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Computer-Aided Drug Design (CADD) approaches, such as those employing
quantitative structure-activity relationship (QSAR) methods, are known for their
ability to uncover novel data from large databases. These approaches can help
alleviate the lack of biological and chemical data, but some predictions do not
generate sufficient positive information to be useful for biological screenings.
QSAR models are often employed to explain biological data of chemicals and to
design new chemicals based on their predictions. In this review, we discuss the
importance of data set size with a focus on false hits for QSAR approaches. We
assess the challenges and reliability of an initial in silico strategy for the virtual
screening of bioactive molecules. Lastly, we present a case study reporting a
combination approach of hologram-based quantitative structure-activity
relationship (HQSAR) models and random forest-based QSAR (RF-QSAR),
based on the 3D structures of 25 synthetic SARS-CoV-2 Mpro inhibitors, to
virtually screen new compounds for potential inhibitors of enzyme activity. In
this study, optimal models were selected and employed to predict Mpro inhibitors
from the database Brazilian Compound Library (BraCoLi). Twenty-four
compounds were then assessed against SARS-CoV-2 Mpro at 10 µM. At the
time of this study (March 2021), the availability of varied and different Mpro

inhibitors that were reported definitely affected the reliability of our work.
Since no hits were obtained, the data set size, parameters employed, external
validations, as well as the applicability domain (AD) could be considered regarding
false hits data contribution, aiming to enhance the design and discovery of new
bioactive molecules.
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1 Introduction

Computational approaches, such as machine learning (ML)
techniques (Rodríguez-Pérez and Bajorath, 2021), have helped
strategies into the drug design and discovery scenario (Lima
et al., 2016), such as obtaining new compounds with antibacterial
(Serafim et al., 2020), antiparasitic (Veríssimo et al., 2019), and
antiviral (Serafim et al., 2021a) activity. Quantitative
structure–activity relationship (QSAR) methods have the
potential to predict physicochemical properties as quantitative
structure-property relationship (QSPR) (Lu et al., 2019) and
various biological activities (i.e., different end-points), such as
protein/enzyme inhibitors, toxicity, and mutagenicity (Gramatica,
2020). In addition, to ensure higher predictive ability and reliability
of different models, rigorous (external) validations, and applicability
domain (AD) calculations (i.e., the chemical space defined by
molecules in a training set) are required (Mathea et al., 2016).
Developed in the early 1960s (Hansch and Fujita, 1964), QSAR is a
computational tool that uses data collected from one or various
databases and literature (Neves et al., 2018) to establish a statistically
significant correlation between a given chemical structure and a
particular biological activity, property, or category (e.g., active, or
inactive) (Cherkasov et al., 2014).

QSAR models have been applied in combination with different
methods that either enhance their predictive accuracy or
complement the predicted data. These methods include: i)
molecular docking analysis, as demonstrated for the design of
tyrosinase inhibitors (Dong et al., 2018); ii) ML techniques, such
as random forest (RF), as demonstrated for the prediction of
synergism between anti-cancer drugs (Sidorov et al., 2019); iii)
molecular dynamics (MD) simulations (Rafi et al., 2022) as
described for the discovery of SARS-CoV-2 drug candidates; iv)
virtual screening (VS.) campaigns for repurposing drugs against
COVID-19 (Alves et al., 2021); and even v) principal component
analysis (PCA), for prediction of pollutants and hazardous
chemicals (Gramatica et al., 2018). Furthermore, QSAR has also
been developed in combination with other ML and artificial
intelligence (AI) methods (Mao et al., 2021), such as neural
networks (NN) with diverse architectures (Chakravarti and Alla,
2019), expanding its applicability to multiple targets, various
biological activities, or different property predictions.

Multi-target QSAR models can simultaneously predict
compounds’ activity or affinity for multiple targets (e.g., protein),
and can be performed using independent target based QSARmodels
to an integrated approach, such as multitask or multi-target deep
neural networks (DNN). Nevertheless, the performance of multitask
approaches can be affected by the availability of biological data for
multiple targets, suggesting an influence of ML synergies when
compared to single target approaches (Rodríguez-Pérez and
Bajorath, 2021). In addition, multi-target models may show lower
overall performances than single approaches when assessing larger
data sets (e.g., 143,310 compounds (Rodríguez-Pérez and Bajorath,
2018)).

One could argue that differences in data sets, such as small data
sets (e.g., <1,000 compounds), could be regarded as a limitation to
predictive accuracy and performance of computational approaches,
as drug discovery is usually favored by large databases (e.g., >10,000)
or availability of diverse biological data from experimental

determination (Veríssimo et al., 2022). For instance, one-shot
learning approaches and techniques could solve these different
issues when facing data scarcity, considering approaches to
support generating or obtaining enough data to improve existing
biological and/or computational methods. Herein, other methods
could be employed, such as MD simulations, scoring function space
(SFS), and quantummechanics (QM) (Veríssimo et al., 2022), which
do not require learning from external data. However, this is not the
reality of QSAR or ML predictors, which require a high amount of
data to improve their predictive ability and accuracy.

In this sense, the rate of drug discovery derived from research
with scarce available data could be enhanced by a combination of
QSAR models with additional methods, such as MD simulations
(Rafi et al., 2022). For instance, before in vitro or in vivo experiments
are performed (Tolah et al., 2021), computational methods can
quickly provide enough data in a cost-effective manner (Sadybekov
and Katritch, 2023). To verify accuracy, it is important to then
perform experimental validation of the computational hits (Azevedo
et al., 2022), such as those obtained from QSAR-based methods
(Neves et al., 2018; Tolah et al., 2021), including QSAR-based VS.
(Kar and Roy, 2013), a consensus approach used to identify few
compounds against a given target (e.g., dopamine receptors)
(Cherkasov et al., 2014). This is especially important as we can
expect about 12% of predicted compounds from different VS.
approaches, against different protein targets, presenting a
biological activity (Irwin and Shoichet, 2016), which would
contrast to almost 90% of results as false hits.

QSAR models have been used in a consensus VS. strategy to
obtain inhibitors against various targets from small, curated data
sets. For instance, 2D- and 3D-QSAR models were combined to
perform a VS. aiming to select 2′-deoxyuridine 5′-triphosphate
nucleotide hydrolase (dUTPase) inhibitors that specifically target
the enzyme in chloroquine-sensitive and resistant strains of
Plasmodium falciparum, the causative agent of malaria. Here,
127 compounds extracted from the literature were screened to
identify hits (Lima et al., 2018). A hologram-based quantitative
structure-activity relationship (HQSAR) was used to predict the
chemical contributions of compounds, and 3D-QSARmethods were
used to assess regions in molecules with favorable and unfavorable
interactions. These predictions identified a positive contribution of a
trityl ring against P. falciparum dUTPase, as well as regions where
the trityl groups are favorable for both inhibition and selectivity.
These studies corroborated previous data (Ojha and Roy, 2013).
Three of the five hits showed inhibitory activity against different P.
falciparum strains, with IC50 values ranging from 6.1 ± 1.95 to 17.1 ±
16.2 µM and with selectivity indexes (SI) over COS7 (monkey
kidney fibroblast-like) cells ranging from 2.7 to 11.7 (Lima et al.,
2018).

Asse Junior et al. (2020) also employed a fragment-based
HQSAR method (Kronenberger et al., 2017) after a VS. of six
different chemical libraries (AfroDbNatural Products, BraCoLi,
Clean drug-like database from ZINC, FDA approved drugs from
ZINC, NuBBE, and Traditional ChineseMedicine database) to select
potential inhibitors against enoyl-ACP reductase (FabI) (Asse Junior
et al., 2020). Authors included 166 known Staphylococcus aureus
FabI compounds classified as active, (IC50 < 1 μM) and inactive
(IC50 > 1 μM). Compounds were used to generate models, along
with fifty additional decoys generated using the Database of Useful
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Decoys (Mysinger et al., 2012), as a validation approach. The
inhibitory activity against S. aureus FabI was predicted with
HQSAR and compounds with desirable prediction values were
selected for experimental testing. Among the 14 hits selected
from the VS., four showed activity as minimal inhibitory
concentration (MIC) against S. aureus clinical isolates ranging
from 15.62 to 250 μM, with selectivity indexes (SI) ranging from
0.02 to 641.03 (Asse Junior et al., 2020) over Vero cells.

In another example, HQSAR and random forest-based QSAR
(RF-QSAR) models were used to predict the biological activity of
nitroimidazole derivatives against Trichomonas vaginalis, the
causative agent of trichomoniasis. The model predicted
compounds with 5-nitroimidazole with better inhibitory activity
than those with 4-nitroimidazole. Additionally, a consensus of both
QSAR methods’ predictions resulted in 16 selected compounds,
three of which were newly planned nitroimidazole derivatives with
confirmed activity against T. vaginalis strains. This is an example of
a successful approach gathering information from molecular
fragments to explain the importance of different chemical
structures and their corresponding anti-infective activity
(Veríssimo et al., 2019).

Still, despite successful approaches, false hit predictions are
expected from any given predictive model, usually resulting from
different methods assessed individually or combined, including
classification ML (i.e., probability of a prediction classified as
positive or negative using a cutoff) (Handler et al., 2022), QSAR
(i.e., calculation of each parameter’s and descriptor’s influence in a
model) (Gramatica, 2020), and also VS. (e.g., consensus approach)
(Adeshina et al., 2020), which will be further discussed in the case
study presented in this work. Notwithstanding, true- and false-
positive, as well as negative predictions, can be used to statistically
evaluate the robustness of a specific predictor (Tharwat, 2020;
Handler et al., 2022). In this sense, one could argue the
importance of considering false hits as input for a given
predictive model, thus training from true negatives and
potentially removing false negatives (Tharwat, 2020), and also of
considering the potential induced bias of negative sampling
(Sidorczuk et al., 2022). Moreover, there may also be a limited
number of activity data available, and an imbalance between the
activity classes assessed in QSAR models (Bosc et al., 2019), usually
with a small number of active compounds and a large number of
inactive compounds (Zakharov et al., 2014), and improving balance
should be considered.

For instance, Sidorczuk et al. (2022) generated 660 predictive
models with 12 ML architectures (one positive and 11 “negative data
sets”), to assess the impact of false hits for antimicrobial peptide
predictions. Authors observed that similar training data sets (e.g.,
peptide sequences from 5 to 100 amino acid residues), generated by
the same or by a similar data sampling method (e.g., removing
sequences with identity >40%, 70%, or 90%), influenced the
predictive model’s performance, thus biasing the analysis. Thus,
not only can a model be biased, but it is not possible to know which
model would be the most accurate (Sidorczuk et al., 2022).
Moreover, Cortes-Ciriano et al. (2015) discussed the effect of
random experimental errors (i.e., noise) in the predictive ability
of QSARmodels, as it is related to the choice and performance of the
test set, especially when using algorithms that simulate the
bioactivity values of a set. Authors evaluated 12 learning

algorithms on 12 data sets, and regardless of the algorithm used,
there was a margin of noise involved, highlighting the need to also
apply the use of replicates in the generation of QSARmodels and use
other techniques to jointly decide between the molecules that will be
subsequently tested in vitro (Cortes-Ciriano et al., 2015).

To avoid such issues or potentially biased analysis, including
obtaining false hits, some practices (Figure 1) for QSAR models’
development, validation, and exploitation can be employed
(Tropsha, 2010), aiming to properly curate a given data set,
assess a model’s predictive ability, and rank, select or virtually
screen compounds in a consensus VS. approach towards
experimental validation. Those will be discussed in the topics as
follows.

1.1 Principles and practices for reliable
predictive QSAR models: Preventing
negative outcomes

After approximately 60 years since the report of the first QSAR
study (Hansch and Fujita, 1964), arguably one of the major
computational and molecular modeling methods available, are
characterized by well-defined protocols and procedures aiming to
explore and potentially drive any given biological activity prediction
from a chemical structure or chemical compound (Tropsha, 2010).
To explore and exploit a relationship between a chemical structure
and a biological activity, a modeling workflowmust be considered to
first validate a model and ultimately consider computational hits to
experimental validation, such as lead compound optimization
(Muchmore et al., 2010). For instance, some points should be
addressed to ensure quality and performance of a model, aiming
to avoid negative outcomes from predictions, such as i) curating
chemical structures and their biological activities; ii) randomly or
rationally separating one or multiple training and test sets (e.g., 80:
20% ratio); iii) establishing and calculating correlation and
validation metrics (e.g., q2 and r2 > 0.6); iv) calculation and use
of an AD; v) VS. (e.g., consensus approach); or selection of hits; and
vi) experimental validation (Tropsha, 2010; Gramatica, 2020).

Some principles for validation and regulatory purposes of (Q)
SAR models were agreed by the Organisation for Economic Co-
operation and Development (OECD) in 2004 (OECD, 2004), as
recommendations to be applied in the field (Gramatica, 2007), and
discussed even for future works with different QSAR models (Lowe
et al., 2023). These principles are associated with the following
information: a defined endpoint, an unambiguous algorithm, a
defined AD, measurements of robustness and predictive ability,
and, when possible, a mechanistic interpretation. First, when
properly defined, a predicted endpoint would ensure clarity for a
given QSAR model, so it can be determined by different
experimental validation protocols or conditions. Secondly, it
would be essential to ensure the transparency of the model
algorithm, allowing for reproducibility. In addition, as QSAR
models are directly dependent on assessed chemical structures
and their mechanisms of action to generate predictions, defining
an AD would also be required. Then, measurements of robustness
(internal) and predictive ability (external) should be properly
conducted with appropriate methods to determine models’
validations. Lastly, when possible, ensuring the possibility of a
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mechanistic association between descriptors and the endpoint being
predicted would be of interest, thus determining a directed causality
between a given structure and its given activity (OECD, 2004).

As the predictive ability of QSAR models is influenced by the
size of the data sets, chemical diversity, availability of biological
activity, nature of the biological experiment, as well as influences
from the workflow conditions (e.g., variables’ selection, external
validation, and the use of AD), one could suggest the employment of
combined approaches, such as the use of ML (Golbraikh et al., 2014).
However, not all approaches can be built with significant predictive
abilities even with the combination of different algorithms and
rigorous workflow designs (Thomas et al., 2012), thus potentially
resulting in false hits. In this sense, data set curation and
modelability are decisive starting points for any given QSAR,
making it a priority to estimate the feasibility of obtaining
reliable predictive QSAR models for a given data set of bioactive
molecules (Golbraikh et al., 2014). Further, conformers with
experimental properties (i.e., bioactive conformation) could be of
interest, but would require a data set with both the conformer and
the experimental data available (Axelrod and Gómez-Bombarelli,
2022). As the bioactive conformation in data sets is usually
unknown, “stable minima” conformers or 2D structures could be

employed to approximate or coincide with the bioactive
conformation (Guimarães et al., 2016).

To this end, some tools could be applied, such as the
MODelability Index (MODI) proposed by Golbraikh et al.
(2014), which allows the prediction of a bioactive molecule being
in the same or in a different activity class of its nearest neighbor
(i.e., Euclidean distance), improving data curation (Golbraikh et al.,
2014). This approach could predict the so-called activity cliffs, where
compounds with similar structure have very different activities
(Maggiora, 2006), which could result in many issues in
computational analysis (Stumpfe et al., 2014). Luque Ruiz and
Gómez-Nieto. (2018a) also proposed a reformulated calculation
of MODI based on the distance between the first nearest
neighbors in a data set (Luque Ruiz and Gómez-Nieto, 2018b),
which contributes to measure the ability of molecules to be properly
classifiable by rivality index values (Luque Ruiz and Gómez-Nieto,
2019), that is, correctly predicting a biological activity by a statistic
algorithm. Additionally, the formulation of a regression
modelability index (Luque Ruiz and Gómez-Nieto, 2018a),
specifically designed for QSAR regression models, would also
help regression algorithms correctly predict each molecule’s
applicability in a data set.

FIGURE 1
Practices for QSAR models’ development, validation, and exploitation. Aiming for drug design and discovery of compounds, QSAR models can be
employed with recommendations (e.g., external validations and AD calculation), combined with other computational methods (e.g., MD simulations and
VS.), and improved with additional strategies (e.g., neural networks and multitasking).
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Defining the applicability of a data set is also important to ensure
the quality of different data sources into different experimental
protocols. Therefore, evaluating any experimental errors observed in
modeling sets that may lead to lower predictive ability of given
QSAR models is also important to minimize erroneous selection of
new compounds of interest (Zhao et al., 2017). Moreover, the
usefulness of a chemical library can be questionable due to the
potential lack of necessary quality control (Williams and Ekins,
2011), such as incorrect representation of chemical structures and
inaccurate information regarding its biological activities, which
would ultimately reduce a model’s accuracy. Lastly, in addition to
the importance of selecting a good data set and subsequently
performing its data curation, one should also consider its
training and test sets’ ratio and size for the QSAR model
(Andrada et al., 2017).

Roy et al. (2008) discussed this matter when assessing three
different data sets containing compounds that inhibit the human
immunodeficiency virus (HIV) multiplication (62 thiocarbamates,
107 HEPT derivatives, and 122 diverse nonionic organic functional
compounds), to evaluate the importance and/or dependency of sets’
sizes and differences to QSAR models. Data sets were divided into
different combinations of training sets (85%, 75%, 60%, 50%, or 40%
to the first data set, and 75%, 60%, 50%, 40%, or 25% to the second
and third) in several iterations (i.e., repetitions). The first data set
showed a decrease in prediction r2 (external) values, including
negative predictive values, as the number of available compounds
in the training set decreased. The second set, more than 70% larger
than the first, also showed a decreasing predictive ability, but less
pronounced. Lastly, the third set showed good predictive r2 values,
close to or higher than 0.9 in most of the cases, regardless of the
training sets’ size. These would suggest not only the impact of
smaller-larger data sets and training-test ratios, but also infer that
diverse chemical structures could help with predictive ability (Roy
et al., 2008).

To this end Andrada et al. (2017) further discussed the rational
selection of training and test sets in a more molecular homogeneous
data set. Here, authors assessed three different data sets of influenza
virus (H1N1) neuraminidase inhibitors (n = 40, n = 26 and n = 29),
with chemical structural similarities within each set. Training and
test sets were divided based on k-means (i.e., Euclidean distance), the
Kennard-Stone algorithm, and based on activity (4:1 selection ratio),
which could leverage more reliable results instead of the mean of
three random selections. A total of 31,490 linear regression models
(r2) were used for analysis, suggesting a slight influence on the
quality of the models depending on the selection method used.
Interestingly, models with higher predictive ability were developed
using the k-means algorithm, while the use of the mean of three
random selections led to erroneous outcomes, especially when
assessing a data set with more similar chemical structures
(Andrada et al., 2017).

Apart from diversified or homogeneous chemical structures,
Rácz, Bajusz and Héberger (2021) also corroborated findings
showing differences among applied machine learning algorithms
to select training and test sets, as well as between data sets’ sizes and
training and test ratios (Rácz et al., 2021). Measures combining
different numbers of compounds and ratios were assessed in five
iterations each, with 100, 500, or 1,000 compounds randomly
selected five times, or simply the total number of molecules being

kept. Next, training sets of 80%, 70%, 60%, or 50%were also repeated
five times for each ratio. Results suggested that training and test
ratios exert a significant effect on classification performance (r2),
corroborating previous data shown in the literature (Roy et al., 2008;
Andrada et al., 2017), and that outcomes are also influenced by
specific chemical structures within the data sets, once again
suggesting the importance of selecting chemically different
structures containing data sets.

Furthermore, one should consider that the validations
performed for each model, including size, diversity, and training-
test ratio, may also influence QSAR predictive abilities. For example,
r2 value is a simple parameter to evaluate the correlation between
predictions and experimentation (Shayanfar and Shayanfar, 2022).
However, a high r2 value in QSAR does not necessarily have an
acceptable validity (Kaneko, 2019), and can ultimately overpredict
or underpredict results’ values. For instance, Shayanfar and
Shayanfar (2022) discussed that r2 alone could not validate a
QSAR model, after calculating various statistical parameters for
external validation of 44 different QSAR models (Shayanfar and
Shayanfar, 2022), showing that different criteria and metrics for
external validation should be used, and that some have specific
advantages and disadvantages to be considered (Shayanfar and
Ershadi, 2019).

In addition to an external r2 and other validation metrics
(Gramatica and Sangion, 2016), validations such as
Y-randomization (Rücker et al., 2007), different cross-validation
approaches (Konovalov et al., 2008), such as leave-many-out (LMO)
(Kiralj and Ferreira, 2009), can be employed to select the optimal
QSAR models, supporting their robustness. For instance,
Y-randomization calculates the predictability of QSAR models
generated with scrambled biological activities (which are expected
to be highly non-predictive) in comparison to a given QSAR model,
that is, not randomly generated (Rücker et al., 2007). Cross-
validation coefficients, on the other hand, assesses the impact of
excluding of compounds from the test set, and the effect of a single
sample (i.e., one compound) removal compared to the original
model assessed, for example, not being sensitive to variations in
the training set (Konovalov et al., 2008). LMO, for example,
statistically correlates a compound removal randomness in a
training set by different-sized groups (e.g., multiples of two, five,
or ten) being validated in replicates (e.g., triplicate) with standard
deviation (Kiralj and Ferreira, 2009). Additionally, classification
models should be evaluated according to the predictive ability by
calculating metrics such as true negative and true positive rates,
specificity and sensitivity, accuracy, Matthews’ correlation
coefficient, and others (Matveieva and Polishchuk, 2021; Pradeep
et al., 2021).

Moreover, in the absence of a true external data set, showing the
importance of performing a statistical external validation, and
especially because a data set division in training and test sets
usually relies on a random division (Martin et al., 2012).
However, one could argue what the influence of a random
division could be in comparison to a rational division regarding
an external validation. Martin et al. (2012) assessed random and
rational division of a training set in an 80:20% ratio, and despite
higher statistical external values obtained for rational division, no
significant differences in predictive ability from QSAR models were
observed (Martin et al., 2012). In addition, even if rationally selected
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training and test sets may establish a reliable QSAR model, external
validation is required to assess the correlation between training set
validation values (e.g., q2) and the overall external accuracy of
prediction for the test set (r2), being a general property of any
QSAR model developed (Golbraikh et al., 2003).

Additionally, internal and external validations that are often
used in the absence of a true external data set may not comprise
all features related to a particular SAR analysis due to omission of
some compounds in each set, especially for small data sets. In this
sense, Masand et al. (2015) discussed that rational splitting could
favor small sets, as the predictive ability of a given QSAR model is
influenced by the method of splitting (i.e., random or rational)
and the distribution of training and test sets. Authors observed
that external validation based on a single split is insufficient to
guarantee the true predictive ability of a QSAR model (Masand
et al., 2015), which would potentially result in predictive failure
or false hits.

Finally, errors in predictions may also be dependent on the
lack of an AD, as well as being negatively influenced by using a
normal correlation coefficient to describe a given QSAR model
predictive ability (Roy et al., 2017). Even with recent
technological advances in QSAR modeling, such as the
combination of improved algorithms and validation practices
to different areas, such as biomaterials, clinicals, nanotechnology,
and synthesis planning (Muratov et al., 2020). In this sense, even
if all steps or conditions in a workflow are followed thoroughly,
and different parameters, metrics, validations, and approaches
are used, lower predictive ability (Thomas et al., 2012) and false
hits could still be expected. Additionally, the inactive data may
not be available, which would also directly impact the accuracy of
QSAR models (López-López et al., 2022). Here, an inactivity data
gap in the literature could limit the employment of additional in
silico approaches, such as consensus VS. approaches (e.g., SARS-
CoV-2 Mpro (Alves et al., 2021)), resulting in potential false hits
that could be removed according to previous inactive reports or
predictions of active and inactive compounds in cellular or
target-based studies (Rodríguez-Pérez et al., 2018).

Nevertheless, knowledge and data obtained from these robust
data-driven models are important and can become essential for
scientists in future research (Muratov et al., 2020), including those
from false hits predictions. For instance, publishing negative
findings or results from experimental determination can help
others avoid investing in specific approaches, but also encourage
looking for alternatives (Taragin, 2019). Negative outcomes are
important for the broader field where they could be relevant, not
only to interpret selective information (i.e., positive results) that
might have been obtained in related studies, but also to improve
further analysis and potential modifications (Weintraub, 2016).
Notwithstanding, single tested values or weak inhibitors (e.g.,
IC50 > 100 µM (Zhang et al., 2021)) should also be considered,
leading further optimization studies (Deshmukh et al., 2021).
Thus, considering a timely disclosure of these results (Nimpf
and Keays, 2020) is also important to understand the strength
of a given initial hypothesis (negative, neutral, or null results),
which may not have yet produced desired outcomes, but should
and must be turn public to the scientific community (Bespalov
et al., 2019), either as publications in journals or available in public
databases.

Taken together, we bring the discussion of sharing false hits
towards QSAR approaches, considering the importance of
supporting biological conclusions of any positive, negative,
conflicting, or inconclusive QSAR predictions (Honma et al.,
2019), such as those of inactive compounds. Thus, the design
and applicability of a QSAR model for classification, biological
activity prediction and/or selection of compounds for
experimental validation, could include unexpected results and
still be relevant to the scientific community. Herein, considering
similar potential cases, we briefly present a case of false hits resulting
from a combined QSAR approach to select potential SARS-CoV-
2 main protease (Mpro) inhibitors, discussing employed parameters,
potential flaws, and future improvements, aiming to maximize
sensitivity for identifying potential bioactive molecules in future
studies.

1.2 Case study: HQSAR for VS. of potential
SARS-CoV-2 Mpro inhibitors

As of July 5, 2023, over 767.726 million cases of the severe acute
respiratory syndrome-related coronavirus 2 (SARS-CoV-2)
infections were reported worldwide, with over 6.948 million
deaths reported for the coronavirus disease 2019 (COVID-19)
(WHO, 2023). Vaccines’ emergency approval happened quickly,
such as the mRNA-based vaccine by Pfizer-BioNTech (Polack et al.,
2020) in less than a year. However, the existence of different SARS-
CoV-2 strains (Rubin, 2021), an unequal distribution and
acquisition of vaccines worldwide (Duan et al., 2021), as well as
individual hesitance to vaccination (Gorman et al., 2021; Ullah et al.,
2021), have hampered vaccination coverage globally, worsening the
disease dissemination (Olivera Mesa et al., 2022).

In this sense, drug design and development were essential to
tackle the COVID-19 pandemic scenario. Few therapeutic agents
reached approval, such as the combined oral therapy of nirmatrelvir,
a SARS-CoV-2 Mpro inhibitor, and ritonavir (Owen et al., 2021)
(commercially as Paxlovid™), which showed up to 89% of
hospitalization relative risk reduction in clinical trials (II to III)
(Hammond et al., 2022; Hung et al., 2022). Yet, selection of SARS-
CoV-2 resistant strains were reported in vitro (Zhou et al., 2022) and
in vivo (Abdelnabi et al., 2023), and the already known limitations
and risk of drug interactions of Paxlovid™ (Girardin et al., 2022)
(e.g., ritonavir inhibition of CYP450) (Stader et al., 2021; Lange et al.,
2022), have threatened the continuity of this therapeutic option,
similar to what was observed for HIV treatment throughout the last
decades (Tseng et al., 2015; Forsythe et al., 2019).

Considering this scenario, therapeutic drugs against SARS-CoV-
2 are greatly needed, and the employment of computer-aided drug
design (CADD) techniques, such as ligand-based drug design
(LBDD) (Lima et al., 2016), may enhance the discovery of
potential bioactive compounds, especially new antivirals (Serafim
et al., 2021b; 2021a). For instance, oseltamivir (Talele et al., 2010),
boceprevir (Njoroge et al., 2008), a hepatitis C virus (HCV) protease
inhibitor, as well as lopinavir and ritonavir (Wlodawer, 2002), both
protease inhibitors of HIV, were developed from initial
computational approaches. Additionally, facing future outbreaks,
epidemic, and pandemic scenarios (Morens and Fauci, 2020), new
broad-spectrum antivirals would be of interest to treat COVID-19
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TABLE 1 Consensus QSAR/VS. approaches employed against SARS-CoV-2.

Employed methods VS. library size Targets Hits TP References

QSAR 3,957 Mpro 42 3 Alves et al. (2021)

Docking

QSAR 50,437 Mpro 36,342 NT Kumar and Roy (2020)

Docking

QSAR 67 PLpro 56 NT Amin et al. (2021)

Monte Carlo QSAR

Docking

QSAR 1,615 Mpro 31 NT Rahman et al. (2021)

Docking

MD simulations

QSAR 60 Mpro 13 NT Ghosh et al. (2021b)

Monte Carlo QSAR

Docking

QSAR 10,246 Mpro 20* NT Tejera et al. (2020)

Docking

MD simulations

QSAR 11,183 Mpro 494 NT Gaudêncio and Pereira (2020)

Docking

Random Forest

QSAR 8,453 Mpro 20* NT Zaki et al. (2021)

Docking

MD simulations

QSAR 221,384 NF-κB 11 NT Kanan et al. (2021)

Docking

MD simulations

MM-GBSA

QM-based QSAR 703 RdRp 2 NT Ahmed et al. (2022)

Docking

MD simulations

QSAR >11,000 Mpro 14 NT de Souza et al. (2022)

Docking

MD simulations

QSAR 35,154 Spike 32 NT Mathew et al. (2021)

Docking

QSAR 6,733 Mpro 370 NT Oktay et al. (2021)

Docking

MD simulations

MM-GBSA

(Continued on following page)
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(Santos et al., 2020; Serafim et al., 2021a), when considering the
potential of mutated SARS-CoV-2 strains (Young et al., 2020), as
well as the emergence of new coronaviruses and their associated
diseases (Deng et al., 2014; Santos et al., 2020).

The main protease (Mpro) of SARS-CoV-2 is an essential enzyme
in the viral replication cycle, responsible for cleaving translated
polyproteins into individual nonstructural, structural (V’kovski
et al., 2021), and accessory (Redondo et al., 2021) proteins. This
enzyme is highly conserved among coronaviruses species
(Ramajayam et al., 2011; Zhang et al., 2020), thereby it can be
considered as a potential pancoronavirus target (Dong et al., 2020;
Serafim et al., 2021b). This target has been considered for the design
and development of inhibitors (Ferreira et al., 2021; Pillaiyar et al.,
2022) by computational approaches (Serafim et al., 2021b),
including of many different consensus VS. approaches that
employed QSAR models (Table 1), that is, VS. approaches
without QSAR were not taken into consideration.

Most of these studies did not experimentally evaluate VS.’s hits,
and only three presented proper validation against the same target
assessed in our study (SARS-CoV-2 Mpro). Additionally, among
these studies, it is notable that false hits would still comprise most of
the outcomes from those consensus VS. approaches, such as >75%
(Khanfar et al., 2023), >90% (Wang et al., 2022), and 92.86%

(Alves et al., 2021) of false hits, which would be consistent with
almost 90% of false hits expected from different VS. against different
protein targets (Irwin and Shoichet, 2016). Taking these into
consideration, we aimed to obtain novel bioactive molecules from
known inhibitors of SARS-CoV-2 Mpro, performing a VS. approach
based on a HQSAR model. In addition, we employed enzymatic
inhibition assays to confirm whether the predictions were correct,
thus identifying potential protease inhibitors. As of March 2021, a
series containing a total of 25 inhibitors from the same chemical
class synthesized and tested by the same research group, which
presented IC50 values determined against the SARS-CoV-2 Mpro

(Zhang et al., 2021) were selected (Table 2). At the time, some
studies discussing a complete class of SARS-CoV-2 Mpro inhibitors
were available, with few compounds (n < 10) per data set
(Rathnayake et al., 2020; Sacco et al., 2020) and with different
structures’ scaffold (Ghahremanpour et al., 2020; Jin et al., 2020),
which could limit this HQSAR study.

A review study at the end of 2021 (Macip et al., 2022) presented a
total of 758 compounds extracted from peer-reviewed articles
(January 2020 to August 2021) that were tested against SARS-
CoV-2 Mpro. Still in March 2021, 32 compounds were
synthesized and experimentally validated as inhibitors assessed
against the proposed target (Qiao et al., 2021), and another

TABLE 1 (Continued) Consensus QSAR/VS. approaches employed against SARS-CoV-2.

Employed methods VS. library size Targets Hits TP References

QSAR 161 ALK/BTK 6 NT Ghosh et al. (2021a)

Docking

MD simulations

MM-GBSA

QSAR 66,495 Mpro 3 NT Kumar et al. (2022)

Docking

MD simulations

USR similarity 23,129,049 Mpro 2 NT Sepehri et al. (2022)

Docking

MD simulations

ANN-based QSAR 21 Mpro 1 NT Guevara-Pulido et al. (2022)

Docking

QSAR 2,695 Mpro 44 NT Costa et al. (2022)

DL-QSAR 4,388 Spike 20* NT Pirolli et al. (2023)

Docking

MD simulations

MM-GBSA

QSAR 34,439 Mpro 1,502 (10#) 1 Wang et al. (2022)

Docking

QSAR 5,637 Mpro 12## 3 Khanfar et al. (2023)

TP: true positive (hits with confirmed activity in vitro). NT: not tested. *Only the top 20 compounds were reported (supplementary information not available). MM-GBSA: molecular

mechanics-generalized Born surface area. NF-κB: nuclear factor-κB. ALK: anaplastic lymphoma kinase. BTK: Bruton’s tyrosine kinase. USR: ultrafast shape recognition. ANN: artificial neural

network. DL: deep learning. #Only the top 10 compounds were selected for experimental determination. ##Only the top 12 compounds were selected for experimental determination.
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approach with 116 compounds with confirmed enzyme inhibition
would become available (Kuzikov et al., 2021). Here, we intended to
carry out a fast and reliable drug discovery approach due to the
availability of physical samples and partnerships that could
promptly evaluate experimentally our hits (March 2021) in the
urge of the pandemic scenario. Finally, we tried to perform a QSAR
approach to compare with other computational methods that were
being developed in parallel (e.g., docking), aiming to retrieve
different hits (Maltarollo et al. in press).

Notwithstanding, HQSAR as other QSAR models can be easily
and quickly generated and validated for their predictive ability in
correlating a given chemical structure towards one biological activity
(Cherkasov et al., 2014). Results from HQSAR can also improve
other QSAR models predictive ability (Chavda and Bhatt, 2019;
Veríssimo et al., 2019), and may glimpse a biological mechanism of
studied chemicals and enlighten molecular descriptors related to the
proposed end-point of interest (Gramatica, 2020). Additionally, a
QSAR model can also be combined with other models to be applied
in a consensus VS. approach against SARS-CoV-2 Mpro (Alves et al.,
2021).

The 25 inhibitors (analogues 2–8 and 10–27 of the
antiepileptic drug perampanel) had IC50 values between
0.018 and 9.99 µM (Zhang et al., 2021). Selected compounds
presented some properties that favor HQSAR analysis, such as a
conserved chemical moiety, a relatively small size of the
structures, and the variety of substituents available. However,
an ideal model should also consider a larger set of structurally
diverse compounds (Sadeghi et al., 2022) with different moieties
(e.g., retrieved from different studies), and also comprising
natural and synthetic compounds, which would comprise
different physicochemical properties (e.g., size and polar
surface area (Radhakrishnan et al., 2022)) and synthesis
accessibility (Atanasov et al., 2021). Considering the small
data set assessed here, a second training set was generated
considering the inclusion of the standard deviation (SD) for
each IC50 values in the HQSAR models, herein termed a
triplicate model (m: subtracting the SD value; p: adding the
SD value). This model is used to enhance accuracy and lower
errors in predictions, thus potentially increasing robustness
towards the training set (Kronenberger et al., 2018). The
original training and test sets were also used as a control to
compare both models’ predictive ability, which indeed helped to
minimize prediction errors but did not eliminate them

completely. Thus, it would be of interest to work with larger
sets of molecules that could also improve statistical control of the
models.

Training and test sets were randomly divided with an 80:20%
ratio, that is, 20 or 60 (triplicate) compounds for the training set and
five compounds for the test set. HQSARmodels were then generated
by fixing fragments size (Supplementary Table SA), selecting the
highest q2 value, if they presented q2 values >0.5 (Golbraikh and
Tropsha, 2002), and r2 values >0.6 (Golbraikh et al., 2003; Gramatica
and Sangion, 2016). Herein, the selected model was built using
fragment distinction, containing atoms A), bonds B), connectivity
C), hydrogen atoms H), chirality (Ch), and donor or acceptor
hydrogen atoms (DA) presented acceptable values of q2 (0.885)
and r2 (0.977) was then outperformed by its triplicate model, q2

(0.964) and r2 (0.975). Aiming to increase the selected model
predictive abilities, atoms’ fragment size variation was employed
(1–4 up to 7–10), maintaining the HQSAR descriptors, but none
outperformed the original model (Supplementary Table SB).

The selected triplicate model was submitted to external
validation, resulting in all tested metrics above 0.6
(Supplementary Table SC). Chemical contribution maps were
generated (Figure 2), highlighting positive (green and yellow),
neutral (white), and negative (orange and red) contributions of
different regions of the molecules to the biological activity.
Specifically, predictions showed phenyl and pyridinone rings, as
well as chlorine and fluorine substituents as important substructures
(compounds 23 and 21 m) for Mpro inhibition, based on their
corresponding negative log of IC50 (pIC50), as summarized in
(Supplementary Table SD). These positive contributions are also
consistent with crystallographic results observed from the chosen
25 inhibitors, in which the pyridinone oxygen, the pyridine nitrogen,
and the chlorophenyl edge are highlighted with hydrogen bonds to
important residues (Glu166, His163, and His41, respectively)
(Zhang et al., 2021).

The optimal HQSAR model was then used to predict biological
activity of the 60 compounds in the triplicate training set and the five
compounds in the test set (Supplementary Table SE), resulting in
corresponding values, thus being employed for biological prediction
against BraCoLi compounds. Additionally, PaDEL (Yap, 2011)
software was used to calculate molecular descriptors (e.g.,
Fingerprinter, Extended Fingerprinter, MACCS, PubChem,
Substructure, Substructure Count, Klekota Roth, Klekota Roth
Count, AtomPairs2D, and AtomPairs2Dcount) for the training

TABLE 2 Perampanel analogues with determined IC50 values (μM) against SARS-CoV-2 Mpro.

Perampanel analogues IC50 (μM)

Perampanel (100–250a μM) 2 (9.99 ± 2.5 μM)
4 (4.02 ± 1.36 μM)

aPerampanel fluorescence interfered with the enzymatic inhibition assays. None of the other analogues displayed fluorescence issues. Images were generated with PubChem Sketcher V2.4.
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and test sets. Then, we generated RF-QSAR models for each
descriptor set, considering MaxLevels from 10 to 50 levels, and
Nmodels from 10,000 to 50,000 models for selection of potentially
bioactive compounds, aiming to select a more adequate descriptor
able to predict other compounds as potential SARS-CoV-2 Mpro

inhibitors within BraCoLi.
Lastly, RF-QSAR models were also validated in KNIME® for

their predictive ability, classified according to their concordance
correlation coefficient (CCC), and for their robustness, according to
higher q2 values (internal correlation). Here, PubChem and
AtomPairs2Dcount showed higher regression values among the
assessed metrics, over 0.85 for CCC and over 0.75 for q2,
overcoming the other descriptors assessed. AtomPairs2D is a

topological fingerprint, which is defined in terms of the so-called
atomic environment of a chemical structure, and also the shortest
path separations between its pairs of atoms (Carhart et al., 1985),
while PubChem is a substructure fingerprint, which generates
structural types that correspond to fragments (i.e., substructures)
of all compounds in the PubChem database (Wang et al., 2017).
Thus, these two molecular descriptors were considered for the RF-
QSAR VS. approach, after being comparatively assessed considering
their predictive ability (Figure 3).

Finally, the VS. of BraCoLi compounds was conducted with a
consensus of both RF-QSAR and HQSAR models, resulting in
24 compounds, 20 from PubChem and four from
AtomPairs2DCount, considering a pIC50 cutoff of 6.5

FIGURE 3
Regression analysis results for selected RF-QSARmodels from PaDEL descriptors. Molecular descriptors PubChem and AtomPairs2DCount showed
higher CCC (0.825 and 0.756) and q2 values (0.862 and 0.864), respectively.

FIGURE 2
Chemical contribution maps of compounds with highest pIC50 values. Positive (green and yellow), neutral (white) and negative (orange and red)
contribution regions of compounds 23 and 21 m (21 IC50minus SD) were colored accordingly. Carbon, chlorine, fluoride, hydrogen, nitrogen, and oxygen
atoms were highlighted in black. Images were generated with SYBYL-X 8.1.
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(corresponding to 0.3 µM). For instance, PubChem showed an
overall higher specificity for synthetic compounds’ classification
in contrast to natural products’ classification, with the lowest
average for false positives and highest for true negatives (Seo
et al., 2020), which would also befit this study accessing the
BraCoLi database. At the time (March 2021), with the urgency of
the COVID-19 pandemic, the selected compounds were evaluated in
enzymatic inhibition assays against SARS-CoV-2 Mpro, without
additional analysis, such as the definition of an AD, or
employing other methods, such as molecular docking or MD
simulations.

Briefly, enzymatic inhibition assays involve monitoring the
cleavage of a fluorogenic substrate over time. When assessing the
inhibition of enzyme activity, the difference between readings of the
enzyme in the absence of test compound (i.e., 0% inhibition) is
compared with the activity in the presence of compound (i.e., up to
100% inhibition) (Mellott et al., 2021). Among the 24 compounds
selected from the VS. campaign, none presented inhibition of
enzymatic activity by more than 50%, when assessed at 10 µM
(Table 3).

2 Discussion

Interestingly, no inhibitory activity (>50%) against SARS-CoV-
2 Mpro was observed from the 24 screened compounds when
assessed at a concentration of 10 µM. As discussed in this review,
some parameters and conditions could explain this low accuracy and
the prediction of false hits. Firstly, the definition of an AD is
important for QSAR models, as predictions are considered
reliable when molecules assessed are inserted in a specific
domain (Mathea et al., 2016). Yet, AD is also restricted to the
size and diversity of the training set, and once a given chemical
structure is out of a given domain, predictions may be erroneous,
corroborating the importance of calculating AD to the applicability
of a QSAR model to the prediction of compounds from chemical
libraries (Tropsha, 2010).

Likewise, as mentioned, only r2 values alone would not be able to
validate a given QSAR model (Shayanfar and Shayanfar, 2022), thus
requiring additional approaches, and considering their specific
advantages and disadvantages (Shayanfar and Ershadi, 2019).
These would potentially improve predictions able of identifying
favorable inhibitors and a given target selectivity when employing
independent validation tests to evaluate the robustness of the model,
such as a cross-validation, y-scrambling, and LMO (Kiralj and
Ferreira, 2009). In addition, considering the two major HQSAR
parameters together (q2 and r2) is important to corroborate different
regression metrics, such as q2 validation coefficients and r2 averages,
which could testify to the robustness of the assessed model (Chirico
and Gramatica, 2011; Chai and Draxler, 2014). This is important as
q2 is considered a metric that can underestimate the predictive
quality of a model when assessing the compounds in a data set
(Golbraikh and Tropsha, 2002), which would require more external
and cross-validation metrics to assess the predictive ability of
different QSAR models (Gramatica and Sangion, 2016).

Moreover, changes in variables employed in the HQSAR model
could improve its robustness towards predictions, such as selecting
the top three or five models with higher q2 values in the first model

selection, in addition to assessing fragments’ size variations (e.g.,
intervals of 2, 3 and 4 atoms) (Tropsha et al., 2003; Gramatica, 2020).
More than one fragment’s size variations have shown better
predictive ability when employed, such as six distinct fragment
sizes (2–5, 3 to 6, 4 to 7, 5 to 8, 6 to 9, and 7 to 10 atoms), as
well as a larger series of hologram lengths (53–997), highlighting
important fragments from chemical contribution maps, as shown by
(Lima et al., 2018). In this work, chemical contribution maps from
the HQSAR predicted phenyl and pyridinone rings, and chlorine
and fluorine substituents as important substructures (Figure 2) for
Mpro inhibition. Similarly, aromatic rings have been previously
predicted to bind in hydrophobic pockets within SARS-CoV-
2 Mpro, such as bonds with Leu167 and Pro168, by molecular
docking analysis (Zhang et al., 2021). Further, one could suggest
that the presence of nitrogen atoms (pyridinone) and chlorine and
fluorine substituents (chlorophenyl and fluorophenyl) would also
favor hydrogen bonds. These substituents were also predicted to
form hydrogen bonds with His163 and Glu166, as well as with the
imidazole from His41 in the active site (ZHANG et al., 2021).

Furthermore, Aljuhani et al. (2022) also assessed derivatives of
pyridine analogues (e.g., chlorophenyl) aiming to inhibit the
enzymatic activity of SARS-CoV-2 Mpro, as well as to inhibit
SARS-CoV and SARS-CoV-2 multiplication in Vero cells. Here,
IC50 values up to 0.67 µM were obtained against SARS-CoV-2 Mpro,
in addition to effective concentration of 50% (EC50) values of up to
0.021 µM against SARS-CoV-2, and 0.03 µM against SARS-CoV
(Aljuhani et al., 2022). Additional docking analysis also showed
binding predictions with His41, Cys145, His163, and Glu166,
similar to those discussed by (Zhang et al., 2021). Luo et al.
(2022) also predicted positive contributions from pyridinone
rings, as well as chlorine and fluorine substituents from HQSAR
analysis assessing SARS-CoV-2 Mpro inhibitors, as well as predicting
rings’ positions where substituents would contribute negatively to
the biological activity (Luo et al., 2022).

It is also of interest to perform a combination of QSAR and other
LBDD methods aiming to improve the accuracy of different
approaches (Lima et al., 2016), such as molecular docking,
potentially helping to discover bioactive compounds against
SARS-CoV-2 and even other coronaviruses (Wu et al., 2020;
Serafim et al., 2021b; Pant et al., 2021). In addition, such
approaches may also benefit from calculating decoys (putative
inactive compounds) to increase predictive accuracy of true
negatives and validate, for example, consensus VS. approaches
(Réau et al., 2018), as shown by (Asse Junior et al., 2020).
Furthermore, obtaining these true negative compounds or even
identifying false hits is important for subsequent predictive
models (Réau et al., 2018), thus improving screening protocols
and potentially obtaining designed bioactive compounds (Gimeno
et al., 2019).

Additionally, the design of pharmacophore models (Lu et al.,
2018), which consists of determining specific properties related to
ligands interactions in a given target (e.g., SARS-CoV-2 Mpro

(Hayek-Orduz et al., 2022)), could improve comparisons to
different compounds of interest (Hayek-Orduz et al., 2022), in
such VS. campaigns (Arun et al., 2021; Bouback et al., 2021),
thus potentially improving the reliability of selected compounds.
Lastly, combining LBDD with structure-based drug design (SBDD)
strategies (Lima et al., 2016) can potentially increase the accuracy,
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TABLE 3 Inhibitory activity (%) at 10 µM of selected molecules against SARS-CoV-2 Mpro.

Molecules and inhibitory activity (%)

BR010480 (0.0% ± 0.0%)
BR020100 (0.8% ± 0.8%) BR020117 (ND)

QF12

(0.0% ± 0.0%)

BR010479

(0.0% ± 0.0%)

BR010481

(0.0% ± 0.0%)

BR020098

(0.0% ± 0.0%)

BR020119 (ND)

QF13

(0.0% ± 0.0%)

BR020097

(0.0% ± 0.0%)

BR020099 (1.0% ± 0.6%) BR020101 (5.0% ± 1.8%)

BR020127

(0.0% ± 0.0%)

QF14

(0.0% ± 0.0%)

(Continued on following page)
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robustness, and predictive ability of computational methods
(Azevedo et al., 2022), including QSAR models (Vázquez et al.,
2020), ultimately filtering and selecting potential inhibitors
specifically against a given molecular target structure, such as
SARS-CoV-2 Mpro. Furthermore, increasing the number of
different validation applications for the HQSAR models and
selecting larger and more chemically diverse set of the
compounds may also favor more reliable hit rates. The
importance of building models considering key strategies was

emphasized (Figure 1), and by evaluating their sensitivities,
structural hints could be provided for the potential of more
robust models with higher predictive ability in the future.

Finally, some thoughts could be raised from this case report. For
instance, the amount of data is proportional to the quality of
predictions, not in terms of accuracy, but in the sense of ability
to predict biological activity from a broad spectrum of structural
diversity. In other words, models with few data set samples should be
carefully employed in further drug design and discovery, taking into

TABLE 3 (Continued) Inhibitory activity (%) at 10 µM of selected molecules against SARS-CoV-2 Mpro.

Molecules and inhibitory activity (%)

QF15 (0.0% ± 0.0%)
QF18 (0.0% ± 0.0%)

BR010185 (0.0% ± 0.0%) (AtomPairs2DCount) QF23 (ND) (AtomPairs2DCount)

BR020113

(0.0% ± 0.0%)

QF19 (0.0% ± 0.0%)

QF22

(ND) (AtomPairs2DCount) QF24 (ND) (AtomPairs2DCount)

QF17 (0.0% ± 0.0%) QF20 (0.0% ± 0.0%)

aPercentage of inhibition (bold) is reported as the average and standard error of the mean calculated from at least one independent experiment, each performed in triplicate (n ≥ 3). Errors are

given by the ratio of the standard deviation to the square root of the number of measurements. ND: Not determined. Images were generated with PubChem Sketcher V2.4. Hydrogen atoms bond

to carbon atoms are not shown.
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consideration the impact of data set size and diversity on the
conclusions. Considering the quality of biological data,
unfortunately little can be discussed about direct evidence of
inappropriate experimental practices, but different laboratories
and methods can obtain different IC50 values (e.g.,
GC376 against SARS-CoV-2 Mpro (Macip et al., 2022)). However,
we can suggest that mixing biological data from different sources
could introduce noise and bias in the data set (which was not done in
present work), but can drastically improve the structural diversity in
the data set, and it can be avoided by using some ML models.
Furthermore, the influence of descriptors is an essential topic that
must be considered during QSAR modeling aiming to find the best
set of variables that describe the physicochemical properties of the
modeled biological phenomena. Therefore, multiple QSAR
approaches could also be employed (e.g., 3D-QSAR, descriptor-
based QSAR) combined or not as additional methods.

3 Conclusion

QSAR approaches are well known for their reliability and ability to
predict a given biological activity from distinct chemical structures and
their contribution to select potential bioactive compounds from various
data sets (i.e., databases). Either single-handling predictions or in
combination with different methods to improve predictive ability
QSAR models can be influenced by many different conditions (e.g.,
training and test set sizes and ratios, and their chemical diversity), and
may result in varied predictive values depending on which validation
metrics were employed. Ultimately, these may reflect a model’s overall
accuracy and its predicted outcomes. Herein, these predictions can be
used for VS. campaigns, aiming to select designed bioactive compounds
for a specific target. However, one should bear in mind that even the
combination of good practices in aQSAR-drivenworkflow could provide
false hits in VS. protocols. Altogether, although false hitsmay occur, these
should be disclosed to the scientific community and must be considered
to improve computational approaches in future studies, either by feeding
true negatives or removing inactive data.
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