular effects of EMD loaded into hollow electrospun
fibers (205) or adsorbed onto a decellularized dermal matrix
(206) or collagen membranes (207). A liquid solution of EMD
was recently developed which showed increased adsorption to
bone graft particles vs. the PGA carrier (208). EMD protein
retention on collagen sponges was also improved with the
liquid suspension and its application supported greater bone
and cementum formation in animal periodontal defects when
compared to collagen sponges loaded with EMD in the PGA
carrier (209, 210).

Wnt Signaling
The Wnt signaling pathway is an important regulator of tissue
development and homeostasis (211). Canonical Wnt signaling is
also required for the maintenance of mature periodontal tissues
(212) with Wnt-responsive cells present in the PDL, alveolar
bone, and cementum surface (213). Targeted deletion of Wnt
signaling in mouse periodontal cells lead to loss of cementum
and bone, widening of the PDL, and disorganization of PDL
fibers (214). Overexpression of Wnt receptor LRP5 resulted in
a narrowed PDL, while overexpression of Wnt inhibitor DKK1
led to a widened PDL, reduced cell proliferation, and loss
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of osteogenic markers in PDL cells (215). Knockout of Wnt
inhibitor sclerostin also lead to thicker cementum and increased
alveolar bone (216). During orthodontic tooth movement, Wnt
activity was increased at sites of tension in the PDL where
active bone formation is occurring, while DKK1 was elevated
at sites of PDL compression and bone resorption (217). During
repair of physiologic root resorption, sclerostin was present in
the PDL adjacent to sites of active root resorption, and Wnt-
responsive PDL cells were responsible for depositing reparative
cementum at resorption sites (218). When Wnt-responsive cells
were eliminated in the PDL, extensive root resorption and loss of
PDL fiber insertions occurred (218).

Active manipulation of Wnt signaling can promote
periodontal wound healing, with injection of lithium chloride or
anti-sclerostin antibodies at rat periodontal defects promoting
new bone and cementum formation (219). Anti-sclerostin
antibody loaded PLGA microspheres for sustained release
have been applied to periodontal defect but did not improve
bone formation vs. the systemically delivered antibody (220).
In another study, lithium-calcium-silicate ceramic granules
were tested in furcation defects and showed promise for
bone regeneration (221). Fibrin matrices combined with ε-
aminocaproic acid-loaded chitosan nanoparticles were tested
in intrabony defects and lead to greater bone regeneration and
improved cementum and PDL formation vs. fibrin matrices
alone or EMD (222). An in vitro study suggested that fibrin
binding promotes Wnt signaling by cementoblasts, providing
a possible mechanism for these positive in vivo results (223).
Studies in periodontitis models also show that targeting Wnt
pathway inhibitors sclerostin (224, 225) or GSK3β (226) can
improve periodontal bone reformation.

Autologous Platelet Concentrates
An alternative to recombinant growth factors and bioactive
compounds is autologous platelet concentrates (APCs) such
as platelet rich plasma (PRP) and platelet rich fibrin (PRF).
Platelets release growth factors during early wound healing, and
APCs contain factors such as PDGF, TGF-β, FGF, and IGF
(227, 228). Various forms of APCs contain differing amounts
of platelets as well as fibrin and leukocytes. Differences in
preparation and subsequent APC composition affects growth
factor concentrations and release profiles, further complicating
efforts to compare studies or fully understand APC effects (229,
230). Despite numerous clinical trials and widespread use (231),
histologic demonstration of the effect APC on periodontal wound
healing is scarce, with the few available animal studies showing
variable results. One study of PRP showed improved cementum
and bone formation in fenestration defects (232). A platelet
pellet was tested with or without GTR barriers, with the platelet
pellet promoting increased new cementum formation regardless
of barrier inclusion but having no impact on bone formation
(233). PRF was tested in a fenestration defect with and without
implanted PDL cells (234). PRF or PDL cells alone showed no
improvements in bone and cementum formation over empty
defects, while combined treatment led to significantly increased
bone and cementum. PRF was also tested in periodontal defects

and led to reduced inflammation and increased pocket closure
but failed to promote bone formation (235).

CELL DELIVERY AND RECRUITMENT

PDL Cell Transplantation
Transplantation of cells into periodontal defects is a widely
studied approach for promoting tissue regeneration. Cells
derived from patient or donor tissues can be isolated and
transplanted into defects to alter wound healing through
direct mechanisms, differentiating and forming new tissues.
Alternatively, transplanted cells can play indirect roles in tissue
regeneration by secreting various signaling factors (236). In
particular, mesenchymal stromal cells (MSCs) from oral (e.g.,
alveolar bone, gingiva, dental pulp, dental papilla, dental follicle,
PDL) or extra-oral sources (adipose tissue, bone marrow,
etc.) have been extensively investigated for their regenerative
potential in animal periodontal defects (237, 238). A number
of investigations have shown improved results for PDL-derived
cells vs. bone or gingiva-derived cells, especially in regards
to cementum and PDL formation (239–241). These outcomes,
coupled with the critical role of endogenous PDL cells in
periodontal wound healing and regeneration, offer further
motivation for their use as a therapeutic material.

Cells harvested and cultured from the PDL have been
referred to by a variety of names, including PDL fibroblasts,
PDL stem cells, or PDL progenitor cells (242–244). Cultured
PDL cells, referred to here as PDLCs, fulfill the minimum
criteria previously established for MSCs (245, 246), and can
meet some of the rigorous criteria proposed for tissue-specific
stem cells (247): certain clonal PDLC strains are able to form
cementum and PDL-like tissue upon ectopic transplantation
into immunocompromised mice (64) and show the ability for
self-renewal (248, 249).

Significant changes occur between isolation of cells from the
PDL and expansion of PDLCs on tissue culture plastic. Even with
prospective sorting for specific cell-surface markers, cultured
PDLCs expand in a heterogeneous fashion (67, 250). Cultured
PDLCs also differ significantly from freshly isolated PDL cells
in their response to growth factors and other regenerative
cues (251). Despite these issues, delivery of cultured PDLCs to
experimental periodontal defects tends to result in increased
cementum and PDL formation compared to cell-free controls
(252, 253). Autologous PDLCs have also been tested in clinical
trials, with results showing no adverse outcomes, but also no
significant benefits over cell-free controls (254, 255).

The biomaterial or scaffold used to transplant PDLCs should
ensure cell survival, as well asmaintain or promote tissue forming
potential and/or secretory activity. A wide variety of biomaterials
have been used to deliver PDLCs, and this combined therapy
generally improves periodontal wound healing (256). Scaffold-
free delivery of PDLCs can also be accomplished using cell sheets.
PDL-derived cell sheets have shown potential for periodontal
regeneration in animal models (257) and have been utilized in
human clinic trials (254, 258). Optimal performance of cell sheets
requires close adaptation of the sheet to the root surface (240),
a role which various carrier or transfer materials can perform.
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FIGURE 5 | (A) Engineered scaffolds that fill the periodontal defect space can include an aligned region in the PDL space to provide directional guidance for cells

together with another material, often containing randomly oriented pores, to fill the space to be replaced by bone. (B) Scaffolds can also support amorphous materials

such as cell sheets against the tooth root surface.

Additional scaffolding is also required for space maintenance and
promoting bone formation, requiring a combination of cell sheets
with membranes, grafting materials and/or tissue engineered
scaffolds (see below).

The exact role transplanted PDLCs or other cells play in
periodontal tissue regeneration remains unclear. Studies utilizing
autologous bone marrow derived stromal cells have shown
evidence of transplanted cell differentiation and integration
into new periodontal tissues (259–261). Evidence for a direct
role by transplanted PDLCs is less consistent, possibly due
to variations in the genetic relationship between donor and
recipient PDLCs and the immune status of various animal
models across studies. For instance, allogeneic PDLCs localized
adjacent to, but not within regenerating periodontal bone
in immunosuppressed rats (262, 263). In another study, few
xenogeneic (human) PDLCs were found around regenerating
periodontal tissues in immunosuppressed rodents (264). In
contrast, allogeneic PDLCs were present as osteoblasts and
cementoblasts in immunocompetent rats (265). Variations in
scaffold material and design may also have influenced the
activity of PDLCs in each of these models. Host immune cells
can target both syngeneic and allogeneic transplanted cells for
clearance (266, 267), and biomaterials can be designed to provide
an immunoprotective environment to prolong the survival
of transplanted cells (268, 269). Alternatively, inclusion of
transplanted cells within scaffolds can favorably alter the immune
response to implanted biomaterials, reducing the foreign body
reaction (270, 271).

Recent studies indicate that transplanted PDLCs also
play an indirect role in periodontal wound healing through
secretion of various factors with immunogenic, angiogenic, or
regenerative properties (272–274). PDLC-conditioned media has
been delivered to periodontal defects in collagen sponges (273)
and collagen barriers (275) and shown to promote new bone

formation. PDLCs secrete a variety of extracellular vesicles,
including a subgroup of small extracellular vesicles termed
exosomes, that carry biologic molecules with paracrine effects
(276). Exosomes derived from bone marrow (277, 278) or
adipose tissue-derived MSCs (279), or exfoliated tooth dental
pulp (SHED) (280) and adult dental pulp (281) cells have been
tested in periodontal defects. To date, no study has tested PDLC-
derived exosomes for periodontal regeneration.

Altogether, current evidence suggests that transplanted
PDLCs have potential to improve periodontal wound healing but
will not play the same role as endogenous PDL-derived cells.
Significant translational hurdles face PDLC transplantation, such
as sourcing PDLs, identifying and maintaining the multipotent
subpopulations, and developing scaffolds for controlled delivery,
as well as regulatory and manufacturing challenges such as
developing xenogeneic-free culture methods and scaling and
maintaining batch consistency. While PDLC-secreted factors
can be collected and delivered to promote periodontal wound
healing, their benefit over recombinant growth factors or small
molecule drugs should be established to justify the potential
variability and additional cost inherent in such an approach.

Cell Recruitment
Recruitment of endogenous cells to periodontal defects may
help overcome the limitations of cell activation from residual
periodontal tissues or cell transplantation. Stromal derived
factor-1, also known as CXCL12, acts as a chemokine at wound
sites to recruit cells from local tissues and circulation (282). A
portion of PDL cells express the receptor for SDF-1, CXCR4
(283, 284). In addition, bone marrow stromal cells transplanted
into long bones have been shown to enter periodontal wounds
via the circulatory system and participate in tissue regeneration
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FIGURE 6 | (A) Intrabony defects were created at canine maxillary premolars. (B) Insertion of the volume stable collagen matrix (VCMX). (C) Histologic section from

tissues harvested after 12 weeks of healing showing new bone filling the periodontal defect. (D) Histologic section demonstrating new cementum (NC) on the dentin

(D) surface, new alveolar bone (NB), and residual scaffold (VCMX) visible in the newly formed PDL (NPL). Reproduced with permission from (309).

(285, 286), a process which may be driven by increased SDF-1
expression in injured periodontal tissues (287).

SDF-1 loaded collagen sponges placed within periodontal
defects resulted in an increased number of both mesenchymal
stromal cells and hematopoietic cells at early time points while
immune cells numbers were reduced (288). SDF-1 application
also led to an early increase in osteoclast activity at the wound
margins followed by increased bone formation later in healing.
Gelatin sponges loaded with SDF-1 were tested in intrabony
defects and showed improvements in bone, cementum, and PDL
formation and fewer infiltrating macrophages (289). Combined
delivery of SDF-1 and parathyroid hormone (PTH) loaded
collagen barriers has also been investigated, as PTH can promote
tissue regeneration and also inhibit inactivation of SDF-1 (290).
Combined SDF-1 and PTH delivery increased the number of
CXCR4+ and mesenchymal cells and was more effective in
promoting bone, PDL, and cementum formation compared to
either factor alone. A self-assembling peptide-based hydrogel
was used to load SDF-1 and BMP-2, leading to greater bone
formation compared to either factor alone, although neither
cementum and PDL regeneration or in vivo cell recruitment

outcomes were described (291). SDF-1 was paired with IL-4 in
stiff gelatin hydrogels to recruit stromal cells while minimizing
pro-inflammatory macrophage polarization, with dual factor
delivery improving bone fill but not cementum or PDL formation
compared to single factors or unloaded hydrogels (292). Despite
the promise of SDF-1 mediated cell recruitment in periodontal
tissues, studies to date have not clarified if mesenchymal cell
recruitment is from distant tissues via circulation or local
periodontal tissues.

TISSUE ENGINEERING: REPLICATING THE
PERIODONTAL TISSUES

The field of regenerative medicine was formally introduced to
the concept of tissue engineering in the early 1990’s (293, 294),
which is broadly defined as combining scaffolds with cells and/or
biologic factors to create and replace functional tissues (295).
While significant scientific progress has been made since then,
translation of tissue engineered constructs and organs to human
clinical trials is rare (296). Periodontal tissue engineering was
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recognized early in the field’s development as an opportunity to
improve regenerative outcomes around teeth (297–299). Similar
to the field in general, few tissue engineered periodontal products
have reached clinical translation after more than 30 years of
cumulative research.

Periodontal tissue engineering can be seen as a top-
down approach, recreating essential anatomic structures of
cementum, PDL, and bone ex vivo through compartmentalized,
interconnected scaffolds laden with cells and/or growth factors
(300). This approach contrasts with GTR and its biologic
rationale in some respects. Replicating structural aspects of
mature tissues and providing exogenous cells and signaling
factors may place less burden on endogenous cells to regenerate
periodontal tissues. Scaffolds with similar mechanical properties
as mature tissues and with slow or minimal degradation may
also be left in place to provide long-term support for extended
bone remodeling and full tissue maturation (301). Studies in
load-bearing bones indicate a beneficial role for stiff and slow
degrading scaffolds which maintain functional support for at
least 3 months as mechanical support is transferred from scaffold
to maturing bone (302, 303). However, little evidence has
been provided to support this rationale for periodontal tissue
engineering. A notable human case study implanted a tissue
engineered PCL-HAp scaffold into a human periodontal defect
(304). Minimal scaffold degradation occurred during the initial 1
year period, after which the scaffold became exposed to the oral
cavity, necessitating its removal.

Taking cues from the organized fibrous structure of themature
PDL, engineered scaffolds can guide cell alignment and new
tissue formation along polymeric struts that abut the root surface
[see reviews (305, 306)] (Figure 5A). The rationale behind these
approaches is that directing cell migration and orientation will
increase the likelihood of formation of organized PDL fibers
inserting into new cementum. In vivo studies have shown these
scaffolds promote formation of aligned PDL structures (307) and
could support increased new cementum or bone, especially when
viral vectors for growth factor expression were used to transduce
transplanted or host cells (171, 308).

In contrast, engineered periodontal scaffolds can localize
amorphous materials such as cell sheets in the PDL space,
using porous scaffolding to support the material adjacent to
the root surface and fill the periodontal defect (Figure 5B).
Cell sheet-scaffold constructs have been tested in small (240)
and large animal models (239), showing promise for supporting
formation of new cementum with inserting PDL fibers in the
absence of structural guidance. A recent study tested a porous,
crosslinked collagen scaffold, previously developed for gingival
tissue augmentation, in canine periodontal defects without
additional materials, cells or signaling factors (309). This “volume
stable” scaffold provided sufficient spacemaintenance andwound
stability to allow infiltration of host cells and formation of new
bone, cementum, and PDL (Figure 6), illustrating the potential
for scaffold designs that support endogenous periodontal
regenerative activity.

Hurdles facing other engineered tissues are relevant
in periodontal defects and clinical translation of tissue
engineered periodontal scaffolds is further complicated by
several factors. Periodontal scaffolds must balance mechanical
properties for space maintenance with the proper degradation
behavior. Stiff scaffolds that adapt to and fill periodontal
defects may need to be individualized, which currently requires
surface and radiographic imaging of defects, followed by
computer-aided manufacturing (e.g., 3D printing), and then
delivery. Existing soft tissues must be able to cover the scaffold
and protect it from colonization of oral bacteria, which is
challenging at sites with large bone defects and gingival
recession. Finally, as the complexity of a tissue engineered
scaffold increases, so will also the cost and time required
for fabrication, which may limit widespread adoption and
clinical use.

CONCLUSIONS

Strategies for developing new periodontal therapies should
incorporate principles gleaned from guided tissue regeneration,
with wound stability, space maintenance, and soft tissue coverage
remaining primary considerations. Approaches which support
or promote infiltration of cells from residual PDL at the defect
periphery may be more likely to lead to formation of new
cementum and PDL. Other approaches, such as replicating
mature periodontal structures with biomaterials, application of
multiple growth factors, delivering cells, or recruiting host cells
have promise, but continue to show variable results and do
not necessarily replicate key events of endogenous periodontal
wound healing.

Future studies should consider that new periodontal bone
formation is not necessarily accompanied by new cementum
and PDL. Reporting quantitative outcomes for cementum and
PDL and formation continues to be inconsistent and will
be challenging to standardize across different animal models.
Pre-clinical studies in large animals should also report on gingival
tissue outcomes, such as formation of junctional epithelium
and connective tissue attachment, as these outcomes are closely
related to formation of new cementum and PDL.

Finally, new strategies should be carefully designed in
consideration that increasing complexity may mean clinical
translation is even less likely. For instance, scaffolds seeded
with autologous PDL cells may be unlikely to reach regular
clinical use due to the need for extracted teeth to source
cells and the time and cost required for cell processing and
preparation. In contrast, application of autologous platelet
concentrates such PRF has been widely adopted due to its low
cost and ease of use despite limited pre-clinical evidence to
confirm its ability to promote periodontal tissue regeneration.
Regardless of the challenges facing the field, long-term clinical
studies have demonstrated that periodontal tissue regeneration
can be achieved when utilizing techniques informed by strong
biologic rationale.
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