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Nicotine, the major component of tobacco smoke (TS) and electronic cigarette (e-cig)
vape, has been reported in some cases to be prodromal to cerebrovascular toxicity as well
as a promoting factor for the onset of various neurological diseases. In some conditions,
pre-exposure to nicotine can lead to a state of compromised blood-brain barrier (BBB)
integrity, including altered BBB-related protein expression, BBB leakage, and defective ion
and glucose homeostasis within the brain. Moreover, drugs used to treat central nervous
system disorders (CNS) have been reported to interact with nicotine and other
components of TS/e-cig through both transporter and enzyme-based mechanisms.
Herein we discuss nicotine’s potential toxicity at the brain cerebrovasculature and
explain how nicotine (from smoking/vaping) may interfere with the uptake of CNS
drugs through a CNS drug interaction perspective.
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INTRODUCTION

Exposure to nicotine and combustion products comprising tobacco smoke (TS) and electronic
cigarettes (e-cigs) or vapes are prominent risk factors implicated in ischemic stroke and possibly
other neurological diseases such as Alzheimer’s disease (AD), schizophrenia, neuro-AIDS, andmultiple
sclerosis (MS) (Health and Services 2006; Salokangas et al., 2006; Moreno-Gonzalez et al., 2013; Kaisar
et al., 2018; Sivandzade et al., 2019;McIntosh et al., 2021). TS is thought to be one of the greatest sources
of toxic chemical exposure to humans and is accountable for the death of ~400,000 individuals alone in
the US (Mathers and Loncar 2006; Krist et al., 2021). A single puff of TS consists of around chemical
7,000 compounds such as polycyclic aromatic hydrocarbons, ammonia, aromatic amines, and various
other chemicals and gaseous particulates that are hazardous (Mathers and Loncar 2006). Nevertheless,
what makes TS so addictive is the primary psychoactive substance, nicotine, and this is based on how it
acts nicotinic acetylcholine receptors and the release of the chemical dopamine, which is euphoric and
reinforcing (Pontieri et al., 1996; Fowles and Dybing 2003). Nicotine is ranked by experts amongst the
top-most addictive substance known to date to science (Mansvelder and McGehee 2002; Shoaib et al.,
2002). Acute exposure to nicotine signals rewarding action, while continued exposure is co-related with
desensitization leading to cellular tolerance (Laviolette and van der Kooy 2003). Molecular alteration
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occurs in the central dopamine systems that underlie continued
propensity for nicotine consumption as well as adverse effects from
its withdrawal (Laviolette and Van Der Kooy 2004). Of note, the
oxidative stress-driven inflammatory potential of TS promotes
cerebrovascular toxicity and compromises various recovery
mechanisms in neurological pathologies (Pratico 2008; Arnson
et al., 2010; Naik et al., 2014).

Since being introduced in the US market in 2006, there has
been a steady rise in the use of e-cigs among both adults and
youths, tobacco smokers, and non-smokers because it is perceived
that e-cigs are a safer alternative and possess potentially less
health risk than that of TS (McCubbin et al., 2017; Perikleous
et al., 2018). E-cigs were not much regulated until 2016 when the
US food and drug administration (US-FDA) extended its tobacco
regulatory authority to products deemed to meet the definition of
a tobacco product (Kasza et al., 2017). In recent years, the FDA
has been active in funding projects that involve e-cig research via
National Institute of Health grants (Backinger et al., 2016).
Nevertheless, with limited research and lack of knowledge of
the content of vaping solutions, other than nicotine, like
polycyclic aromatic hydrocarbons, aldehydes, and nitrosamine,
e-cigs are one of the major health concerns among the public
(Goniewicz et al., 2014; Varlet et al., 2015; Gillman et al., 2016).

Nicotine, from TS and e-cigs, has been associated with the
development of a number of potential toxic mechanisms inflicted
on the brain, including increased oxidative stress (Bernard et al.,
2019; Kuntic et al., 2020), neuroinflammation (Stamatovic et al.,
2011; Li et al., 2019), cerebral thrombosis (Kaisar et al., 2017;
Qasim et al., 2018), changes in BBB-related protein function or
expression (Wang et al., 1994; Abbruscato et al., 2004; Kaisar et al.,
2018), BBB permeability (Abbruscato et al., 2002; Hawkins et al.,
2004; Kaisar et al., 2017), and cerebral blood flow (Hans et al., 1993;
Zubieta et al., 2001). Furthermore, nicotine and chemical
constituents of both TS and e-cigs have been reported to
interact with the liver cytochrome P450 (CYP-P450) enzymes
and affect plasma drug levels of certain central nervous system
(CNS) drugs (Zevin and Benowitz 1999; Molden and Spigset 2009;
Ellingrod 2013). Also, it has also been reported that CNS drugs
utilize similar nicotine transport systems at the BBB interface, and
in the presence of nicotine, their transport to the brain can be
directly affected (Tega et al., 2018). Through this review, we report
the known effects of TS and e-cig vaping on BBB dysfunction and
worsening neurological disorders, primarily ischemic stroke, as
several studies fromour laboratory, fellow collaborators, and stroke
researchers suggest smoking as comorbidity. In addition, we are
drawing attention for the need to evaluate TS and e-cig interaction
with some CNS drug therapy.

BBB AND EFFECTS OF TOBACCO
SMOKING/ELECTRONIC CIGARETTE
VAPING
BBB Physiology and Properties
The BBB is a dynamic and specialized semipermeable boundary
that forms the interface between circulating blood and brain
parenchyma and functions to facilitate blood-based

communication between the periphery and CNS (Abbott et al.,
2010; Archie et al., 2021). It prevents the non-selective crossing of
potentially harmful substances and permits the uptake of various
essential nutrients and molecules from the blood and to the brain
(Zhao et al., 2015; Archie et al., 2022). The primary anatomical
unit of the BBB are the brain endothelial cells that closely interact
with other cell types such as astrocytes, microglia, pericytes, and
neurons for induction and maintenance of BBB properties
(Sweeney et al., 2019; Sharma et al., 2021). Brain endothelial
cells express tight junction (TJ) proteins responsible for limiting
the paracellular diffusion of molecules to the brain by formation
of a molecular seal. Therefore, circulating ions or molecules in the
plasma rely mostly on the transcellular route to gain access to the
brain. The effectiveness of the TJs results from the strong linkage
of trans membranal claudins and occludins to intracellular actin
and the cytoskeleton induced by cytoplasmic scaffolding proteins,
zonula occludentes (ZO-1, 2, and 3) (Bagchi et al., 2019; Pandit
et al., 2020).

The BBB is crucial for transporter-mediated influx and efflux
of ions, nutrients, and drugs into and out of the brain (Sifat et al.,
2019). Solute carrier transporters (SLC) and ATP-binding
cassette (ABC) are the two major superfamilies of transporters
present either at the apical or basolateral side of the BBB
(Miyajima et al., 2011). The SLC transporters are primarily
responsible for the movement of solutes and ions across the
BBB. Glucose transporters are the SLC transporters present at the
BBB interface responsible for the transport and uptake of glucose
(Shah and Abbruscato 2014). Various ion transporters like Na+-
K+-ATPase and Na+-K+-2Cl− co-transporter (NKCC) are also
present at the BBB interface that play a significant role in
maintaining normal brain physiology (O’donnell et al., 2004).
Organic anion and cation transporters are other members of the
SLC transporter superfamily expressed at the BBB interface are
responsible for drug uptake and transport across the brain
(Ronaldson and Davis 2013). In contrast, the ABC
transporters efflux various drugs and xenobiotics using active-
energy-dependent transport mechanisms (Abdullahi et al., 2017).
P-Glycoprotein and breast cancer resistance protein are examples
of ABC transporters.

Effects of Nicotine, Tobacco Smoking, and
E-Cigarette Vaping on BBB Integrity
Nicotine and its major metabolite cotinine exert their action by
stimulating nicotinic acetylcholine receptors (nAchRs). nAchRs
are inotropic receptors proteins consisting of five subunits that
form a central transmembrane cation channel that, upon
stimulation, causes inward movement of sodium and calcium
(Mansvelder and McGehee 2002). Bronchial epithelial cells,
aortic endothelial cells, keratinocytes, and brain endothelial
cells express various subtypes of these receptors. The
pharmacologic effect of nicotine at BBB is partly due to
stimulation of nAchRs in brain endothelial cells that express
α-3, α-5, α-7, β-2, and β-5 of its subtypes (Abbruscato et al., 2002;
Moccia et al., 2004). Nicotine, the principal component of TS and
e-cig, can negatively affect tight junctional protein expression,
compromising BBB integrity (Abbruscato et al., 2002; Hawkins
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et al., 2004). When incubated with brain endothelial cells,
cotinine and nicotine decrease ZO-1 expression (Abbruscato
et al., 2002).

Moreover, the comparative effect of TS and e-cig extract
showed that downregulation of ZO-1 protein from e-cig was
not dissimilar to that from TS extract treatment (Kaisar et al.,
2017). TS and e-cig extract treatment in iPSC-derived brain
microvascular endothelial cells also showed a similar pattern
of causing downregulation of claudin-5 and altered
distribution pattern of ZO-1 and occludin (Kadry et al., 2021).
Downregulation and dysregulation of distributions TJ proteins
can lead to paracellular gaps between the endothelial cells and
leak within the barrier. This study showed that TS and E-cig
extract treatment caused an increased paracellular permeability of
sucrose and mannitol; both are used as in vitro paracellular
permeability markers of the BBB. (Kadry et al., 2021). The
increased paracellular permeability of the markers is directly
correlated to the downregulation of claudin-5, which is known
to contribute to endothelial cell integrity. Also, the
transendothelial electrical resistance of brain endothelial cell
monolayers decreased with TS and E-cig extracts exposure.

Ion transporters at the BBB, such as Na+-K+-ATPase and
NKCC, contribute to maintaining brain potassium levels during
both normal and pathophysiologic conditions. A study from our
laboratory reported in the presence of nicotine, the expression
level of these transporters alters and could exacerbate vasogenic
brain edema formation and negatively affect brain extracellular
fluid potassium levels during an in vitro and in vivo model of
ischemia (Abbruscato et al., 2004). Similarly, the expression of
glucose transporters by brain endothelial cells decreases in the
presence of nicotine, leading to decreased glucose transport
across the BBB (Shah et al., 2015). Moreover, there is
decreased brain glucose utilization in animals exposed to e-cig
vapor (Sifat et al., 2018).

Nicotine Transport System in the Brain
Nicotine is the principal addictive and pharmacologic substance
in TS and e-cigs. Nicotine is rapidly metabolized by liver
cytochrome P450s into cotinine and distributed across the
cerebrovascular system (Fukada et al., 2002a). The plasma
level of nicotine in tobacco smokers or vapers generally
averages about 20–60 ng/ml depending on frequency, the
number of cigarettes and/or puffs of aerosols, age, and gender
(Benowitz et al., 2009; Trehy et al., 2011; Cheng 2014; Barrington-
Trimis and Leventhal 2018). In contrast, the plasma level of
cotinine is significantly higher, with concentrations ranging
between 250 and 300 ng/ml and a greater half-life of 16 h
compared to a short half-life of approximately 2 h for nicotine
(Marsot and Simon 2016). It has been reported that nicotine uses
a specific transport system to cross the BBB, which might affect
the brain uptake of certain CNS drugs from a CNS drug-drug
interaction perspective.

Nicotine has been shown to be a substrate and/or inhibitor of
SLC transporters subtype organic cation transporters (OCTs)
such as OCT1 -3, organic cation/carnitine transporters (OCTn),
multidrug and toxin extrusion protein 1 (MATE 1), and plasma
monoamine transporters (PMAT) in various cell lines that were

transfected with these transporters (Urakami et al., 1998; Wu
et al., 2000; Tsuda et al., 2007; Itagaki et al., 2012). Additionally,
carrier-mediated transport has also been reported for nicotine in
pig kidney epithelial cell line (LLC-PK1) and human intestinal
epithelial cell line (Caco-2) (Takami et al., 1998, Fukada et al.,
2002b). Furthermore, studies showed nicotine interacts with
brain monoamine transporter such as serotonin transporter
(SERT), dopamine transporter (DAT), and norepinephrine
transporter (NET), a major transporter system for CNS drugs
(Table 1).

Interestingly, nicotine uptake in an in vitro rat brain
endothelial capillary cell line, TR-BBB13, showed hydrophilic
cationic molecules such as 1-methyl-4-phenylpyridinium
(MPP+), tetraethylammonium (TEA), and L-carnitine that are
substrates of OCTs had no inhibitory effects (Tega et al., 2018). In
contrast, hydrophobic cationic drugs such as pyrilamine,
verapamil, and clonidine significantly reduced nicotine uptake.
Additionally, the uptake clearance for carrier-mediated transport
of nicotine is significantly higher in the BBBmodel than any other
cell line, suggesting an involvement of transport driven by
outward H+ gradient in nicotine transport across the brain.
Pyrilamine is reported to be taken up from carrier-mediated
transport with the involvement of H+/organic cation antiporter
that drives H+ outward for its uptake, similar to that of nicotine,
suggesting both molecules share a similar transport system for its
uptake into the brain endothelial cells (Okura et al., 2008). This
was supported by an in vivo experiment with carotid artery
injection where nicotine brain uptake showed decreased value
following pre-treatment with the hydrophobic cationic drug
pyrilamine (Tega et al., 2013).

Additionally, efflux transporters like P-gp, that usually interact
with moderately hydrophobic molecules, were reported not to
influence brain uptake index of nicotine in the presence of known
P-gp substrate verapamil (Toda et al., 2011). Furthermore, there
was no difference in apparent permeability of nicotine in wild-
type vs. P-gp knockout mice (Cisternino et al., 2013). Therefore,
these studies support that P-gp is not involved in the nicotine
transport system at the blood and brain interface. Overall, the
carrier-mediated transport driven by outward H+ gradient is
involved in most nicotine transport in rat brain endothelial cells.
Nevertheless, additional studies are required to explore nicotine
transport system in human brain endothelial cells for possible
involvement of OCTs, MATE, and PMAT transporters that
showed substrate specificity for nicotine.

TOBACCO SMOKE AND ELECTRONIC
CIGARETTE VAPING ON EXACERBATION
OF ISCHEMIC STROKE
Pathophysiology of Ischemic Stroke
The prevalence of stroke, a debilitating central nervous system
disorder impacting brain arteries that supply the brain with
nutrients, continues to be identified as the fifth leading cause
of mortality and severe long-term or lifelong disability
throughout the US (Virani et al., 2021). There are two
primary classes of stroke that predominate the clinical
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TABLE 1 | US-FDA approved CNS drugs that use the same putative transport system (s) as nicotine.

Drugs (US-FDA) Diseases Name of
transporters

Nicotine
transport
system

References

Donepezil, rivastigmine and galantamine Alzheimer’s disease OCTn-2 OCTn-2 inhibitor Lee et al. (2012)
Memantine Alzheimer’s disease OCT-1 and

OCT-2
OCT-1 and OCT-
2 inhibitor

Mehta et al. (2013)

Chlorpromazine risperidone, paliperidone, olanzapine and
quetiapine

Psychiatric disorders P-glycoprotein P-gp inhibitor Boulton et al. (2002), Doran et al. (2005),
Linnet and Ejsing (2008)

Amphetamine and methylphenidate Attention deficit
hyperactive disorder
(ADHD)

DAT Inhibitor DAT inducer Noronha-Dutra et al. (1993),
Boudanova et al. (2008)

Modafinil Narcolepsy DAT Inhibitor DAT inducer Noronha-Dutra et al. (1993)
Atomoxetine, methylphenidate and clomipramine ADHD, Depression NET inhibitor NET inducer Noronha-Dutra et al. (1993), Simpson

and Plosker (2004), Itoh et al. (2010)
Citalopram, imipramine, sertraline, fluoxetine, desipramine,
amitriptyline, trimipramine, fluvoxamine, clomipramine and
paroxetine

Depression SERT inhibitor SERT inducer Awtry and Werling (2003)

Bupropion Depression NET/DAT inhibitor NET/DAT inducer Stahl et al. (2004)
Venlafaxine and duloxetine Depression NET/SERT

inhibitor
NET/SERT
inducer

Einarson et al. (1998), Versiani et al.
(2002)

FIGURE 1 | Effect of nicotine from tobacco smoke (TS) and electronic cigarette (e-cig) on blood-brain barrier (BBB) disruption. BBB is mainly composed of
endothelial cells (red), astrocytes (blue), pericytes (green) and basal lamina. Nicotine enters the brain through nicotinic acetyl choline receptors (nAChRs) and disrupts the
function of BBB by several mechanism. Nicotine can downregulate tight junction proteins (TJs) like ZO-1, claudins and occludins which results in increased transcellular
permeability. Nicotine also disrupts mitochondrial function leading to increased oxidative stress (OS) and elevated inflammation and cytokines. Nicotine
downregulates several transporters and receptors such as GLUT-1, NKCC and NA-K ATPase resulting in decreased brain glucose utilization and increased brain edema
respectively. Moreover, nicotine causes platelet activation, increases inflammation, and inhibits fibrinolysis which ultimately results in clot or thrombus formation. This clot
increases the chance of ischemic stroke. Thus, nicotine disrupts the BBB and plays a major role in pathogenesis of several cerebrovascular dysfunction including
ischemic stroke, Alzheimer’s disease, multiple sclerosis, schizophrenia and neuro-AIDS.
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landscape, ischemic and hemorrhagic, with ischemic responsible
for 87% of all strokes (Virani et al., 2021). Induction of acute
ischemic stroke stems from the formation of a cerebrovascular
occlusion by an embolus or a thrombotic event, resulting in a
temporary or permanent loss of blood flow to a region of the
brain. The sudden obstruction of blood circulation rapidly
introduces a hypoxic and nutrient-deprived condition in the
adjacent brain region, initiating several pathophysiological
secondary injury pathways that progress with time, ultimately
impairing intracellular homeostasis and resulting in a localized
cerebral infarction (Heiss et al., 1999; Brzica et al., 2017). This
primary brain injury can be attributed to the activation of
secondary injury pathways that include ionic imbalance,
oxidative stress, excitotoxicity, mitochondrial dysfunction,
inflammation, and BBB breakdown (Dirnagl et al., 1999;
Onwuekwe and Ezeala-Adikaibe 2012).

Early disruption of the BBB may result in a temporary, non-
selective passage of toxic intracellular and extracellular substances
that may increase the risk of secondary brain injury, in addition to
progressing the pathogenesis of ischemic stroke (Howard et al.,
1998; DiNapoli et al., 2008; Hossain et al., 2009). Furthermore,
activation of microglia plays a crucial role in neuroinflammation
and is followed by cellular or extracellular brain edema, both of
which serve to aggravate disruption of the BBB further and
worsen stroke outcome (Lipton 1999). Surrounding the
ischemic cerebral infarction, where brain cells are irreversibly
damaged and mostly necrotic, is the penumbral region consisting
of functionally inactive neurons that are potentially salvageable
(Kaufmann et al., 1999). Recovery of this region, by preventing
the activation of further secondary brain injury cascades, is a
major investigational neuroprotective strategy and therapeutic
goal aiming to ultimately improve neuronal survivability and
ischemic stroke outcome (Chamorro et al., 2016).

Blood Clotting, Thrombus Formation, and
Use of Thrombolytics in Ischemic Stroke
Thrombin is a strong platelet agonist, with activated platelets
serving to amplify additional thrombin generation through
feedback activation of blood clotting factors V, VIII, and XI.
Additionally, it further promotes vascular thrombosis by
facilitating the cleavage of the fibrin zymogen (fibrinogen), as
well as by activating factor XI, preventing fibrinolysis, and factor
XIII, which further stabilizes the fibrin clot. Thrombin also
functions as an anticoagulant when bound to
thrombomodulin, a receptor protein expressed on the surface
of the vascular endothelium, with thrombin-thrombomodulin
binding ultimately leading to fibrinolysis. The dynamic nature of
thrombin thus plays a critical role in response to inflammation
and injury of the vascular endothelium (Levi et al., 2004; Nemmar
et al., 2007).

Previous studies that focused on thrombosis have shown the
presence of wide-spread crosstalk between clotting factors and
inflammatory cytokines, indicating the existence of an
interdependent and complementary relationship between
coagulation and inflammation (Nemmar et al., 2009; Nemmar
et al., 2011). Further evidence has shown that disruption of the

mechanisms responsible for maintaining the antithrombotic and
anti-inflammatory properties of the cerebral microvascular
endothelium lead to an increased risk of ischemic stroke (del
Zoppo and Hallenbeck 2000; Iadecola and Anrather 2011). A
major therapeutic approach used to reduce the risk of stroke often
involves antithrombotic agents that aim to prevent or reduce
thrombosis. To date, intravenous administration (IV) of
recombinant tissue plasminogen activator (r-tPA), a
thrombolytic protein capable of conducting fibrinolysis, is the
only US-FDA approved therapeutic for use in acute ischemic
stroke. Although useful, the safety and efficacy of r-tPA
significantly diminishes if not administered quickly following
the onset of stroke (Gurewich 2016). Furthermore, lower
thrombus extent and greater thrombus permeability have been
associated with successful recanalization of the occluded artery in
cerebral ischemia (Menon et al., 2018).

Effects of Prior Nicotine, Tobacco Smoke,
or E-Cig Exposure on Thrombosis and Use
of r-tPA
Smoking of tobacco, a well-known risk factor of ischemic stroke,
increases the risk of cerebrovascular thrombosis and worsens
stroke outcome (Shah and Cole 2010). Promotion of thrombosis
proceeds through the mechanisms involved in vascular
endothelial dysfunction (Noronha-Dutra et al., 1993; Nagy
et al., 1997; Raij et al., 2001; Chen et al., 2004; Naik et al.,
2014), resulting in increased platelet activation (Roy 1999),
inflammation (Arnson et al., 2010), and impaired fibrinolysis
(Jaffre et al., 2015). TS induced vascular endothelial dysfunction
has been shown to be mediated by the deleterious properties of
TS, primarily those relating to reactive oxygen species (ROS)
content (Naik et al., 2014), nicotine, and oxidative stress derived
inflammation, in a dose-dependent manner (Gill et al., 1989; Das
et al., 2009; Arnson et al., 2010; Paulson et al., 2010; Naik et al.,
2014). Interestingly when the effects of e-cig vapor and TS were
compared, it was found that the oxidative stress promoted
through nicotine exposure from either source induced similar
detrimental effects, from a thrombolytic perspective, on BBB
integrity, cellular inflammation, and stroke outcome (Kaisar et al.,
2017). Such effects include platelet activation, as a result of
upregulated endothelial synthesis and release of circulatory
tissue factor, platelet-activating factor, catecholamines,
thromboxane, and von Willebrand factor (Lip and Blann 1997;
Girdhar et al., 2008; Togna et al., 2008).

Additionally, nicotine can increase the risk of thrombosis
through the increased cellular expression of the pro-
inflammatory cytokine TNF-α and plasminogen activator
inhibitor-1, as well as the downregulation of NrF2, which
regulates the antioxidative response system, and
thrombomodulin, responsible for the crucial anticoagulant
properties of thrombin (Lau et al., 2006; Prasad et al., 2015;
Kaisar et al., 2017; Prasad et al., 2017). Upregulation of C-reactive
protein has also been observed, functioning to promote
endothelial dysfunction by diminishing nitric oxide (NO)
synthesis and NO bioactivity (Verma et al., 2002). Collectively,
these nicotine-mediated factors result in altered blood
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homeostasis that consequentially promotes platelet-dependent
thrombosis, increases the risk of ischemic stroke, and exacerbates
secondary brain injury (Wannamethee et al., 2005; Al-Awadhi
et al., 2008). While nicotine has been implicated in vascular
endothelial dysfunction and subsequent thrombus formation,
other factors such as the combustion of e-liquid solvents,
typically propylene glycol and glycerin, may also play an
important role. Further, e-liquid combustion is known to form
a variety of highly toxic aldehydes, such as acrolein,
formaldehyde, and acetaldehyde, that ultimately function as
biocides that may promote endothelial dysfunction and
thrombus formation (Beauchamp et al., 1985; Conklin et al.,
2009; Wheat et al., 2011; Erickson 2015).

Although tobacco use increases the risk of ischemic stroke,
some studies have demonstrated a paradoxical association
between current smoking and favorable stroke outcome
following intravenous thrombolysis with r-tPA or
endovascular treatment (Ovbiagele and Saver 2005; Ali et al.,
2013; Kufner et al., 2013; Kvistad et al., 2014; Hussein et al., 2017;
Kufner et al., 2021). Studies of this smoking-thrombolysis
paradox have shown that TS use is associated with reduced
infarct growth, as well as a higher rate of recanalization and
reperfusion in TS users treated with IV r-tPA, following ischemic
stroke (Kufner et al., 2013). The pathophysiology responsible for
this paradox and the apparent increase in r-tPA treatment
efficacy is thought to be based on clot formation and the
reduced release of endogenous tPA from a smoker’s vascular
endothelium (Rosenberg and Aird 1999; Sambola et al., 2003;
Kufner et al., 2021). Although this TS-induced dysfunction of the
vascular endothelium ultimately results in blood
hypercoagulability and increased risk of thrombosis, the
thrombi formed from such dysfunction are likely more
fibrin-rich (Meade et al., 1987; Barua et al., 2010). As these
thrombi are composed of elevated levels of fibrin, it has been
hypothesized that they may be more receptive to treatment
with exogenous r-tPA compared to thrombi with unelevated
levels of fibrin (Gomez et al., 1993; Grines et al., 1995). In
other words, this modification of clot dynamics, originating
from TS use, may result in earlier recanalization of the
occluded artery and favorable stroke outcome in patients
treated with r-tPA.

Effect of Nicotine on Nutrient and Ion
Transport Functioning During Ischemia
The brain microenvironment heavily depends on the supply of
solutes, nutrients, and ions for its normal physiological
functioning and metabolism (Bélanger et al., 2011). The brain
uses glucose as its primary fuel for ATP production, and the
transporters involved in its uptake are the isoforms GLUT1 and
GLUT3 within various cells in the brain (Maher et al., 1994;
Vannucci et al., 1997; Lundgaard et al., 2015). However, the
transport of glucose across the BBB mostly occurs from
facilitative GLUT1 expressed by the brain endothelial cells in a
1:4 ratio on its luminal and abluminal membranes, respectively
(Shah et al., 2012). Once transported into the brain’s extracellular
space, it is primarily utilized by neurons and by additional

components of the neurovascular unit to maintain brain
activity (Lundgaard et al., 2015).

During ischemia, the demand for energy increases due to the
loss of blood supply into the brain (Sims and Muyderman 2010).
There is an initial increase in glucose utilization, followed by
decreased glucose metabolism within the brain (McCall et al.,
1996). Furthermore, studies have shown that, as a regulatory
mechanism, there is an increase in expression of GLUT1 through
activation of phosphoinositide-3 kinase (PI3K)/Akt pathway via
hypoxia-inducible factor-1 (HIF-1) (Yeh et al., 2008). This is
supported by another study that showed the absence of hypoxic
GLUT1 regulation in HIF-1 knock-out animals (Wood et al.,
1998). Overall, HIF-1 induction of GLUT1 is crucial in causing
increased glucose uptake for adaptation of energy demand in
ischemia. Also, since glucose transport becomes the rate-limiting
step for the cerebral glucose metabolism in ischemic conditions,
determination of expression of GLUT1 on both luminal and
abluminal for understanding glucose transport kinetics is vital in
ischemic conditions (Simpson et al., 2007). Interestingly, pre-
exposure to nicotine reduced ischemia-enhanced GLUT1
expression across the brain and caused exacerbation of
ischemia-induced brain damage, adversely affecting stroke
outcome (Shah et al., 2015). Also, nicotine and cotinine
treatment decreased neuronal glucose uptake in ischemic
conditions mediated through upregulation of a7 subtype of
nAchR (Sifat et al., 2018). Moreover, e-cig vaping in vivo
showed that both GLUT1 and GLUT3 expressions were
decreased in both normoxic and ischemic conditions (Sifat
et al., 2018). Although these studies suggest that nicotine in
e-cig vaping plays a crucial role in compromising stroke
outcome, other chemical constituents such as glycerin,
propylene glycol, and flavoring agents (Kaur et al., 2018),
shown by studies to have specific toxicities, need to be
investigated separately for effects on ischemic stroke outcome
and potential therapy.

Ischemic stroke is characterized by cellular swelling due to
neuronal depolarization caused by GABAA receptor activation
and a resulting influx of potassium and chloride (Payne et al.,
2003). The cellular edema that occurs is followed by vasogenic
edema that worsens the damage, and overall, the phenomenon is
observed as BBB opening (Unterberg et al., 2004). As a
neuroprotective mechanism, the NKCC activity at the BBB
basolateral side increases during ischemia as it is
phosphorylated by protein kinase C (PKC) to remove excess
potassium from the brain (Yerby et al., 1997; Abbruscato et al.,
2004). Furthermore, shuttle of sodium, potassium, and chloride
occur away from the brain extracellular space, reducing the ability
of GABAA receptors to cause depolarization and cellular swelling
(Abbruscato et al., 2004). However, this neuroprotective
compensatory increase in NKCC activity following ischemia is
altered in the presence of nicotine (Paulson et al., 2006).
Additionally, to understand the effects of tobacco smoke
constituents on NKCC activity, nicotine-free tobacco smoke
extract treatment was evaluated and reported that it did not
negatively alter the activity of the transporter (Paulson et al.,
2006). This finding supports nicotine as the responsible player for
altering the NKCC activity, therefore worsening ischemic stroke
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compensatory mechanism. Opposite to NKCC, the Na,
K-ATPase transporter at the BBB interface, in hypoxic
conditions, has shown to have decreased function (Kawai
et al., 1996). With nicotine treatment, the expression of Na,
K-ATPase further decreases and worsens focal cerebral
ischemia (Wang et al., 1996) (Figure 1).

TOBACCO SMOKING AND E-CIG VAPING
IN WORSENING OF OTHER
NEUROLOGICAL DISEASES AND
NICOTINE-CNS DRUG INTERACTIONS

Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common cause of elderly-
age dementia and is characterized by the accumulation of
amyloid-β (Aβ) protein in extracellular senile plaques and
neurofibrillary tangles due to intraneuronal tau deposition
(Mucke 2009). Additionally, cerebrovascular dysfunction
exists, partially due to impaired cerebral blood flow
characterized by decreased nitric oxide synthesis derived from
endothelium and nitrergic nerves (de La Torre 2012). Moreover,
cerebral hypoperfusion is believed to decrease the clearance of
intraneuronal tau and induce accumulation of Aβ protein
(Zhiyou et al., 2009; Mawuenyega et al., 2010).

Nicotine has been shown to increase the mRNA expression of
amyloid precursor protein in the amygdala and hippocampus
(Gutala et al., 2006). In an animal model of AD, TS exposure
increased neuroinflammation, amyloidogenesis, and tau
phosphorylation (Moreno-Gonzalez et al., 2013). Furthermore,
nicotine has been shown to negate NO-induced vasodilation and
cause cerebral hypoperfusion by degrading the NO, possibly
resulting from oxidative stress (Arnson et al., 2010; Toda and
Toda 2010). However, it cannot be excluded that except for
nicotine, chemicals like acrolein and methyl vinyl ketone,
present in TS and e-cigs have been shown to cause oxidative
stress by the generation of ROS through activation of protein
kinase C viaNADPH oxidase (Asano et al., 2012). A retrospective
population-based study reported that people with TS exposure
are at increased risk for AD (Ott et al., 1998). The correlation is
based on findings that showed smokers without the APOE-4
allele have a higher incidence of developing this risk, and by
contrast, smokers with this allele are not at increased risk.

The current pharmacotherapy for AD is based on helping
patients alleviate the symptoms and preserve their mental well-
being by regulating the neurotransmitters acetylcholine and
glutamate (Anand et al., 2017). Acetyl-cholinesterase
inhibitors, such as donepezil, help elevate acetylcholine levels
in the brain by inhibiting its breakdown by the enzyme
acetylcholinesterase (McGleenon et al., 1999). This therapy is
mostly used to treat mild to moderate AD. Similarly, NMDA
receptor antagonists such as memantine reverse the adverse
effects of increased levels of glutamate in the brain (Olivares
et al., 2012) and is often prescribed to treat moderate to severe
AD. Interestingly, data from an in vitro BBB model showed that
donepezil and memantine significantly reduced nicotine uptake

(Nakanishi et al., 2018). Moreover, memantine has been reported
to be transported by a cationic influx H+ antiporter similar to the
brain’s nicotine transport system (Mehta et al., 2013). Thus, it can
be extrapolated that nicotine and anti-AD drugs like donepezil
and memantine may share a similar transport system and
compete for their transport into the brain. Given these data, it
is highly likely that nicotine taken up by TS or e-cig affects the
transport of donepezil and memantine; in vivo uptake studies in
an animal model of AD are warranted to investigate CNS drug
interaction due to TS or e-cig exposure.

Schizophrenia
Schizophrenia is a heterogenous psychotic disorder where
patients experience delusions, negative symptoms,
hallucinations, and behavioral and cognitive dysfunction
(Najjar et al., 2017). The pathophysiological mechanisms are
believed to be interconnected between immune, inflammatory,
neurotransmitter, genetic, and oxidative pathways (Pun et al.,
2009; Anderson et al., 2013). Growing preclinical and clinical
studies show that in schizophrenia, neurovascular uncoupling
occurs due to oxidative stress and neuroinflammation, which
ultimately leads to increased BBB permeability and its breakdown
(Abbott 2002; Grove et al., 2015). These alterations have been
shown to worsen behavioral and cognitive symptoms in
schizophrenic patients and are correlated to reduced cerebral
perfusion and defective innate and adaptive immunity that
signals neuroinflammatory responses in the brain (Serlin et al.,
2011).

TS has been shown to cause higher mortality in schizophrenic
patients and is linked to more severe symptoms that require
higher doses of anti-psychotics (Schwartz et al., 2005; Salokangas
et al., 2006). Literature suggests that people with schizophrenia
smoke heavily to relieve pyramidal symptoms associated with
adverse effects from anti-psychotic treatment; however, smoking
is known to contribute to disease progression and cannot be
recommended as a viable source of symptom relief (Levin 2006).
Nicotine, TS, and e-cig exposure leading to BBB dysfunction are
well-reported; nevertheless, BBB-related loss of cerebrovascular
integrity in smokers that might play a role in the exacerbation of
schizophrenia has not been studied well. Moreover, it is essential
to note that pharmacokinetic interactions have been reported
with smokers undergoing pharmacotherapy for schizophrenia
(Desai et al., 2001).

Olanzapine and clozapine are atypical anti-psychotics that are
the first-line treatment choice in schizophrenia. A
pharmacokinetic study showed that TS increased clearance of
olanzapine by 23% because of the induction of CYP1A2 enzyme
activity in the liver (Callaghan et al., 1999). Another study
reported that with TS there was a 33% increase in clearance of
clozapine in smokers compared to the non-smoking population
(Ng et al., 2009). This would then affect the drug plasma levels
and thus cause inadequate concentration in the brain to exert
therapeutic activity. Therefore, careful consideration of dosage is
required in the smoking population of schizophrenia.
Nevertheless, smoking regularity should also be assessed
simultaneously with anti-psychotic courses because studies
reported that patients who quit smoking had their plasma
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drug concentration levels rise by 50–70%, potentially leading to
adverse drug reactions (Lowe and Ackman 2010). Additionally, it
must be noted that both nicotine and by-products of TS and
e-cigs such as polycyclic aromatic hydrocarbons are inducers of
CYP1A2, hence deciphering their individual role in interaction
with anti-psychotics can be beneficial for clinical translation
(Zevin and Benowitz 1999; Hukkanen et al., 2011).

Neuro-AIDS
NeuroAIDS is a neurodegenerative disease that manifests on a
spectrum of neurological disorders (Minagar et al., 2008).
Manifestations can range from decreased attention and
concentration, decreased psychomotor speed, decreased
memory and learning, and an overall decrease in executive
functions of the brain. There is also a slowing of motor
functions that can lead to tremors, extrapyramidal symptoms,
and paralysis. The clinical manifestations of this disease range
from asymptomatic neurocognitive dysfunction to mild
neurocognitive disorder to full-blown HIV-associated dementia
(Shapshak et al., 2011).

It is hypothesized that during an HIV infection, the virus
invades the BBB, causing dysregulation using viral proteins and
cytokines (Kaul et al., 2001). One thing of note here is that
NeuroAIDS is not caused by the infection of the virus in the
neurons, it is the neurotoxic nature of the virus: such as viral
proteins gp120, and oxidative stress exerted by the cytokine
dysregulation causing the breakdown of the BBB, leading to
neurocognitive dysfunction (Bhalerao and Cucullo 2020). It
has been described earlier that TS causes endothelial
dysregulation and oxidative stress on the BBB, leading to an
increased coagulative state in the blood. Moreover, this can be
dangerous to the cerebrovascular system, especially in the
presence of infectious agents that affect the permeability of the
BBB (Atluri et al., 2015). When it comes to TS and NeuroAIDS,
reports vary in the extent to which it plays a role in the disease
progression. A study reported that having a nicotine
concentration of 300 μM in the blood plasma increased the
HIV-1 expression (Abbud et al., 1995).

When comparing HIV-1 positive smokers to healthy
individuals who smoke, another study found that through the
induction of cytochrome P450 enzymes, the metabolism of
nicotine is enhanced in patients with HIV-1 (Earla et al.,
2014). Enhanced nicotine metabolism is known to form
reactive metabolites. These reactive metabolites cause oxidative
stress, which has been shown to cause an increase in viral load
and replication (Ande et al., 2013). It is clear then that the optimal
way to treat a severe case of NeuroAIDS is to stop viral
replication. Since the diagnosis of NeuroAIDS is made using
physiological function tests and clinical symptoms, these tests fail
to incorporate the minute phenotypic variations that might be
present from person to person (Owe-Larsson et al., 2009). With
the use of biomarkers looking for specific endophenotypes, some
progress has been made when it comes to determining the extent
of neurodegeneration in the brain due to HIV infection
(Rahimian and He 2017). However, these biomarkers cannot
be used for therapeutic monitoring because they do not show if
the damaged tissue is healing. The damage and inflammation

caused by ROS due to chronic smoking has been well established.
There is hope that the discovery of common biomarkers for both
NeuroAIDS and smoking can help identify more synergy between
the two and give rise to better treatments and outcomes for HIV-
infected patients.

HIV patients have depleted immune systems, and the use and
abuse of addictive substances like nicotine are injurious to their
overall health (Friedman et al., 2003). From this point of view,
tobacco smoking is more prevalent in HIV patients than the
general population (Rahmanian et al., 2011). In fact, a study
reported that this prevalence is > 2-times higher than the general
population who are known smokers (Desai et al., 2020). Nicotine,
absorbed from smoking and vaping, is primarily metabolized by
CYP2A6 and CYP2B6 (Lucas et al., 2017; Bloom et al., 2019). A
study reported that smoking negatively affects the metabolism of
antiretroviral therapies (ARTs) such as efavirenz and nevirapine,
which are metabolized through CYP2A6 and CYP2B6 (Gong
et al., 2019). Moreover, smokers have increased expression of
CYP1A1, which can increase the metabolism ARTs that undergo
metabolism through this pathway, such as dolutegravir resulting
in a higher drug clearance value (Zhu et al., 2018). Nicotine has
also been reported to induce UGT1A1 in HIV-infected patients
and thus could directly affect the metabolism of abacavir,
raltegravir, and elvitegravir that use similar enzyme
metabolism systems (Chastain et al., 2017; Parant et al., 2019).

Multiple Sclerosis
Multiple sclerosis (MS) is primarily a neurodegenerative disease
that is caused by chronic inflammatory demyelination of nervous
tissue in the brain and spinal cord (Rothhammer and Quintana
2015). During this demyelination, triggered by oxidative stress,
astrocytes become reactive and promote further tissue damage
(Ponath et al., 2018). Furthermore, macrophages of the brain
secrete chemical signals that upregulate the secretion of cytokines
such as TNF-α, IL-1β, and IL-6 (Contreras et al., 2016). These
cytokines, along with neurotrophic factors such as brain-derived
neurotrophic factor, nerve growth factor, and vascular
endothelial growth factor, all exacerbate the state of chronic
inflammation in the CNS (Ashraf-Uz-Zaman et al., 2022).
Since MS has been correlated with an impaired immune
system, it can be assumed that the pathology of the disease is
attributed to genetic and environmental factors (Mitrovic et al.,
1995). Thus, recognizing these factors that play a role in the
development of the disease is essential for preventing the
progression of MS.

Onemodifiable risk factor for poor outcomes is smoking (Riise
et al., 2003). In recent years, it has been implied that TSmay play a
role in MS pathogenesis and that it might also affect how the
disease progresses and how severe it will be (Ghasemi et al., 2017).
An essential protein that plays a role in the pathogenesis of MS is
calcium-binding protein B (S100B) (Bartosik Psujek et al., 2011).
It is an important biomarker for disease activity because it detects
specific T cells against S100B. Interestingly, the level of S100B was
significantly higher among smokers with MS than with non-
smokers (Paknejad et al., 2019). Additionally, oxidative stress is
an important factor when it comes to MS because, more recently,
it has been tied to both inflammation and demyelination (Haider
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et al., 2011). TS plays a major role in neuroinflammation than
neurodegeneration (Socha et al., 2014). A subclass of T cells called
mucosal-associated invariant T-cells has been shown to have a
protective role in MS by expressing more proinflammatory
chemokines (Ammitzbøll et al., 2019). Due to the constant
irritation of smoke on the cell surfaces of the lungs, these cells
are expressed more in chronic smokers (Fischer et al., 2012). They
release chemokines that keep the immune system busy, creating
inflammation in the lungs, thereby having a pseudo-protective
effect from MS in the CNS.

Since MS is not curable, most of the therapies around it are to
treat the symptoms. These therapies are called disease-modifying
treatments (DMTs) (Doshi and Chataway 2017). The first-
generation DMTs are all injectable drugs and have a linear PK
relationship, while the second generation of DMT consists of
three oral agents: monomethyl fumarate, dimethyl fumarate, and
teriflunomide (Scolding et al., 2015). Of the three oral agents,
teriflunomide acts on the cytochrome P450 system by inhibiting
CYP2C8 while inducing CYP1A2 (Ferreira et al., 2021).
Furthermore, smoking also induces CYP1A2, and therefore, an
MS patient who is a smoker and taking teriflunomide puts
themselves at high risk for hepatotoxicity (van der Weide
et al., 2003). MS occurs due to a combination of
environmental and genetic risk factors; therefore, it is difficult
to say with certainty how significant of a role nicotine and TS play
in the pathogenesis of the disease. However, most of the reviewed
literature does agree that TS could be associated with triggering
the onset of symptoms of the disease, increasing the likelihood of
relapse, and increasing the risk of hepatotoxicity with DMTs
(Jasielski et al., 2020). The role of smoking in MS and other
neurodegenerative disorder needs to be investigated further. In
the case of MS, there is a clear lack of knowledge when it comes to
how nicotine, TS or e-cig exposure affect the disease.

In addition to effects of nicotine in aforementioned
neurological disorders, TS has been linked as a predisposition
factor in the development of depression (Anda et al., 1990;
Mendelsohn 2012). Conversely, there is evidence that
depressive symptoms lead to smoking or smoking cessation
could precipitate depression and induce a return to smoking
(Glassman et al., 1988; Anda et al., 1990). Moreover, CYP1A2
induction from TS causes increased clearance of anti-depressant
drugs such as imipramine and fluvoxamine, and can mimic side
effects from anti-depressants such as tremors (Heishma et al.,
1994; Spina and Scordo 2002). Therefore, careful dosage
adjustment is required for smoking populations that are on

anti-depressants. It is also important to note that a significant
number of studies have reported beneficial effects of nicotine in
neurological disorders such as Parkinson’s disease (PD) (Morens
et al., 1995; Quik and Kulak 2002; Quik 2004). This protective
effect of nicotine is related to stimulation of the selectively
damaged nigrostriatal dopamine neurons and protection
against neuronal insults in experimental PD models
(Champtiaux et al., 2003; Quik et al., 2003). Additionally,
epidemiological studies from >40 independent studies showed
that PD is less prevalent in smokers (Quik 2004). Contrary to
these findings, some studies reported that chronic nicotine
exposure reduces dopamine turnover and decreases
catecholamine free radical formation that might damage the
dopaminergic neurons (Kirch et al., 1988; Newhouse and
Hughes 1991).

CONCLUSION

Overall, nicotine, TS, and e-cig vaping could be prodromal to
cerebrovascular impairment and worsen ischemic stroke and a
variety of other neurological disorders. Moreover, components, in
addition to nicotine, in TS and e-cigs, might play a role in the
deterioration of CNS diseases; thus, an individual toxic potential
should be assessed in normal and pathological states for future
investigations. Also, detailed transporter and enzyme-based
studies on nicotine interactions in brain uptake of CNS drugs
are warranted to understand the effects of smoking/vaping on
CNS drug interactions. These types of studies should be routine
for preclinical screening of new and old neurotherapeutics.
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NOMENCLATURE

AD Alzheimer’s disease

ABC ATP-binding cassette

Aβ amyloid-β

ARTs antiretroviral therapies

BBB blood-brain barrier

CNS central nervous system

DAT dopamine transporter

DMTs disease-modifying treatments

E-cig electronic cigarette

HIF-1 hypoxia-inducible factor-1

MATE 1 multidrug and toxin extrusion protein-1

MPP+ 1-methyl-4-phenylpyridinium

MS multiple sclerosis

nAchRs nicotinic acetylcholine receptors

NET norepinephrine transporter

NKCC Na+-K+-2Cl− co-transporter

OCTs organic cation transporters

OCTn organic cation/carnitine transporters

PD Parkinson’s disease

PMAT plasma monoamine transporters

r-tPA tissue plasminogen activator

PI3K phosphoinositide-3 kinase

PKC protein kinase C

SERT serotonin transporter

SLC solute carrier transporters

TEA tetraethylammonium

TS tobacco smoke/tobacco smoking

TJ tight junction

US-FDA US food and drug administration
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