
State-of-the-art strategies to
prioritize Mycobacterium
tuberculosis drug targets for drug
discovery using a subtractive
genomics approach

Adetutu Akinnuwesi1†, Samuel Egieyeh2† and Ruben Cloete1*†

1South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics
Institute, University of theWestern Cape, Cape Town, South Africa, 2School of Pharmacy, University of the
Western Cape, Cape Town, South Africa

Tuberculosis remains one of the causes of death from a single infectious
bacterium. The inappropriate use of antibiotics and patients’ non-compliance
among other factors drive the emergence of drug-resistant tuberculosis.
Multidrug-resistant and extensively drug-resistant strains of tuberculosis pose
significant challenges to current treatment regimens, as their reduced efficacy
against these strains limits successful patient outcomes. Furthermore, the limited
effectiveness and associated toxicity of second-line drugs further compound the
issue. Moreover, the scarcity of novel pharmacological targets and the subsequent
decline in the number of anti-TB compounds in the drug development pipeline
has further hindered the emergence of new therapies. As a result, researchers
need to develop innovative approaches to identify potential new anti-TB drugs.
The evolution of technology and the breakthrough in omics data allow the use of
computational biology approaches, for example, metabolomic analysis to
uncover pharmacological targets for structured-based drug design. The role of
metabolism in pathogen development, growth, survival, and infection has been
established. Therefore, this review focuses on the M. tb metabolic network as a
hub for novel target identification and highlights a step-by-step subtractive
genomics approach for target prioritization.

KEYWORDS

Mycobacterium tuberculosis, drug discovery, metabolic pathway, subtractive genomic
analysis, multi-drug resistance tuberculosis, choke point enzymes, essential genes,
protein-protein interaction

1 Introduction

1.1 Tuberculosis epidemiology and physiology

Tuberculosis (TB) is still one of the most common infectious diseases that threaten the
public health system. In 2020, the WHO estimated 5.8 million new cases of tuberculosis and
1.5 million deaths, including people co-infected with HIV (WHO, 2020). Adults made up
88 percent of TB patients, while children made up 12 percent. South-East Asia, Africa, and
the Western Pacific were the WHO regions with the highest number of TB patients.Two-
thirds of the global TB cases were found in India (26 percent), Indonesia (8.5 percent), China
(8.4 percent), the Philippines (6.0 percent), Pakistan (5.7 percent), Nigeria (4.4 percent),
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Bangladesh (3.6 percent), and South Africa (3.6 percent) (Chakaya
et al., 2021). TB has been responsible for more than a billion deaths
since its discovery and this number has doubled the number of death
due to malaria, smallpox, influenza, cholera, plague, and human
immunodeficiency virus (HIV) put together (Heemskerk et al.,
2015).

Mycobacterium tuberculosis (M. tb), the causative agent of
tuberculosis (WHO, 2020), is an opportunistic intracellular
pathogen that has adapted to live and thrive within the human
host. M. tb mainly attacks the lungs, causing significant tissue
damage and symptoms such as chronic cough, night sweats,
weight loss, and doldrums (Macalino et al., 2020). In addition to
the lungs, the bacteria can travel to other organs like the brain
(causing TBmeningitis), liver, spleen, and bones (Peters et al., 2020).
The bacterium is spread via coughing whereby an infectious droplet
containing the bacteria is inhaled by a healthy person.M. tb is taken
up by alveolar macrophages, which might result in one of three
outcomes: in an acidic environment, M. tb-containing phagosomes
merge with lysosomes to destroy the bacteria, the bacteria remain
latent in macrophages, or infection develops (Shim et al., 2020).
Although the bacteria has infected about a quarter of the world’s
population, approximately 5–15 percent of those infected develop
active tuberculosis throughout their lives, with the rest having latent
tuberculosis and only developing active TB when their immune
system is compromised (Sterling et al., 2020).

1.2 Current tuberculosis treatment

In the mid-twentieth century, compounds generated from soil-
derived actinomycetes were the gold standard for antibiotic
development. The agar-based diffusion and cross-steak
techniques were used to screen compounds for antimicrobial
effects against bacteria. Streptomycin (SM), the first anti-TB
medicine, and other antibiotics were discovered as a result of
these methods (Lewis, 2013). The combination of streptomycin
(SM) and p-aminosalicylic (PAS) acid are the first drugs used to
reduce the risk of antibiotic resistance. Isoniazid (INH), a prodrug
activated by catalase-peroxidase (KatG) was discovered in 1912 but
its antitubercular efficacy was not recognized until 1951 when
Herbert Hyman Fox and Harry L. Yale conducted in-vivo
screenings in mice infected with M. tb. INH is a
thiosemicarbazone synthesis intermediate that has higher
antitubercular action in lab animals than isonicotinyl-aldehyde
thiosemicarbazone, the final product (Verma and Kalra, 2012).
The inclusion of INH to PAS and SM (“triple therapy”) led to a
decrease in drug resistance tuberculosis cases even more and
improved the treatment outcomes, although the treatment
duration lasted for up to 24 months (Iseman, 2002).

Rifampicin (RIF) is the most widely used rifamycin derivative in
TB treatment because of its bactericidal effect (Xu et al., 2021). An
Italian research group led by Piero Sensi and Maria Teresa Timbal
(1925–1969) identified RIF from a soil sample. RIF is a breakthrough
in TB treatment since it reduces the treatment time from 18 to
9 months (Verma and Kalra, 2012). Pyrazinamide is a sterilizing
medication and the most potent pyrazine derivative of nicotinamide
for treating tuberculosis in mice. PZA was first synthesized by
Dalmer and Walter in 1936 and rediscovered in 1972 (Zhang

et al., 2014). Because of its capacity to lower TB relapse rates and
shorten medication therapy by 3 months, PZA was added to the SM,
INH, and RIF regimens. It is currently regarded as an essential
component of routine first-line short-course treatment for drug-
susceptible TB (Lamont et al., 2020). Ethambutol (EMB) was
developed in the early 1960s and quickly replaced SM (Lodha
and Bedi, 2020).

Current TB treatment includes a two-month intensive phase of
four medications (INH, RIF, EMB, and PZA) followed by a four-
month continuation phase of INH and RIF, this combination is to
date successful for drug-sensitive TB treatment (Chakraborty and
Rhee, 2015). The emergence of MDR drug-resistant strains of the
bacteria has rendered INH and RIF therapeutic agents ineffective
due to the acquisition of mutations in INH and RIF enzyme targets.

1.3 Drug resistance tuberculosis

Bacteria have developed several mechanisms to overcome
antibiotic treatments, these include physiological, acquired, and
intrinsic mechanisms, which have been reviewed extensively
(Khawbung et al., 2021). Intrinsic resistances are imparted
through cell-wall impermeability, drug efflux systems, drug target
modification, and drug neutralization by enzymes, while acquired
resistance is due to the acquisition of mutations (Khawbung et al.,
2021).

The conventional treatment for drug-sensitive tuberculosis is
the use of first-line drugs for the first 2 months, followed by INH and
RIF for the next 4 months. However, due to patient noncompliance
longer treatment regimens were needed, necessitating the use of
directly observed therapy (DOT), in which healthcare workers
supervise dose intake (Volmink and Garner, 2007; Nahid et al.,
2016). Gastrointestinal intolerance, neuropathy, arthralgia, skin
rash, haemolytic anaemia, kidney failure, neuropathies, immune
thrombocytopaenia, and agranulocytosis are all side effects of long-
term medication (Macalino et al., 2020).

TB disease relapse and drug resistance are attributed to the
failure to complete the standard TB treatment regimen and the
inappropriate use of antibiotics. Multi-drug resistance tuberculosis
(MDR-TB)—a form of TB caused by M. tb that has developed
resistance to the two first-line drugs, INH and RIF. MDR-TB can be
treated with second-line drugs, however, these treatments are often
longer (18 months or more) and more expensive with uncertain
efficacy and high toxicity, resulting in low compliance and
undesirable outcomes in patients (Mirzayev et al., 2021).
Furthermore, there is another form of drug resistance known as
extensively drug-resistant tuberculosis (XDR-TB), by which patients
do not respond to even the second line of treatment, leaving patients
with no alternative options for treatment. INH, PZA, EMB,
ciprofloxacin, ofloxacin, and kanamycin, are among the
medications to which the mycobacteria develop resistance
(Muthukrishnan, 2021).

Only 50% of MDR-TB cases respond to treatment, and the
global burden of MDR-TB surges at a rate of more than 20% each
year. Nearly half of the global burden of drug-resistant tuberculosis
(approximately 47 percent) is found in India, China, and Russia,
whereas South Africa as of 2018 has the highest number ofMDR and
XDR tuberculosis cases per capita (Ismail et al., 2018). Despite the
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global death rate declining by 3% per year, antimicrobial drug
resistance TB remains a public health problem. Drug-resistant
TB strains are on the rise, with 500,000 cases of MDR-TB in
2019 (Chakaya et al., 2021). Until the recent approval of
bedaquiline, there has been a decrease in the antimicrobial drug
discovery pipeline, particularly for mycobacteria, where no new
medication had reached clinical trials since the 1960s (Waman et al.,
2019). MDR and XDR-TB are major challenges and difficult to treat
with the currently available drugs. Despite a slower rate of TB
decline, the COVID-19 pandemic has delayed the WHO’s limited
progress toward attaining the “End TB Strategy”milestone of a 20%
reduction in TB by 2035 (World Health Organization, 2020;
Jeremiah et al., 2022).

With the rise of MDR-TB strains, it is more important than
ever to identify novel pharmacological targets and potential hits
that can be advanced to new leads. As a complement to wet-lab
approaches, subtractive genomics, and metabolic pathways
analysis, structural bioinformatics are currently being used to
further investigate and elucidate the suitability of molecular
targets to develop new therapeutics and combat antibiotic
resistance. Additionally, this review focuses on the M. tb
metabolic network as a drug target hub for novel target
identification and highlights a step-by-step subtractive
genomics approach for target prioritization.

2 Metabolic pathway regulation inM. tb

Metabolism is an intricate process that comprises a network of
pathways, reactions, and enzymes that are essential for the
biochemical and physiological well-functioning of the cell and
the overall homeostasis of the system. Metabolism plays a
significant role in M. tb development, infection establishment,
and persistence in the host. Mycobacteria and other infections’
susceptibility to antibiotic treatment has also been connected to
their metabolic states (Stokes et al., 2019). Several studies have
demonstrated the significance of mycobacteria metabolism during
infection and dormancy (Chang and Guan, 2021).M. tbmust adapt
to the harsh environment of changing acidity, osmolarity, and
nutrient-deficient microenvironment to establish an infection in
the host. M. tb has evolved metabolic adaptability, allowing it to
withstand the harsh environment within the host by transitioning
from replicative to non-replicative states.

As a heterotroph, M. tb makes use of a carbon source that is
either produced by the bacterium or obtained from the host cells
(Pandey and Sassetti, 2008; De Carvalho et al., 2010; Beste et al.,
2013). Because its metabolic activity is minimal, the dormancy
state, also known as the non-replicative state in bacteria, suffers
from unfavourable growth conditions such as limited nutrients
or low oxygen. The bacterium can avoid the effects of anti-TB
drugs that target actively replicating bacteria in this stage
(Lipworth et al., 2016; Caño-Muñiz et al., 2018). Once the
bacterium returns to its favourable conditions, the M. tb’s
metabolic rate returns to normal, and bacilli growth is
revived, which might lead to an active infection. Persistent
bacteria are bacilli that continually operate at low metabolic
levels, even when conditions are unfavourable that is, during
nutrient starvation and hypoxia. Antibiotics have little effect on

these persisters (Lewis, 2010). With the crucial role metabolism
play in M. tb survival, the pathogen’s metabolic route serves as a
promising target hub for drug development. Below are some of
the M. tb metabolic pathways that have been targeted by
antibiotics.

2.1 Oxidative phosphorylation and ATP
production

All bacteria use ATP as their primary source of energy (Mackieh
et al., 2023). ATP production differs significantly amongst bacteria.
M. tb’s development is entirely dependent on oxidative
phosphorylation for growth (Cook et al., 2017). M. tb continues
to produce ATP during dormancy, even at low metabolic rates, to
maintain its survival. As a result, the oxidative phosphorylation
pathway represents a prospective therapeutic target for both
replicating and non-replicating M. tb. Bedaquiline, a drug that
targets the electron transport chain’s F0F1 ATP synthase, is
effective against MDR-TB (Pym et al., 2016). Q203, an inhibitor
that targets the electron transport chain cytochrome bc1 complex,
has passed phase II clinical trials and is being developed further (De
Jager et al., 2020). The oxidative phosphorylation protein
cytochrome bc1 complex cytochrome b subunit, QcrB has also
been reported as an attractive therapeutic target in M. tb (Foo
et al., 2020).

2.2 Lipid metabolism

M. tb requires lipids (fatty acids and cholesterol) as a carbon
source during infection. INH, a commonly used first-line anti-TB
medication, targets M. tb lipid metabolism. INH inhibits the
synthesis of mycolic acid, a key component of mycobacterial cell
walls. Ethionamide (ETH), isoxyl (ISO), and thioacetazone
(TAC) are other drugs that exert anti-TB effects on M. tb
lipid metabolism. Apart from lipid production and energy
conversion, the transport of lipids inside M. tb is also an
attractive target. MmpL3 is an inner membrane transporter
that facilitates the transfer of mycolic acids to the periplasmic
area during mycobacterial cell wall synthesis (Chang and Guan,
2021). Studies have reported that Q109, a 1,2-diamine,
structurally similar to ethambutol, inhibits the activities of
MmpL3 (Borisov et al., 2018). Another lipid transporter that
is a therapeutic target of interest is the lipoarabinomannan
carrier protein LprG, which is responsible for the export of
triglycerides and lipoglycans to the mycomembrane. In vivo
studies have demonstrated the significance of LprG in M. tb
infection, highlighting its relevance as a therapeutic target for the
treatment of MDR-TB (Martinot et al., 2016). Fatty acids
adenylate enzymes (FadDs), fatty acid and metabolite
degradation, and isocitrate lyases are some of the other lipid
metabolism targets. Several investigations have indicated that
compounds including 3-bromopyruvate, phthalazines, 3-
nitropropionate, hydrazones, and 5-nitro-2,6-dioxohexahydro-
4-pyrimidinecarboxamides inhibit isocitrate lyases in the lab.
Although these compounds have not yet been evaluated clinically
(Chang and Guan, 2021).
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3 Subtractive genomics approaches in
drug target discovery

Subtractive genomics paves the way for novel and distinct drug
targets thanks to advances in computational biology and
bioinformatics techniques. The subtractive genomics approach
analyzes the genomes of the pathogen and its host, prioritizing
the pathogen’s unique and essential genome as a drug target (Uddin
and Saeed, 2014). This approach identifies genes that are not present
in the host, referred to as “non-host” genes, yet are necessary for the
pathogen’s growth, replication, and persistence. Furthermore, these
non-host genes are essential and play significant roles in the
pathogen’s metabolic pathways. As a result, when therapeutic
compounds reach the pathogen’s metabolic targets optimally, the
compound must alter the pathogen’s metabolic activity without
affecting the host biology. This could result in the disruption of
essential gene function/s of the pathogen thereby terminating its
pathogenicity. Several studies have applied this approach to identify
potential drug targets in Pseudomonas aeruginosa (Uddin and Jamil,
2018), Acinetobacter baumannii (Uddin et al., 2019), and others
(Ahmad et al., 2019; Nayak et al., 2019; Prabha et al., 2019). These
computational studies target only essential genes of the pathogen
and reduce experimental efforts, saving time and cost.

3.1 Metabolic pathway analyses in target
identification

Reconstructed metabolic modelling has proven to be a valuable
tool for understandingM. tbmetabolism by combining data from an
experimental model with omics technologies. High-throughput
omics data has aided in the simulation of bacterial metabolic
pathways, the formulation of hypotheses, and informing drug
development (López-Agudelo et al., 2020). BioCyc (Karp et al.,
2019) and KEGG (Kanehisa, 2017) databases contain draft
metabolic reconstructions for M. tb, which comprise metabolism,
biosynthesis, biodegradation, and information processing pathways.
This compendium can be used during the target identification phase
of the prioritization process to rank proteins that play crucial
metabolic roles or function as key intermediaries in several
pathways. For instance, Gupta et al. (2019) carried out a KEGG
metabolic analysis of host-pathogen pathways of Leptospira and
mapped sixteen pathways that are unique to the pathogen, eight of
these sixteen pathways were specific for the viability of 15 strains of
Leptospira and shared common drug targets.

Exploring theM. tbmetabolic pathway as an entity (holistically)
and not as an individual pathway to identify choke point reactions is
a crucial step to elucidating M. tb-specific targets responsible for
bacterium development, growth, survival, and infection.

3.2 Choke point reaction in target
identification

In the metabolic network, a choke point reaction is a
biochemical process in which a unique substrate is used up in a
reaction to produce a unique product which is further used up in
other reaction(s) and not a dead-end metabolite. Targeting choke

point enzymes may induce pathogen death by causing cell toxicity
due to the build-up of specific metabolites in a pathway thereby
disrupting essential cell function (Yeh et al., 2004). Identifying choke
point reactions using the conventional method may not be entirely
impossible but difficult and time-consuming. However, the
reconstructed metabolic pathway in databases such as KEGG and
BioCyc contains the updated metabolic pathways of pathogens.
Kaur and colleagues predicted phoB, ompR, rstA, cusR, and ddl
as putative drug targets in Acinetobacter baumannii using this
approach (Kaur et al., 2021). In Leptospira, in silico metabolic
choke point analysis identified thiL and cobA as promising
therapeutic targets (Gupta et al., 2019).

Targeting choke point reactions in the metabolic network could
be a game-changer in the fight against drug resistance M. tb. These
unique targets (enzymes) will not suffer the same (mutation) fate as
other drug targets as there is no alternative reaction or pathway to
these targets. This hypothesis is predicated on the assumption that
existing pharmacological targets are considerably less likely to
represent choke points in the metabolic network.

3.3 Target prioritization by gene essentiality

The availability of mycobacteria genome sequences and pathway
databases enables study in which metabolomics and bioinformatics
techniques can be coupled to identify essential genes, resulting in an
accelerated discovery of viable therapeutic targets. Experimental
approaches including gene knockouts, saturation transposon
mutagenesis, and RNA interference, scattered shortgun, genetic
imprinting are some of the methods used to identify essential
genes. The abundance of data from these experiments drives the
construction of many essential gene databases (Zheng et al., 2015).
In the case of M. tb, essential genes have been identified
experimentally using high density mutagenesis (Sassetti et al.,
2003) and saturation transposon mutagenesis (DeJesus et al.,
2017). The proteins encoded by essential genes may exhibit lethal
phenotypes in M. tb upon inactivation or deletion, making these
gene products excellent targets for drug development.

Targeting and inhibiting the essential genes or proteins of theM.
tb metabolic pathway will produce the desired bactericidal effect.
Flux balance analyses, comparative genomics, and machine learning
are computational tools that facilitate the identification of essential
genes in silico and are fast and less expensive than experimental
methods (Peng et al., 2017). Different online tools have been
developed, and they include the Database of Essential Genes
(DEG) (Zhang et al., 2004) and Online Gene Essentiality (OGEE)
(Chen et al., 2016), Mycobrowser (Kapopoulou et al., 2011) are all
platforms for identifying and prioritizing essential therapeutic
targets in many species, including M. tb. These online resources
include some of the experimentally determined important genes.
Cloete et al. (2016) used metabolic pathway mapping and the
Tuberculist webserver to prioritize 17 potential targets that were
essential for the survival ofM. tb out of the 39 potential drug targets
that were identified through literature mining and the TB Structural
Genome Consortium (TBSGC). To automate the process of M. tb
drug target identification, Hasan et al. (2006), created an online
server that prioritizes pathogen unique and growth essential genes to
generate a list of M. tb specific targets.
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Once the set of essential genes has been identified, viable drug
targets can be prioritized further by utilizing various methods such
as druggability analysis, protein-protein interactome, and sequence
structural analysis, as most essential targets are predicted to be
evolutionarily conserved.

3.4 Protein-protein interactions (PPI) for
target prioritization

Protein sequences are made up of amino acids, which are the
fundamental key component of life. Genes code for amino acids,
which form peptides, peptides then form various proteins, and
proteins produce biological systems. Furthermore, proteins play a
significant role in biological activities such as catalysis, transport
molecules, immunological responses to various pathogens, and cell-
to-cell signaling (Lu et al., 2020). Protein-protein interactions (PPI)
form networks that convert a variety of chemical inputs into
physiological responses that keep intracellular homeostasis in
balance (Cong et al., 2019).

In cells, PPIs form an intricate network known as an
“interactome.” The interactome plays a function in a variety of
physiological and pathological processes, including cell
differentiation, cell growth, signal transduction, cell proliferation,
and apoptosis (Lu et al., 2020). Several human diseases, including
cancer, infectious diseases, and neurodegenerative diseases, are
consequently associated with aberrant PPIs (Rosell and
Fernández-Recio, 2018).

Proteins involved in PPIs offer novel therapeutic targets because
the most frequent pharmacological targets are enzymes, ion
channels, and receptors. PPIs have attracted a lot of interest
recently and have become attractive therapeutic targets (Lu et al.,
2020). For instance, the NusB-NusE PPI, plays a crucial role in
facilitating the formation of stable antitermination complexes. These
complexes, in turn, enable consistent RNA transcription in all
bacteria (Cossar et al., 2020). The pharmacophore screening of
mini-Maybridge chemical library, which contained
56,000 compounds identified N,N′-[1,4-butanediylbis(oxy-4,1-
phenylene)]bis(N-ethyl) urea as a hit compound. Furthermore,
competitive enzyme-linked immunosorbent assay (ELISA)-based
screening validated the compound as a potent (20 μM) inhibitor
of the NusB-NusE PPI in Escherichia coli (Cossar et al., 2017).

In a PPI network, the protein represents the node while
interactions between two proteins and more represents the edges.
Proteins with high number of edges with other proteins are said to be
functionally active and are potential drug target because the
deactivation of such protein could lead to loss of connectivity in
the network topology which could cause cell function disruption
(Uddin and Jamil, 2018). PPIs within the interactome have been
identified using a variety of physiochemical experimental techniques
such as yeast two-hybrid (Y2H), DNA and protein microarray and
mass spectroscopy (MS) (Shoemaker and Panchenko, 2007).
However, these technologies are costly and time-consuming. In
the post-genomic era, computational techniques is preferred for
PPI determination as it is cost-effective and faster (Wang et al.,
2020).

A range of methodologies, such as sequence-based approaches,
structure-based approaches, chromosome proximity, gene fusion,

and gene expression-based approaches, have been used to develop in
silico methods for predicting PPI (Dong et al., 2019). The Database
of Interacting Proteins (DIP) (Xenarios et al., 2000), the Biological
General Repository for Interaction Datasets (BioGRID) (Stark et al.,
2006), and STRINGv11 are all available databases for PPI. Uddin
and Jamil (2018) prioritized drug targets in Pseudomonas aeruginosa
using protein-protein interaction network. With the aid of the
STRING database v10.5, the study identified 8 out of 18 protein
as putative drug targets as they are classified as hub proteins with
high number of interactions coupled with their involvement in
metabolic pathways.

Over the last decade, the continuous research efforts in PPI drug
development have produced five small-molecule PPI modulators
approved by the U.S. Food and Drug Administration (FDA) for
clinical use in the treatment of cancer, dry eye syndrome,
autoimmune illnesses, and as immune suppressants with more in
various stages of clinical development (Cossar et al., 2020).
Comparatively, the use of PPIs as a target for the discovery of
antibacterial drugs is still in its infancy.

3.5 Druggability analysis for target
prioritization

Target validation has thus become an important part of drug
development in recent years. It is well known that traditional target
validation methods investigate the connection between
modifications in protein biological functioning and
pharmacological outcomes. Owing to the lack of identifiable
ligand-binding pockets and non-catalytic PPI functionalities,
therapeutically relevant pharmaceutical targets that are difficult to
drug or have not yet been drugged using conventional procedures
are referred to as “undruggable” targets (Zhang et al., 2022). The
conventional drug discovery process is time-consuming and
expensive, with a staggering failure rate of about 96 percent in
different drug development endeavours because of the
“undruggability” of many identified protein targets, among other
issues (Hingorani et al., 2019). Druggability is the ability of a protein
to bind a drug-like molecule, which then modifies its activity in a
“desired” manner. Differential scanning fluorimetry and X-ray
diffraction data are methods used in experimental druggability
studies to discover binding sites on protein crystals. Although the
experimental method is a dependable and validated approach,
crystalline protein is needed (Handing et al., 2018; Michel et al.,
2019). The use of computational techniques serves as an alternative
to the experimental method to determine whether any protein with a
known three-dimensional structure is druggable and whether or not
small drug-like compounds have the inherent ability to bind to and
change the functions of proteins (Agoni et al., 2020).

A protein that can bind to drugs (druggable protein) should have
a clearly defined pocket with the necessary physicochemical
characteristics. Several computational techniques have been
developed to evaluate a target’s druggability based on the
availability of the 3D structure of a protein. The structural
properties of proteins, such as surface polarity, surface
hydrophobicity, and pocket size, are considered by several of
these methods within the pocket prediction algorithms of
webservers like, DOGSiteScorer (Volkamer et al., 2012),
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Metapocket (Huang, 2009), and PockDrug Server (Hussein et al.,
2015). Several software programs and online platforms have been
created to assist in the accurate identification of binding pockets,
including SiteMap (Halgren, 2009), Sitehound (Hernandez et al.,
2009), and Open Targets (Koscielny et al., 2017).

These online resources offer vital information on binding
pockets that can determine if a biological target is druggable. To
investigate the druggable pockets of interleukin-4R with a
shallow pocket and no known inhibitor, Naz et al. (2019) used
the DOGSite software where seven druggable sites were identified
by the software. The site with the highest score (0.81) represents
the location with the highest tendency to bind small molecules.
Furthermore, in the analysis of active sites of 82 protein tyrosine
phosphatases (PTP) structures using SiteMap, it was found that
18 PTP structures in the open conformation had a higher
druggability score (0.79) than the 64 PTP structures in the
closed conformation (D-score = 0.69). This finding suggests
that while the closed conformation can interact with small
organic molecules, it is less able to do so with drug-like
molecules than the open conformation (Ghattas et al., 2016).
More importantly, some of these compendia (software and online
resources) can predict cryptic and allosteric sites on protein
structure while some are unable to because most active sites
are predicted by sequence homology which makes allosteric sites
difficult to detect because evolutionary pressure for sequence
conservation is lower and if at all present in allosteric sites that is,
allosteric sites are less evolutionary conserved across protein
families than active sites (Chatzigoulas and Cournia, 2021).

3.6 Non-ortholog protein identification

The identification of non-orthologous genes is crucial because it
minimizes drug cross-reactivity by preventing the drug from
interacting with the human host’s homologous protein.
Orthology is defined as variables and the relationship in the
makeup of genomes from distinct species. Orthologues can be
traced back to an ancestral gene found in the common ancestor
of the species under consideration (Wolf and Koonin, 2012). Gene
orthology is fundamental to evolutionary, comparative, and
subtractive genomics (Li et al., 2003). Biologists frequently rely
on orthology to transfer functional knowledge from
experimentally described genes in model species to unknown
genes in newly sequenced genomes (Doyle et al., 2010). The
validity of such transfer of functional annotation is premised on
the idea that orthologues perform equivalent tasks in other
organisms, or more specifically, equivalent functions that are
biologically related (Doyle et al., 2010). Anti-bacterial drugs need
to selectively inhibit or kill the pathogen while remaining non-toxic
to the host (Shanmugham and Pan, 2013). Consequently, focusing
on the bacterium genes lacking host orthologues will aid in drug
target prioritization.

The BLAST is an online resource that helps in identifying
orthologue genes between the host and pathogen. This resource
relies on the expectation value of alignment, sequence
similarity, and query coverage to infer orthology (Hussain
et al., 2020). Uddin et al. (2020), performed a BLASTp search
against the non-redundant database of H. sapien with an

anticipated threshold of 0.005 to prioritize therapeutic targets
in Mycobacterium avium subsp. Hominissuis, where proteins
with keywords “no hits found” were maintained for further
analysis, and proteins that are orthologues in the host proteome
were discarded. Likewise, in a study by Cloete et al. (2016), nine
putative drug targets were prioritized out of 17 in M. tb that are
non-orthologues to human proteins using the NCBI Blastp
algorithm with an expectation-value of 0.0005.

4 Conclusion

Tuberculosis continues to be a public health concern.
Antibiotic overuse, chromosomal gene mutation together with
patient noncompliance resulted in the development of
resistance. MDR-TB is on the rise due to mutation
acquisition in known M. tb drug targets and is becoming
challenging to treat with available medications. As a result,
novel targets and newer medications are required. Several
studies have demonstrated the importance of metabolism in
M. tb development, growth, survival, and infection. Therefore,
targeting the M. tb metabolic network is an effective way to
uncover new anti-TB medication targets using a subtractive
genomic analysis approach. The subtractive genomic
approach may be effective in the development of novel anti-
TB drugs since it can be used to discover viable, M. tb-specific
therapeutic targets that will not suffer the same fate as other
targets. In addition, the approach highlighted in this review can
be utilized to identify therapeutic targets in other pathogens.
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