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Mitochondrial metabolites and their derivatives have been the focus of recent
efforts to develop new anti-inflammatory therapeutics. The widely used
therapeutic agents dimethyl fumarate (DMF) and metformin have anti-
inflammatory properties and have been shown to target metabolism. The
mitochondrial metabolites succinate, itaconate, and fumarate have multiple
immunomodulatory effects and present interesting therapeutic possibilities for
immune and inflammatory diseases. Mitochondrial DNA and double-stranded
RNA have also been shown to be highly inflammatory, acting via specific pattern
recognition receptors (PRRs) such as cGAS and TLR9 for mitochondrial DNA, RIG-
I, MDA5 formitochondrial double stranded RNA, and TLR7 formitochondrial single
stranded RNA. These recent discoveries are changing our view of mitochondria
suggesting that they are at the heart ofmultiple inflammatory diseases and provide
opportunities for the development of new anti-inflammatory therapeutics.
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Introduction

Inflammation is essential for defence against pathogens and the immune response to
tissue injury. During inflammation, immune cells are activated to a proinflammatory state,
and cytokines such as interleukin (IL)-1, IL6, and tumour necrosis factor alpha (TNF-α) are
produced. They bind to specific receptors, and various cell signalling pathways are activated,
which stimulate the expression of specific immune and inflammatory genes. However,
excessive inflammation can be harmful and cause further damage. Healthy tissue and cells
can be injured by overactivated immune cells, which then leads to autoinflammatory and
autoimmune diseases (Broderick and Hoffman, 2022; Pisetsky, 2023). To alleviate the
adverse response of excessive inflammation, many different anti-inflammatory drugs can be
deployed. However, the inadequate responses highlight the need for better anti-
inflammatory therapeutics.

When immune cells enter an inflammatory state, metabolic pathways are modulated and
have a crucial impact on cell function (ONeill et al., 2016). Activated immune cells require
rapid energy and building blocks for cytokine production and cell proliferation. During
inflammation, the rate of aerobic glycolysis is upregulated in inflammatory cells. In Krebs
cycle and oxidative phosphorylation are rewired in both lymphoid and myeloid cells leading
to the accumulation of specific metabolites that are capable of modulating inflammatory
responses (Xu et al., 2022). Also, reactive oxygen species (ROS) are produced and can have
multiple inflammatory effects on cells (Lampropoulou et al., 2016; Beach et al., 2020).
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In recent years, many discoveries have been made on the
immunoregulatory role of mitochondria (Nakahira et al., 2010;
Hooftman and ONeill, 2019; Monfort-Ferré et al., 2022;
Hooftman et al., 2023). Two anti-inflammatory therapeutics
already in use, dimethyl fumarate (DMF) and metformin, in fact,
target mitochondria. In this review, we make the case for targeting
specific mitochondrial metabolites or mitochondrially-derived
nucleic acids as a compelling approach for the new anti-
inflammatory therapeutics.

Existing anti-inflammatory drugs either
derived from or that target
mitochondria

DMF

DMF is a derivative of the Krebs Cycle metabolite fumarate. It
was first developed as a drug for psoriasis (Schweckendiek, 1959). It
was hypothesised that in psoriasis there is a disturbance in Krebs
Cycle that triggers the symptoms so supplementation with DMF or
other fumaric acid esters might restore the disrupted metabolism
and ameliorate the excessive inflammation. Although this
hypothesis was not confirmed, clinical trials on psoriasis patients
showed a positive effect (Schweckendiek, 1966). DMF was then
redeveloped as a drug against relapsing-remitting multiple sclerosis
(RRMS) (Fox et al., 2012; Meissner et al., 2012). However, the effect
of DMF treatment on immune cells was still not entirely defined.
Scientists then started to investigate the immunomodulatory impact
of DMF. Multiple studies have demonstrated that DMF can target
both adaptive and innate immune cells. DMF treatment reduces the
number of B cells particularly memory B cells in RRMS patients
(Smith et al., 2017). Proinflammatory cytokine production by B cells
is also decreased. Another study found that the circulating T cell
population declined after treatment with DMF, and the number of
Th2 cells increased while the more inflammatory Th1 and Th17 cell
populations decreased (Wu et al., 2017). DMF induces macrophages
to polarize towards a more immunoregulator M2 type and inhibits
dendritic cell activation (Peng et al., 2012; Han et al., 2016).

Because of its electrophilicity, DMF canmodify cysteine residues
on target proteins in a process termed succination which influences
protein function. DMF was shown to inhibit the glycolytic enzyme
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in the
experimental autoimmune encephalomyelitis (EAE) model of
mouse and also in MS patients as part of its anti-inflammatory
function (Kornberg et al., 2018). By reducing GAPDH activity, DMF
downregulated aerobic glycolysis in activated immunes and
ameliorated inflammation. Other than targeting metabolism,
several immunoregulatory proteins, such as NRF2 and NLRP3,
have been identified as major targets of DMF and fumarate (He
et al., 2016; Schulze-Topphoff et al., 2016). However, DMF has a
higher reactivity to cysteine than fumarate and therefore induces
different responses (Kulkarni et al., 2019). DMF dampens
NLRP3 activation by stimulating the NRF2 pathway (Shi et al.,
2022). After NRF2 reduces ROS production and proinflammatory
signals, the NLRP3 activity is consequently downregulated. DMF
has been also shown to inhibit the formation of M1/K63 hybrid
polyubiquitin chains by cysteine modification at the active cite of

multiple ubiquitin enzymes (McGuire et al., 2016). This effect
prevented TLR downstream signalling transduction independent
of NRF2 activation. There is evidence showing that DMF can induce
anti-inflammatory ubiquitination. DMF causes phosphorylation of
NLRP3 through protein kinase A signalling (Shi et al., 2022).
Phosphorylated NLRP3 is then ubiquitinated and degraded.
Fumarate can control gene expression via epigenetic
modifications as can DMF (Wentzel et al., 2017; Maltby et al.,
2018). Both can modify DNA methylation via inhibition of DNA
demethylases and inhibit gene expression. A study on NK cells
showed DMF hypermethylates the Gasdermin (GSDM) D gene and
prevents its expression, thereby preventing the inflammatory form
of cell death termed pyroptosis (Muhammad et al., 2019). On the
other hand, the cysteine residue on GSDMD protein can be
succinated by DMF, and this modification prevents the
interaction between caspase and GSDMD thereby inhibiting
pyroptosis (Humphries et al., 2020).

Metformin

Metformin is a widely prescribed drug for the treatment of type
2 diabetes. It lowers blood glucose and increases insulin sensitivity.
Complex I in the electron transport chain (ETC) is a major target.
Unlike other inhibitors, such as rotenone, metformin reversibly
inhibits Complex I and is well tolerated by cells (Wheaton et al.,
2014). It is possible that a more profound inhibitor of complex I
could be too toxic. Most of anti-inflammatory responses caused by
metformin is via activating AMP-activated protein kinase (AMPK).
Complex I inhibition decreases the ATP/Adenosine
monophosphate (AMP) ratio. With the help of liver kinase B1
(LKB1), metformin, therefore, activates AMPK (Bailey, 2017).
AMPK regulates various pathways to maintain the energy
balance in cells. When it is activated, glucose uptake and
metabolism are upregulated, and insulin resistance is also
ameliorated (Gunton et al., 2003). In the liver, metformin also
inhibits gluconeogenesis (Stumvoll et al., 1995; Song et al., 2001).
Apart from glucose metabolism, metformin alters lipid and amino
acid metabolism. Metformin reduces lipid synthesis and export
through AMPK pathways (Jeppesen et al., 1994; Fullerton et al.,
2013). Metformin also exhibits potent immune regulatory functions
by targeting AMPK activation. Studies found that metformin-
treated cells modulated key inflammatory regulators like PTEN,
nuclear factor kappa-light-chain-enhancer of activated B cells
(NFκB), Poly [ADP-ribose] polymerase 1 (PARP1), and
NLRP3 activity through AMPK function (Hattori et al., 2006;
Kim and Choi, 2012; Li et al., 2016; Ke et al., 2019). These
effects then regulate various pathways and dampen inflammation.
Proinflammatory cytokine production like TNF-α, IL-1, and IL-6
are reduced by metformin regulating these pathways (Hyun et al.,
2013). Besides, metformin prevented IL-1 production also through
inhibiting complex I activity to decrease ROS. This consequently
boosted the production of the anti-inflammatory cytokine IL-10
(Kelly et al., 2015). The ability of metformin to reduce glucose levels
inhibits the production of advanced glycation end products (AGEs).
The receptor of AGEs (RAGE) activation and downstream
proinflammatory effects were subsequently prevented (Zheng
et al., 2011; Ishibashi et al., 2012; Byun et al., 2017). Overall, the
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targeting of complex I in mitochondria by metformin is likely to be
critical for its anti-inflammatory effects.

Krebs Cycle metabolites and
inflammation

Succinate

Succinate plays a critical role in regulating proinflammatory
responses. Succinate levels are increased in multiple inflammatory
diseases (Monfort-Ferré et al., 2022; Xu et al., 2022). Glutamine-
dependent anaplerosis and GABA (γ-aminobutyric acid) shunt
activity increase in M1 macrophages which leads to the build-up
of succinate (Monfort-Ferré et al., 2022). IL-1β production has been
shown to be regulated by succinate. As succinate accumulates, it
impairs prolyl hydroxylase (PHD), thereby activating HIF-1α. IL-1β
is a HIF-1α dependent gene and can be induced by succinate.
Succinate oxidation by succinate dehydrogenase (SDH) can also
drive reverse electron transport (RET) via complex I, generating
mitochondrial ROS to promote HIF-1α activation (Guzy et al., 2008;
Tannahill et al., 2013; Yin and ONeill, 2021). In T cells, a recent
study has found that accumulation of succinate reduced CD4 T cell
proliferation and promoted proinflammatory Th1 and Th17 cells by
altering gene transcription (Chen X. et al., 2022). Succinate has also
been shown to regulate protein function by direct modification. One
example of this is succinylation of pyruvate kinase 2 (PKM2). This
drives PKM2 translocation into the nucleus, where in macrophages
it boosts HIF-1α gene expression. The desuccinylation enzyme
SIRT5 is downregulated in LPS stimulated macrophage, which
then allows succinate to modify PKM2 (Qi et al., 2019).

Succinate also can be secreted and bind to a specific receptor on
cells called SUCNR1, also known as GPR91 (He et al., 2004). The
study showed this receptor is widely expressed and increases blood
pressure after binding succinate. After binding, similar to other
GPCRs, SUCNR1 converts phosphatidylinositol bisphosphate
(PIP2) to inositol trisphosphate (IP3) and diacylglycerol (DAG)
(Ariza et al., 2012). Then, IP3 and DAG activate downstream
signalling and processes like calcium mobilization and activation
of protein kinase C (PKC). Many proinflammatory proteins are then
activated by these two pathways. Dendritic cells can be stimulated to
a more active state after succinate-SUCNR1 binding (Rubic et al.,
2008). Their migration and antigen presenting ability are enhanced
compared by succinate.

SUCNR1 expression is upregulated in LPS treated macrophages,
which increases IL-1β production by activating the HIF-1α pathway
(Littlewood-Evans et al., 2016). The SUCNR1 deficient mouse
model of arthritis has reduced knee swelling and less activated
macrophages in the joint. IL-1β levels are significantly lower in
SUCNR1 deficient mice compared to control. SUCNR1 deficient
macrophages also produce less IL-1β after incubation with synovial
fluid (SF) from rheumatoid arthritis (RA) patients (Littlewood-
Evans et al., 2016). Inhibiting SUCNR1 with antagonist might
therefore have promise as a treatment for RA.

However, several studies also show the opposite effect of
SUCNR1 activation under certain conditions. In diet-induced
obesity mice, succinate treatment induces anti-inflammatory
M2 macrophages and reduces inflammation in adipose tissue

(Keiran et al., 2019). Cancer cells release succinate, which then
binds to SUCNR1 on macrophages. These macrophages then
convert to tumour-associated macrophages (TAMs) to dampen
their tumour killing effects (Wu et al., 2020). IL-6 secreted by
succinate-induced TAMs also promotes cancer cell migration.
More studies are required to clarify SUCNR1 effects under
different circumstances.

Because SDH is required for RET and mitochondrial ROS
production, targeting SDH is a potential anti-inflammatory
strategy. Inhibiting SDH activity could prevent RET during
inflammation. Malonate ester prodrugs, dimethyl malonate
(DMM) and diacetoxymethyl malonate (MAM) have been shown
to competitively inhibit succinate binding with SDH (Xu et al.,
2022). In LPS activated macrophages, DMM reduces ROS
production and promotes anti-inflammatory cytokine IL-1RA
and IL-10 production (Yang et al., 2019). Expression of many
anti-inflammatory genes are increased after DMM treatment. In
a mouse model of sepsis, DMM treatment reduces IL-1β level in
serum. The anti-inflammatory properties of DMM have been also
studied in multiple models of inflammation (Table 1). Recently,
DMM has been shown to ameliorate the inflammation in model of
Alzheimer’s disease and systemic inflammatory response syndrome
(SIRS) through inhibition of RET. All these studies indicate the
potential of DMM targeting SDH as an anti-inflammatory
therapeutics.

Another group of inhibitors target the ubiquinone binding site
on SDH, and, among them, thenoyltrifluoroacetone (TTFA) has
been used most frequently (Moreno et al., 2020). TTFA also reduce
ROS production and proinflammatory cytokine production (Hop
et al., 2017; Zhao et al., 2019). Of note, both DMM and TTFA have
been shown to dampen severe inflammation caused by bacterial
infection (Hop et al., 2017; Li et al., 2019). However, more studies are
required to have a better understanding on the anti-inflammatory
property of TTFA and the difference between these two types of
SDH inhibitors.

Blocking SUCNR1 also has potential as an anti-inflammatory
strategy, and several studies have identified different
SUCNR1 antagonists (Figure 1). In 2011, four compounds (2c,
4c, 5g, 7e) were reported to have therapeutic potential inhibiting
SUCNR1 (Bhuniya et al., 2011). As mentioned above, in a study
of RA, IL-1β production is decreased after 4c treatment on cells
incubated with SF from RA patients (Littlewood-Evans et al.,
2016). With the help of Structure-based mutagenesis and
radioligand-binding studies, a small molecule called NF-56-
EJ40 was identified as a SUCNR1 inhibitor (Haffke et al.,
2019). It has a similar structure with the compounds in the
previous study as the biphenyl structure is crucial for the
interaction with SUCNR1. However, the study showed that its
structure allows the molecule to interact with SUCNR1 in a
multivalent ligand-binding mode. NF-56-EJ40 inhibits
SUCNR1 by a different in a study of atherosclerosis-induced
chronic inflammation, the serum level of IL-1β and succinate was
higher in coronary heart disease patients. NF-56-EJ40 inhibited
IL-1β production in both macrophages and human umbilical
vein endothelial cells (HUVECs) (Monfort-Ferré et al., 2022).
Later, a novel zwitterion antagonist was developed based on NF-
56-EJ40 (Velcicky et al., 2020). Two conformations allow this
molecule to have both higher permeability and efficacy. In a study
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of periodontitis, researchers found that patients with
periodontitis possessed a higher succinate level and expressed
more SUCNR1 on the gingival tissue cells. They then synthesized
a small molecule, termed 7a, and blocked succinate-SUCNR1

binding, which blocked inflammation (Guo et al., 2022). The
difference between 7a and previous compounds is that 7a
contains a naphthyridine connected to a benzine ring instead
of biphenyl, which might also interact similarly with SUCNR1.

TABLE 1 Targeting succinate as a potential anti-inflammatory Strategies.

Therapeutic agent Inflammation disease model

Dimethyl malonate (DMM) SDH competitive inhibitor Sepsis Ye et al. (2022)

Acute hepatic damage Xu et al. (2018)

Brain Damage Chouchani et al. (2014)

Ischaemia-reperfusion injury Davidson et al. (2019)

Alzheimer’s disease Sangineto et al. (2023) systemic inflammatory response syndrome Shi et al.
(2023)

Thenoyltrifluoroacetone
(TTFA)

SDH ubiquinone binding site
inhibitor

Atherosclerosis induced chronic inflammatory Zhao et al. (2019)

4c SUCNR1 inhibitor Rheumatoid arthritis Littlewood-Evans et al. (2016)

NF-56-EJ40 SUCNR1 inhibitor Atherosclerosis induced chronic inflammatory Xu et al. (2022)

7a SUCNR1 inhibitor Periodontitis Guo et al. (2022)

FIGURE 1
Possible therapeutics targeting succinate induced inflammation. To reduce inflammation caused by succinate accumulation, there are two different
strategies. SDH inhibitors can prevent RET and ROS production limiting inflammation. SUCNR1 inhibitors prevent succinate from binding to its receptor
and downstream proinflammatory signalling pathways induced by second messengers DAG and IP3.
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Itaconate

Itaconate is mainly produced from M1 macrophages. Aconitate
decarboxylase 1 (ACOD1), encoded by immunoresponsive gene 1
(Irg1), converts cis-aconitate to itaconate after proinflammatory
signals. Itaconate has multiple functions in dealing with different
pathogens and regulating signalling pathways. The anti-bacterial
function of itaconate was first identified as it can inhibit isocitrate
lyase and block the glyoxylate shunt, which is critical for bacterial
growth (Rittenhouse and McFadden, 1974; McFadden and Purohit,
1977; Ruetz et al., 2019). Li and others discovered that itaconate
enhances the bacterial killing ability of macrophages by alkylating
transcription factor EB (TFEB) (Zhang Z. et al., 2022). After
modification, this transcription factor is activated and enhances
lysosomal generation. Itaconate also has anti-viral properties. A
study revealed that itaconate its cell permeable derivative 4-octyl
itaconate (4OI) ameliorates neuron cell death caused by Receptor
interacting protein kinases-1 (RIP1) and 3 (RIP3) after Zika virus
infection (Daniels et al., 2019). Itaconate 4OI also prevent influenza

A replication by blocking exportin-1 (XPO1) and nuclear export of
viral ribonucleoproteins (Waqas et al., 2023).

Apart from its role in host defence, itaconate has also been
extensively studied in the context of inflammation, and 4-OI has
been studied in different animal models shown in Table 2. Itaconate
deficient mice have higher proinflammatory cytokines, like IL-1 and
TNF-α, after LPS stimulation (Lampropoulou et al., 2016). Itaconate
and its derivatives, 4-OI and dimethyl itaconate (DI), reduce the
interferon response and excessive inflammation caused by infection
with influenza A virus (Sohail et al., 2022). They also have the
potential in relieving damaging inflammatory responses caused by
SARS-CoV2 (Olagnier et al., 2020).

Itaconate and its derivatives carry out most of their function by
protein post-translational modification and have
immunomodulatory properties. Itaconate and most particularly
its derivatives regulate several important pathways in immune
cells by alkylating cysteine residue on proteins (Hooftman and
ONeill, 2019). Like DMF, itaconate and 4-OI can alkylate the
cysteine on Kelch-like ECH associated protein (KEAP1) and

TABLE 2 Anti-inflammatory effects of 4-OI in mouse and rat models of inflammation.

Disease model Mechanism of action

Liver Non-alcoholic fatty liver disease (NAFLD) Weiss et al. (2023) Increase fatty acid oxidation dependent oxidation phosphorylation

Acute liver failure (ALF) Li et al. (2021) Nrf2 activation

Liver fibrosis Fan et al. (2022) Nrf2 activation

Autoimmune hepatitis Yang et al. (2022) Nrf2 activation and NF-κB inhibition

Fulminant liver injury Fan et al. (2023) Nrf2 activation

Primary sclerosing cholangitis Li et al. (2023b) Blocking DNA demethylation of RUNX3

Liver ischemia-reperfusion injury Yi et al. (2020) Nrf2 activation

Lung and respiratory tract ARDS Wu et al. (2023b) STING inhibition

Acute lung injury Xin et al. (2020) Suppressing ROS induced PI3K signalling pathway

Pulmonary fibrosis Li et al. (2020) Metabolic reprograming

Asthma Ryan et al. (2023) JAK1-STAT6 pathway inhibition

Infection Sepsis Luo et al. (2018), Li et al. (2023a) NRF2 activation and STING inhibition

Influenza A virus Sohail et al. (2022) Exportin-1 (XPO1) inhibition

Sars-Cov-2 Olagnier et al. (2020) NRF2 activation

Neuron Parkinson’s disease Sun et al. (2022) NLRP3 inhibition

Alzheimer’s disease Behera et al. (2023) NRF2 activation

Skeletal Osteoarthritis Zhang et al. (2022) NRF2 activation

Osteoporosis Sun et al. (2019) NRF2 activation

Kidney Acute kidney injury Xu et al. (2023) NRF2 activation and STAT3 inhibition

Renal fibrosis (rat model) Tian et al. (2020) TGF-β/Smad and NF-κB inhibition

Skin and connective tissue Cartilage regeneration Xiao et al. (2023) Arginase 1 (ARG1) activation and M2 macrophage polarization

Wound healing Maassen et al. (2023) Mitogen-activated protein kinase (MAPK) inhibition and NRF2 activation

Vesicle Abdominal aortic aneurism Peng et al. (2022) NRF2 activation

Metabolic disorders Type I diabetes He et al. (2023) MAPK inhibition and M2 macrophage polarization

Gastrointestinal tract Colitis Yang et al. (2023) MAPK inhibition and GSDMD and GSDME inhibition
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cause its degradation (Mills et al., 2018). This degradation
consequently releases and activates NRF2, which acts as an anti-
inflammatory and antioxidant transcription factor. After activation,
NRF2 translocates into the cell nucleus and binds to antioxidant
responsive elements (ARE). Many antioxidant proteins like
glutathione S-transferase (GST) and heme oxygenase-1
(HMOX1) are upregulated by NRF2 and subsequently reduce
ROS and inflammatory responses in cells. Studies showed that
activating NRF2 and antioxidant proteins in LPS stimulated
macrophages can reduce the production of inflammatory
cytokines such as IL-6 and TNF-α (Bambouskova et al., 2018;
Luo et al., 2018). These changes then dampen the activity of
HIF-1α and reduce proinflammatory cytokines like IL-1β
secretion. 4OI enhanced survival and clinical score and reduction
of proinflammatory cytokines in serum through the NRF2 pathway
in a mouse model of sepsis. NRF2 was shown to dampen the
interferon response, and 4OI was shown to suppress type I
interferon production by activating NRF2 (Ryan et al., 2022).
4OI and DI regulate tissue factor production and coagulopathy
after SARS-CoV2 infection through this pathway (Ryan et al., 2023).
NRF2 also downregulates IκB kinase (IKK) by inducing its
degradation and prevents NFκB activation (Helou et al., 2019).
Itaconate and its derivatives have been shown to have therapeutic
effects in multiple disease models such as SARS-CoV2, pulmonary
fibrosis, and osteoarthritis through NRF2 function (Olagnier et al.,
2020; Zhang P. et al., 2022; Wu et al., 2023a). Other than NRF2,
itaconate and 4-OI alkylates multiple cysteines on Stimulator of
interferon gene (STING) protein and prevents its phosphorylation
(Li W. et al., 2023). 4OI inhibiting STING can ameliorate the
symptoms of sepsis in mouse models. The production of
cytokines like interferon-beta (IFN-β) and TNF-α is
downregulated after STING inhibition. Another recent study
showed that 4-OI alkylated Cys91 of STING and prevented its
palmitoylation, which ameliorated cGAS-STING-mediated
autoimmune response (Su et al., 2023). For autoinflammatory
diseases like cryopyrin-associated periodic syndrome (CAPS), 4-
OI downregulates NLRP3 activity by cysteine modification
(Hooftman et al., 2020). This modification prevents NIMA-
Related Kinase 7 (NEK7) from binding to NLPR3 and
inflammasome formation. Another study showed that GSDMD is
also modified by 4OI preventing pyroptosis and inflammatory tissue
damage (Bambouskova et al., 2021).

Itaconate and 4OI also modulate inflammation by targeting
metabolic pathways enzymes in macrophages. Itaconate alkylates
the cysteine in GAPDH (Liao et al., 2019). This change reduces its
activity which ameliorates aerobic glycolysis in proinflammatory
macrophages. A recent study also showed that itaconate and DI can
irreversibly bind to carnitine/acylcarnitine carrier (CAC)
(Giangregorio et al., 2023). This change could affect fatty acid
oxidation and reduce ROS production during inflammation, but
further study is required to prove this. InM2macrophages, itaconate
and 4-OI target Janus Kinase 1 (JAK1) and Signal Transducer and
Activator of Transcription 6 (STAT6) (Runtsch et al., 2022). 4OI is
capable of alkylating multiple cysteines on JAK1 and eventually
prevents its phosphorylation and dimerization. This study showed
itaconate and its derivatives also alleviated symptoms of asthma in a
mouse model. Itaconate has also been found to modify lysine via
itaconylation (Liu et al., 2023). After treating cells with LPS or

itaconate, an increased itaconylation is observed. However, the effect
of the modification still needs further study.

Besides protein modification, itaconate modulates immune
responses through other routes. Itaconate can competitively bind
to SDH and reduce ROS generation from RET (Lampropoulou et al.,
2016). Itaconate and 4OI can also inhibit the PI3K/AKT/mTOR
signalling pathway by blocking ROS production (Xin et al., 2020;
Pan et al., 2022). This then ameliorates acute lung injury and
osteoarthritis in mouse models. Another study found that 4OI
reduces ROS production and mitochondrial DNA (mtDNA)
release in alveolar macrophages alleviating acute respiratory
distress syndrome (Wu et al., 2023b).

Itaconate also prevents IL-6 expression by causing electrophilic
stress in cells (Bambouskova et al., 2018). ATF3 expression is increased
in proinflammatory macrophages after itaconate and DI treatment.
This transcription factor then inhibits IκBζ production, which is critical
for IL-6 gene expression. In a psoriasis model, administration of DI
dampens IL-17-mediated IκBζ induction in cells, which then reduces
the severity of this disease (Bambouskova et al., 2018). Itaconate
modifies TET2 and inhibits its catalytic domain (Chen L.-L. et al.,
2022). This consequently suppresses histone and DNA demethylation.

An itaconate receptor termed OXGR1 has been recently
identified. This receptor is a GPCR and acts similarly to
SUCNR1. During pulmonary infection, itaconate is secreted by
activated macrophages. It then binds to OXGR1 on epithelial
cells and induces mucus secretion as a primary innate defence
mechanism (Zeng et al., 2023).

Since itaconate has so many impact on cell functions, a specific
delivery to the target tissue would have more therapeutic potential.
The research showed that artificial cells containing itaconate can be
taken up bymacrophages in the liver. This is then able to reverse acute
liver failure (ALF) in mouse model (Yin et al., 2023). NLRP3 activity
and IL-1 production were inhibited in these macrophages, which
protected mice from acetaminophen (APAP)-induced ALF.

However, some studies also show the ACOD1 activity sometimes
can have some side effects and promote inflammation. Macrophages
can be polarized to M1 phenotype after itaconate treatment (Ganta
et al., 2017). Respiratory syncytial virus (RSV)-infected A549 epithelial
cells and lung tissues from RSV infected mice have been shown an
upregulation of ACOD1 (Ren et al., 2016). This is related to ROS and
proinflammatory cytokine production, which then leads to tissue
damage. By silencing ACOD1 expression, RSV infected mice had
less ROS and proinflammatory cytokine and reduced immune cell
infiltration caused lung injury. Itaconate has also been shown to
increase IL-1β production, which is through the inhibition of
aconitase (ACO) 1 and ACO2 and activation of NLRP3 (Liu et al.,
2021). ACOD1 also boosted the TNF signalling pathway and cytokine
production in sepsis. Treating cell with 4OI, likely to be, had no effect on
TNF-α secretion, which indicates this effect is itaconate-independent
(Wu et al., 2022). More studies are therefore needed on itaconate and its
derivatives as therapeutics against inflammatory diseases.

Fumarate

Most recently, new information has emerged on fumarate and
inflammation. Fumarate is one of the most upregulated metabolites in
macrophages activated with LPS (Hooftman et al., 2023). FH inhibition
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with a small molecule inhibitor causes the building up of fumarate in
cells, which in turn induces protein succination. FH inhibition also
causes an increased mitochondrial membrane potential (MMP) leading
to ROS production (Hooftman et al., 2023). FH inhibition and fumarate
accumulation drive macrophages to a more proinflammatory state.
Fumarate reduces c-fos and AP1 complex activity, likely through
succination, and thereby blocks production of anti-inflammatory
cytokine IL-10. Consequently, TNF-α secretion increases after FH
inhibition. Importantly, in FH deficient mice and cells treated with
the FH inhibitor, mtRNA is released into the cytosol after treatment
with LPS. TLR7, Retinoic acid-inducible gene I (RIG-I), and melanoma
differentiation-associated protein 5 (MDA5) then induce IFN-β
production. This pattern is not seen in macrophages treated with
DMF, which indicates the effect is induced by mitochondrial
disturbance rather than succination. Reduced FH activity has been
shown in several diseases. In Systemic lupus erythematosus (SLE)
patients, autoantibodies to double stranded RNA (dsRNA) are
observed (Davis et al., 1975). Reduced ADAR1 RNA-editing activity
results in dsRNA-mediated interferon response. This reduced editing
has been reported in multiple inflammatory pathologies such as MS,
coronary artery disease, and SLE, and may be a common event in
inflammatory diseases (Li et al., 2022). Also, a study found an abnormal
increase in IFN-β production in SLE patients. This is caused by
mitochondrial ROS induced mitochondrial antiviral-signalling
protein (MAVS) oligomerization (Buskiewicz et al., 2016). The
peripheral blood mononuclear cells (PBMCs) derived from these
patients have decreased FH expression. Similar chronic
inflammatory effects are observed in Hereditary leiomyomatosis and
renal cell cancer (HLRCC) patients who have FH deficiency (Zecchini

et al., 2023). It might be possible to ameliorate the symptoms of these
diseases by restoring the normal activity of FH (Figure 2).

The potential of targeting
mitochondrial nucleic acid sensors and
release in inflammation

The above study on FH and reports of mtDNA and mtRNA in
inflammatory diseases indicate that cytosolic nucleic acid signalling
PRRs might be of interest as targets for anti-inflammatory therapeutics.
A study showed that NLRP3 interacts with mtDNA (Figure 3)
(Nakahira et al., 2010). Caspase 1 activation and IL-1β and IL-18
secretion are observed in these abnormal apoptotic cells. The link
between mitochondrial stress and caspase 1 activation is through
mtDNA binding with NLRP3. Researchers in this study generated
mtDNA depleted cells, known as ρ0 cells, with ethidium bromide
(EtBr). In ρ0 cells, NLRP3 proinflammatory pathway is significantly
downregulated. There is evidence of NLRP3 mediating mtDNA release
as less cytosolic mtDNA are detected in NLRP3 deficient cells after
stimulation. NLRP3 and caspase 1 activity were also shown to be
dependent on mitochondrial ROS production. Another study has
demonstrated that ROS oxidizes mtDNA in apoptotic macrophages
after encountering danger signals (Shimada et al., 2012). This
modification increases the affinity of mtDNA for NLRP3 and IL-1β
and IL-18 production. In contrast, their expression is completely
blocked in ρ0 cells. DNA glycosylase 8-oxoguanine glycosylase
(OGG1) regulates mtDNA oxidation and consequently
NLRP3 activation (Tumurkhuu et al., 2016). OGG1-deficient mice

FIGURE 2
Potential drug target against FH deficiency. FH deficiency induces inflammation mainly through mtRNA release and binding to MDA5 and RIG-I.
Restoring FH or targeting MDA5 and RIG-I or the reduction of mtRNA release have potential for the development of anti-inflammatory therapeutics.
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have higher level of oxidized mtDNA, which leads to increased
NLRP3 activation and IL-1β and IL-18 production. There is
evidence that mtDNA increases in macrophages after LPS
stimulation (Zhong et al., 2018). This is through MyD88 and TRIF
activated interferon regulatory factor 1 (IRF1). This transcription factor
then binds and upregulates the expression of mitochondrial
deoxyribonucleotide kinase called UMP-CMPK2, which is a rate-
limiting enzyme for mtDNA production. Inhibition of UMP-
CMPK2 substantially abrogates NLRP3 activation and IL-1β
secretion. Research that aims to find small molecules targeting
UMP-CMPK2 is currently ongoing (gossamer bio, 2022).
Mitochondrial genome maintenance exonuclease 1 (Mgme1) is also
shown to be involved in mtDNA synthesis as silencing its expression
reduces mtDNA levels and inflammasome activation in cells (Xian
et al., 2022). An intracellular orphan receptor Nur77 is activated by both
LPS and mtDNA and activates NLRP3 in a non-canonical way. The
depletion of mtDNA caused by ethidium bromide reduces its
interaction with Nur77 and NLRP3 activation (Zhu et al., 2023).

Absent inmelanoma 2 (AIM2) protein has also been reported to be
involved in mtDNA sensing and inflammasome activation (Dang et al.,
2017). Cholesterol 25-hydroxylase (Ch25h) deficient macrophages have
increased cholesterol levels compared to controls. Excessive cholesterol
causes mitochondrial stress and mtDNA release. This is then sensed by
AIM2 and induces IL-1β and IL-18 production. This pathway is
downregulated by EtBr induced ρ0 cells. In a mouse model of
nonalcoholic fatty liver disease, AIM2 binds to mtDNA and causes

pyroptosis and IL-1β production (Xu et al., 2021). mtDNA can also
activate the cGAS-STING inflammatory pathway. The loss of
Mitochondrial transcription factor A (TFAM) can cause instability
and release of mtDNA, which then binds to cGAS to induce IFN-β
expression (West et al., 2015). A higher resistance against virus infection
was shown in TFAM-deficient mice as they had stronger innate
immune responses. However, in apoptosis deficient mice, this
pathway is activated and causes proinflammatory cell death
(Rongvaux et al., 2014; White et al., 2014). In endothelial cells,
mtDNA release induced the cGAS-STING pathway activation
leading to YAP signalling and downstream cyclin D inhibition. This
effect prevents cell proliferation and exaggerates the inflammatory
response acute lung injury (Huang et al., 2020). In Amyotrophic
lateral sclerosis patients, mtDNA and cGAS interaction induce
neurodegeneration and inflammation (Yu et al., 2020). Studies
found that mtDNA release can activate both NLRP3 and cGAS-
STING pathway and induce both proinflammatory IL-1β and IFN-β
secretion (Liu et al., 2022; Xian et al., 2022).

As mentioned above, for mtRNA, there are several different PRRs
recognize single stranded RNA and short dsRNA, while
MDA5 recognizes long dsRNA. Both trigger MAVS oligomerization
and TBK1 activation. mtRNA has been shown to activate both RIG-I
andMDA5 to increase interferon production and IRF7 activation (Dhir
et al., 2018; Tigano et al., 2021). RNA helicase SUV3 and polynucleotide
phosphorylase PNPase controls the formation of double strandmtRNA
(dsmtRNA). Once they are depleted in cells, more dsmtRNA is detected

FIGURE 3
Mechanisms of mitochondrial nucleic acids activating proinflammatory pathways. mtDNA and mtRNA production are upregulated in response to
inflammatory signals and cell stress. mtDNA is first oxidised by OGG1 and then cut by FEN1 which allows it to leave mitochondria through ANT (IMM) and
VDAC (OMM) formed mPTP. When mtDNA enters the cytosol, it binds to NLRP3 and cGAS to induce proinflammatory IL-1β and IFN-β secretion. For
mtRNA, surveillance proteins PNPase and SUV3 are downregulated to cause its accumulation. They leavemitochondrial through Bak and Bax pores.
RNA sensing PRRs RIG-I, MDA5, and TLR7 are activated to cause IFN-β secretion. They also activate AIM2 to induce IL-1β and IL-18 secretion and
pyroptosis. Each has therapeutic potential for inflammatory diseases.
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byMDA5. Protein kinase RNA-activated (PKR) is also a mitochondrial
RNA sensor. It binds to dsRNA and induces downstreamROS and pro-
inflammatory cytokines production (Kim et al., 2018; Kim et al., 2020).
A mouse model of osteoarthritis has elevated cytosolic mtRNA and
phosphorylated PKR levels are detected (Kim et al., 2022). 2′-C-
methyladenosine (2-CM) induced mtRNA depletion can effectively
reduce the production of inflammatory senescence-associated secretory
phenotype (SASP) factors, which is PKR activation dependent. This
study also showed that mtRNA is released into extracellular space,
which is then taken up by adjacent cells to activate MDA5, RIGI, and
TLR3 signalling pathways. Recently, TLR7, which binds to single strand
RNA, is also shown to bind mtRNA and activate IFN-β expression.
Mitochondrial RNA polymerase inhibitor IMT1 reduced cytosolic
mtRNA concentration and downregulated IFN-β production. This
pathway probably plays a part in proinflammatory pathogenicity in
SLE (Hooftman et al., 2023).

In order to bind cytosolic PRRs, mtDNA and mtRNA translocate
through themitochondrial double membrane (Figure 3). Preventing this
should be anti-inflammatory. Different mechanisms of mitochondrial
nucleic acid release have been reported. The mitochondrial permeability
transition pore (mPTP), which is composed of mitochondrial inner
membrane (MIM) adenine nucleotide translocase (ANT) and
cyclophilin D and mitochondrial outer membrane (MOM) VDAC,
allows for mtDNA release. This was first discovered using cyclosporin A
(CsA) to inhibit calcium influx induced by non-specific mPTP opening
and fragmented mtDNA release (Patrushev et al., 2004). Later, a study
demonstrated that only mtDNA fragments under 700 base pairs were
released through mPTP (García and Chávez, 2007). NLRP3 activation
and inflammatory responses are also linked with PTP opening causing
mtDNA release (Xian et al., 2022). Protein prohibitin 1 (PHB1) also
showed evidence of regulating MIM mPTP as PHB1 deficient mice
increase mtDNA release and proinflammatory cytokine production (Liu
et al., 2022). On the MOM, VDAC is responsible for mtDNA entering
cytosol (Kim et al., 2019). The N-terminus of VDAC can bind mtDNA
to form a stable oligomer during activation. In VDAC knockdown cells
or cells treated with VDAC inhibitor Vbit4, cytosolic mtDNA
concentration is reduced significantly, and the activation of IFN-β
response is also downregulated. In a mouse model of SLE
inflammation was attenuated after administration of Vbit4 to prevent
mtDNA release. In another study, the mitochondrial calcium uniport
(MCU) triggered calcium influx inducing ANT and cyclophilin D
activation leading to VDAC oligomerization (Xian et al., 2022). The
same study showed that an endonuclease called flap-structure-specific
endonuclease 1 (Fen1) can regulate this pathway. FEN1 fragments
oxidized mtDNA to 500 to 600 base pair length that enables them
pass through activated mPTP into the cytosol.

There is also evidence of Bak and Bax oligomerization inducing
mtDNA and mtRNA release. mtDNA is released through apoptosis-
activated Bax and Bak pores and stimulates cGAS-STING pathway
activation (Rongvaux et al., 2014;White et al., 2014). The Bcl-2 inhibitor
ABT-737 also induce Bax and Bak oligomerization and triggers an
increase in IFN-β expression. A follow-up study illustrated thatmtDNA
leaves mitochondria through Bax and Bak pore by herniation of MIM
(McArthur et al., 2018). Some hernias lose their integrity and allow
mtDNA to enter the cytosol to cause cGAS-STING dependent IFN-β
secretion. Bak and Bax exports mtRNA as well. dsmtRNA can be
released through Bax and Bak after inhibition of SUV3 and PNPase
(Dhir et al., 2018). The MIM herniation induced by mitochondrial

DNA double strand breaks contains dsmtRNA (Tigano et al., 2021).
Mice or patients with kidney injury showed an increased expression of
Bax and cytosolic mtRNA (Doke et al., 2023). Treatment with NAD
attenuates mitochondrial dysfunction and Bax oligomerization, which
then reduces mtRNA release.

GSDMs can also be inserted in the mitochondrial membrane
and trigger mtDNA release into the cytosol, which then activates
PRRs and inflammatory pathways. The N-terminus of GSDMD is
cleaved and plugged in to mitochondrial MOM that allows mtDNA
to escape to the cytosol (Huang et al., 2020; Zhu et al., 2023).
GSDMD deficient mice possess a lower cytosolic mtDNA levels and
dampened inflammatory responses. In neurons, GSDME has a
similar effect in inducing mtDNA and cytochrome C release,
which might be the cause of neurodegeneration (Neel et al.,
2023). Other proteins might also be involved in this process.
Sorting Nexin 9 (SNX9) has been shown to play a role in
mtDNA containing mitochondrial-derived vesicles (MDV)
formation after LPS stimulation in FH deficient mice (Zecchini
et al., 2023). By knockdown of SNX9, cytosolic mtDNA level is
reduced, which further downregulates the cGAS-STING pathway
and downstream interferon proinflammatory responses.

Although these studies provide some insights into mitochondrial
nucleic acid releasing, more research is required to give a clear picture of
how these mechanisms are orchestrated and regulated.

Concluding remarks

Various aspects of mitochondria therefore have potential as novel
targets for anti-inflammatory therapeutics. Targeting succinate,
mimicking itaconate with derivatives and modulating fumarate and
downstream consequences of FH repression all looked promising. Also
targeting the release or sensing of mitochondrial nucleic acid has
potential in inflammatory disease, perhaps most notably in
interferonopathies like SLE. Following the lead of DMF and
metformin, mitochondrial targeting could hold great promise for
new therapies against immune and inflammatory diseases.
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