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In recent years, analyzing the explanation for the prediction of Graph Neural

Networks (GNNs) has attracted increasing attention. Despite this progress,

most existing methods do not adequately consider the inherent uncertainties

stemming from the randomness ofmodel parameters and graph data, whichmay

lead to overconfidence and misguiding explanations. However, it is challenging

for most of GNN explanation methods to quantify these uncertainties since they

obtain the prediction explanation in a post-hoc and model-agnostic manner

without considering the randomness of graph data and model parameters.

To address the above problems, this paper proposes a novel uncertainty

quantification framework for GNN explanations. For mitigating the randomness

of graph data in the explanation, our framework accounts for two distinct

data uncertainties, allowing for a direct assessment of the uncertainty in GNN

explanations. For mitigating the randomness of learned model parameters, our

method learns the parameter distribution directly from the data, obviating the

need for assumptions about specific distributions. Moreover, the explanation

uncertainty within model parameters is also quantified based on the learned

parameter distributions. This holistic approach can integrate with any post-

hoc GNN explanation methods. Empirical results from our study show that our

proposed method sets a new standard for GNN explanation performance across

diverse real-world graph benchmarks.

KEYWORDS

uncertainty quantification, graph neural network, variational mechanism, explanation

uncertainty, deep learning

1 Introduction

Explaining the prediction of deep graph models, e.g., Graph Neural Networks (GNNs),

is crucial for enhancing the model interpretability and trustworthiness of its prediction,

which has played a crucial role in various domains. For instance, in drug discovery, GNNs

can model molecular structures and interactions to identify potential drug candidates.

By explaining the prediction results, researchers can gain insights into the molecular

properties that drive drug effectiveness and safety for further improving the design

(Mastropietro et al., 2022). In social network analysis, GNN explanations can help analyze

user behaviors, preferences, and relationships in social networks. This information can

be used to improve user experience, detect malicious activities, and develop targeted

marketing strategies (Ying et al., 2019).

Existing techniques tend to explain the prediction of GNNs at the instance level. These

approaches (Pope et al., 2019; Ying et al., 2019; Schnake et al., 2021) focus on identifying the

importance of individual elements from the input graph, such as nodes (or node features),

subgraphs, or edges that have a substantial impact on the predicted labels, based on taking

the gradient of the output with respect to the input, effectively showing how much the
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output would change with small alteration of input. While

these techniques offer valuable insights into the decision-

making process of GNNs, these methods generally overlook the

potential uncertainty that may exist in the generated explanations.

Uncertainty in explanations can stem from various sources,

including the inherent noise in the input graph, model parameter

uncertainty, and the approximation techniques used in the

explanation methods themselves. Post-hoc explanations tend to be

sensitive to these uncertainties, and neglecting this uncertainty can

lead to overconfidence in the generated explanations, potentially

resulting in misguided decision-making in critical applications

where the stakes are high. For instance, a pharmaceutical company

may use GNNs to identify the most critical features of the

input protein graph, such as specific molecular substructures,

contributing to the targeted biology activities. If the GNN

explanation method neglects the uncertainty present in the

generated explanation, the company may be overconfident in

the identified critical features without considering alternative

explanations, which may lead to suboptimal real-world efficacy or

unforeseen side effects. Therefore, considering the uncertainty into

explainable GNNs would allow users to better assess the reliability

of the explanations, ultimately increasing their confidence in

making decisions for real-world applications.

However, quantifying the explanation uncertainty of GNN is

not a trivial task, and current uncertainty quantification methods

designed for GNNs cannot be simply adapted for two primary

obstacles. The first pertains to the difficulties of quantifying

uncertainties in explanations resulting from the intrinsic randomness

of graph data. Specifically, there is an inherent variability in

the attributes connected to the nodes and edges within the

graph. For instance, node features might contain unexpected noise

during measurement or yield an unsuitable node permutation.

Furthermore, the graph connectivity may also be uncertain, which

can result from missing nodes or edges, fluctuations in the

graph topology over time, or noise within the graph structure

itself. Such factors can introduce uncertainty into both the

model’s predictions and the explanations thereof. However, existing

uncertainty quantification methods for GNNs, as illustrated by

Zhao et al. (2020); Munikoti et al. (2023), are unable to account for

these complexities in the GNN prediction explanation, rendering

their simple adaptations to quantify the explanation uncertainty on

graph data unfeasible. The second obstacle involves the difficulty

of quantifying explanation uncertainty without making assumptions

about the distribution of model parameters. GNNs, similar to other

deep learning models, are subject to uncertainties regarding the

network parameters and architectures that optimally represent

the underlying graph data. Providing explanations of model

predictions without acknowledging this uncertainty could lead to

overconfidence in interpretation, particularly when the model has

not been trained on data that is representative of the task. Current

uncertainty quantification methods for GNNs are not readily

adaptable for quantifying the explanation uncertainty brought by

model parameters, as they generally assume a predefined (e.g.,

Gaussian) distribution that the model parameters are expected

to follow. However, the majority of techniques for explaining

GNNs are post-hoc, implying that they are implemented after

the model training. These techniques endeavor to elucidate the

model’s predictions based on its learned parameters, yet they do not

explicitly account for the uncertainty present in these explanations.

In this context, to quantify the explanation uncertainty instigated

by model parameters, it is not feasible to make distribution

assumptions about model parameters.

In light of two predominant challenges, we introduce EU-GNN,

a novel and adept framework specifically designed to quantify the

uncertainty of explanations in graph classification. To meticulously

address the inherent randomness embedded within graph data, we

propose two distinctive and unique data uncertainties related to

graphs. These carefully formulated uncertainties are strategically

utilized to directly and precisely quantify the uncertainty present

in GNN explanations, an uncertainty that is induced by both of

these data uncertainties. When it comes to managing the parameter

distribution randomness, our approach astutely takes a slight,

but impactful, departure from conventional methods, which often

rely heavily on prescribed distributions. Instead, we introduce

an innovative end-to-end framework that learns the parameter

distribution directly from the data, thereby circumventing the need

to make presumptions about specific distributions. It’s noteworthy

that this framework, with its intuitive design, can be seamlessly

integrated with most post-hoc GNN explanation techniques,

thereby significantly enhancing their ability to provide both

reliable and uncertainty-aware explanations of GNN predictions.

This dual-pronged approach, not only addresses but ingeniously

navigates through the aforementioned challenges, offering a

comprehensive and thorough solution for quantifying explanation

uncertainty in GNNs. Our main contributions are summarily

encapsulated as follows.

• Problem. We formulate the problem of quantifying the

uncertainty in explanations of GNN prediction from the

perspective of the different inherent randomness of the graph

data and model parameters.

• Method. We identify two types of data uncertainty

originating from graph data and a novel way to quantify

parameter uncertainty. Specifically, we propose an end-to-end

framework to model the parameter distribution from a

generative learning perspective without making distribution

assumptions about model parameters. Meanwhile, the

framework supports most post-hoc GNN explanation

techniques to provide reliable explanations with uncertainty

quantification.

• Experiment. We conduct extensive experiments on three

molecule classification datasets. Compared with state-of-the-

art baselines, EU-GNN achieves the best performance on

both graph classification and misclassification detection. In

addition, EU-GNN is proven to be effective in quantifying the

various uncertainties of explanation.

2 Related work

2.1 Uncertainty quantification in graph
neural networks

Uncertainty Quantification (Ling et al., 2024) aims to provide

a reliable estimation of uncertainties associated with data and

model predictions, which is crucial for decision-making (Ling
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et al., 2022, 2023a). Gal and Ghahramani (2016) first introduced

dropout as a Bayesian approximation to model uncertainty in

deep learning, providing an efficient and scalable framework for

uncertainty estimation in neural networks. Several recent studies

have focused on developing novel techniques for efficient and

accurate UQ, including Bayesian inference (Mobiny et al., 2021),

ensemble methods (Wen et al., 2020), and the single deterministic

network containing explicit components to represent aleatoric and

epistemic uncertainty (Raghu et al., 2019). With the development

of GNNs, rising attention has been focused on the field of UQ for

GNNs. Zhang et al. (2019) treat observed graphs as realizations

from a parametric family, jointly inferring network structure

and GNN parameters, enhancing model robustness. Pal et al.

(2019) build upon this, using the MAP estimate of the graph for

learning tasks, capturing aleatoric uncertainty through the mode

of the graph structure’s probability density function. Munikoti

et al. (2023) propose a unified Bayesian approach, employing

Assumed Density Filtering for aleatoric uncertainty and Monte

Carlo dropout for model parameter uncertainty.

2.2 Explainable graph neural network

GNNs have attracted considerable attention in terms of

interpretability. The mainstream GNN explanation methods can

be broadly classified into four categories. First, gradient-based

methods utilize gradients as indicators of the importance of

different input features. Prominent examples of such methods

include Guided Backpropagation (Guided BP) (Baldassarre

and Azizpour, 2019) and Gradient-weighted Class Activation

Mapping (Grad-CAM) (Pope et al., 2019). The second category

comprises perturbation-based methods, which typically involve

an additional optimization step to identify the most influential

inputs by perturbing them. GNNExplainer (Ying et al., 2019)

and GraphMask (Schlichtkrull et al., 2020) are notable methods

in this category. Response-based methods constitute the third

category, wherein the output response signal is backpropagated

as an importance score layer-by-layer until it reaches the input

space. Representative methods include Layer-wise Relevance

Propagation (LRP) (Baldassarre and Azizpour, 2019) and

GNNLRP (Schnake et al., 2021). The fourth category encompasses

surrogate-based methods, which explain the original model by

deriving explanations from an interpretable surrogate model

trained to approximate the original model’s predictions, including

GraphLIME (Huang et al., 2022), RelEx (Schnake et al., 2021), and

PGM-Explainer (Vu and Thai, 2020).

3 Methodology

In this section, we propose the problem formulation along

with a novel concept of explanation uncertainty, which is derived

from two types of uncertainties in the graph classification task.

We first introduce how we can derive explanation uncertainty

based on the variance from graph data. We then introduce an

end-to-end framework to quantify the explanation uncertainty by

considering the inherent randomness of learned parameters from

the variational inference’s perspective.

3.1 Problem formulation

Consider a graph G = (V ,E,X,A) consisting of a set of nodes

V and a set of edges E ⊆ |V| × |V|. Each node vi ∈ V consists of a

feature xi ∈ R
din , and the feature set is represented as X ∈ R

|V|×din ,

where din is the dimension of raw node features. The connectivity

of G is recorded in an adjacency matrix A ∈ {0, 1}|V|×|V|. Aij = 1

if there is an edge between node i and j, otherwise Aij = 0 denotes

the edge does not exist. The graph classification aims at learning a

mapping function G 7→ c, c ∈ C that maps G to a class c from a set

of labels C, where the mapping function is typically a Graph Neural

Network.

3.1.1 Aleatoric uncertainty on graph classification
AU refers to the intrinsic randomness of the graph data,

which can further be attributed to inaccurate measurements

of node features (i.e., measurement uncertainty) or volatile

graph structures (i.e., structural uncertainty). Specifically, (1)

Measurement Uncertainty refers to the associated error in the node

features, i.e., the observed node feature X is considered as the sum

of true feature X̃ and a measurement error ε sampled from a latent

distribution p(ε). (2) Structural Uncertainty is associated with the

probabilities of link existence. Intuitively, the observed E may not

reflect the true connectivity between nodes. In the social network

scenario, User A and B are friends; User B and C are also friends.

Then, Users A and C are likely to be friends, but the connectivity

may not be reflected in the existing observation. It is worth noting

that both measurement and structural uncertainty do not impact

the graph label c since these small deviations may not significantly

affect the broader patterns and structures that the graph G conveys

(Munikoti et al., 2023). However, the explanation of the GNN

prediction could be impacted due to these deviations.

3.1.2 Epistemic uncertainty on graph
classification

EU is the scientific uncertainty in the model that exists because

of model in-competency to completely explain the underlying

process. Let F(·) be an L-layer graph classification neural network

with the trainable parameters � = {ωl}
L
l=1

, where ωl is

the parameter for the l-th layer. The epistemic uncertainty in

the context of GNN is referred to the parametric uncertainty.

Specifically, the parameters � of the GNNmodel F(·) are assumed

to be probabilistic with a probability density function p(�).

3.1.3 Post-hoc explanation generation
To highlight components (e.g., nodes and edges) that

contribute significantly to the model’s final decision, existing

methods typically generate the importance based on the learned

GNN parameters � in a post-hoc way. Specifically, we differentiate

the output of the model with respect to the model input, thus

creating a heat-map (i.e., saliency map), where the norm of the

gradient over input variables indicates their relative importance.

Such a saliency map corresponding to class c is denoted by Sc =

g(X,A,�), where g(·) is the explanation generation function, e.g.,

Grad-CAM (Pope et al., 2019). The shape of Sc may vary depending
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A B

FIGURE 1

The overall structure of EU-GNN. (A) Quantifying explanation uncertainty from aleatoric uncertainty. We obtain data through reversible

transformation and sampling from the edge distribution, respectively, calculate the saliency map and quantify the measurement uncertainty and

structure uncertainty through variance. (B) Decomposing explanation uncertainty. By learning the parameter distribution from the data, we compute

the total explanation uncertainty and decouple it into aleatoric uncertainty and epistemic uncertainty.

on the specific component (nodes or edges) that is intended to

be emphasized. For a node-level saliency map, Sc ∈ R
|V|. For an

edge-level saliency map, its dimension is R|V|×|V|.

In this work, we focus on the problem of Uncertainty

Quantification in explaining graph learning tasks, especially on

graph classification, which involves obtaining the variance in the

graph classification predictions and corresponding explanations

caused by both aleatoric and epistemic uncertainties. However,

quantifying the explanation uncertainty entails solving two critical

challenges. First, the volatility of both X and A may propagate

through the layers of the GNN and ultimately affect the model

prediction as well as the corresponding explanation. Existing

methods lack a clear formulation to quantify the explanation

uncertainty caused by different aleatoric uncertainties. Second,

most explanation generation methods are post-hoc and do not

involve in training �. However, existing uncertainty quantification

methods tend to assume an underlying distribution (e.g., Gaussian

Distribution) that the p(�) may follow in order to address the

epistemic uncertainty. In this scenario, it is impractical to quantify

explanation uncertainty caused by model parameters by making

distribution assumptions about them.

3.2 Explanation uncertainty derivation
from the variance of graph data

Aleatoric (Data) Uncertainty often occurs when there is a

measurement error ε or unobserved connections between the

observed graphG and the true graph G̃. To quantify the explanation

uncertainty brought by the aleatoric uncertainty, we introduce a

graph acquisition function to augment the observed graph data in

order to allow the GNN to encounter a diverse range of uncertain

graph data during both learning and inference phases. Specifically,

G = Tξ (G̃)+ ε, (1)

where T is a reversible transformation operator that is applied to

G. ξ is the set of parameters of the transformation, and ε represents

the noise that is added to the transformed graph. For node

features, the reversible transformation operator adds white noises.

For the adjacency matrix, we permute the order of nodes as the

transformation operator. Note that the reversible transformation

would not change the graph. We subsequently introduce

different ways of quantifying the Explanation Uncertainty from

the Measurement Uncertainty and the Structural Uncertainty,

respectively.

3.2.1 Explanation uncertainty from measurement
uncertainty

According to Equation 1, the measurement uncertainty exists

when we encounter deviation in measuring the node features or

getting an inappropriate node permutation. To reversely obtain

the original graph instance, we have G̃ = T −1
ξ (G − ǫ).

Based on the calculation process of the saliency map, we also

have S̃c = g(X̃, Ã,�). Note that the corresponding saliency

map changes during the test phase when the input graph G is

transformed. However, the predicted classification label should

remain unchanged, i.e., y = ỹ.
We aim to infer the explanation of the classification result of the

original graph G̃:

Sc = Tξ (S̃
c) = Tξ

(

g
(

X̃, Ã,�
))

= Tξ

(

g
(

T
−1
ξ (X − ε) , Ã,�

))

.

Note that we omit the subscripts and denote the saliency map
obtained at the last GNN layer ScL as Sc for the sake of simplicity.
The distribution of the explanation given the input graph G is:

p(Sc|G) = p
(

Tξ

(

g
(

T
−1
ξ (X − ε) , Ã,�

)))

, ε ∼ p (ε) , ξ ∼ p (ξ) .

The final prediction of the explanation is computed by the
expectation of Sc:

ESc∼p(Sc|G)[S
c] =

∫

Scp
(

Sc|G
)

dSc (2)

=

∫∫

Tξ

(

g
(

T
−1
ξ (X − ε) , Ã,�

))

p (ε) p (ξ) dεdξ .

The integration in Equation (2) can be approximated by Monte

Carlo integration. In the i-th simulation run, we first sample a noise

εi from the prior distribution, then compute the i-th explanation

inference by Sci = Tξ (g(T
−1

ξ (X − εi), Ã,�)). The expectation is

approximated by ESc∼p(Sc|G)[S
c] ≈ 1

I

∑I
i=1 S

c
i . Finally, the variance
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of explanation caused by themeasurement uncertainty is computed

as:

1

I − 1

∑I

i=1

(

Sci − ESc∼p(Sc|G)[S
c]

)2
.

3.2.2 Explanation uncertainty from structural
uncertainty

According to Bojchevski et al. (2018); Zhang et al. (2021); Ling

et al. (2021, 2023b), the structural distribution of a graph p(G) can

be approximated by the stationary distribution of random walks

on the graph. In this work, we utilize random walks to capture

the structural uncertainty. Suppose we could sample many graph

instances and corresponding labels {
(

Gi = (Vi,Ei,Xi,Ai), yi
)

}, i ∈

{1, · · · , I} from the same distribution p(G). For each graph, we

could calculate the saliencymap Sci of each sampled graph with Sci =

g(Xi,Ai,�). The variance of explanation caused by the structural

uncertainty can then be observed by:

1

I − 1

∑I

i=1

(

Sci − S
c
)2

,

where S
c

= 1
I

∑I
i=1 S

c
i . Both types of aleatoric uncertainties

are illustrated in Figure 1A. We first generate graphs from the

original graph via reversible transformation sampling and random

walk sampling, respectively, then feed them to the explanation

generation model to get saliency maps. Finally, the measurement

and structural uncertainties are quantified by computing the node-

level and edge-level variance of the saliency maps, respectively.

3.3 Variational inference-based
explanation uncertainty quantification

Other than aleatoric uncertainties, the explanation is also

sensitive to epistemic uncertainty, which is typically caused by the

mismatching between the distribution of learnedmodel parameters

and the correct underlying distribution. In this subsection, we

consider quantifying both types of explanation uncertainties

jointly. Specifically, we will elaborate on quantifying the total

explanation uncertainty and further decomposing it into aleatoric

and epistemic uncertainties.
Let {G,Y} denotes a training dataset, where G =

(V , E ,X ,A) = {(Vt ,Et ,Xt ,At)}
T
t=1 = {Gt}

T
t=1 represents the

set of T training inputs, and Y = {yt}
T
t=1 are the corresponding

graph classification labels. We aim to obtain the posterior
distribution of the model parameter p(�|X ,A,Y), such that given
a test sample (X∗,A∗), the classification label of can be predicted
by:

p
(

y∗|X∗,A∗,X ,A,Y
)

=

∫

p
(

y∗|X∗,A∗,�
)

p (�|X ,A,Y) d�

=

∫∫∫

F

(

T
−1
ξ

(

X∗ − ε
)

,A∗,�
)

p (�|X ,A,Y) p (ε) p (ξ) d� dξ dε.

Because the posterior p(�|X ,A,Y) in the above function

is intractable, it is further approximated with a variational

distribution qθ (�|z), which is implemented as a decoder

responsible for decoding the network parameter � from z. In this

context, z is a sample drawn from a standard Gaussian distribution,

denoted as p(z) = N (0, I).

Optimizing the decoder can be accomplished by minimizing
the Kullback-Leibler divergence (KL-divergence) between the
approximated posterior Ez[qθ (�|z)] =

∫

p(z)qθ (�|z) dz and the
true posterior p(�|X ,A,Y), which is defined as:

KL[Ez[qθ (�|z)]‖p (�|X ,A,Y)] = E�∼Ez[qθ (�|z)] logEz[qθ (�|z)]

− E�∼Ez[qθ (�|z)] log p (�|X ,A,Y). (3)

Note that Equation (3) is still intractable due to the unknown
p(�|X ,A,Y). To address this problem, we rewrite the KL-
divergence as follows:

KL[Ez[qθ (�|z)]‖p (�|X ,A,Y)] (4)

= E� logEz[qθ (�|z)]− E� log
p (�) p (Y|X ,A,�)

p (Y|X ,A)

= log p (Y|X ,A) −

(

−E� log
Ez[qθ (�|z)]

p (�)
+ E� log p (Y|X ,A,�)

)

= log p (Y|X ,A) −
(

− KL[Ez[qθ (�|z)]‖p (�)]+ E� log p (Y|X ,A,�)
)

= log p (Y|X ,A) −
(

− KL[Ez[qθ (�|z)]‖p (�)]

+ E�

[
∑T

t=1
logF

(

T
−1
ξ (Xt − ε) ,At ,�

)
]

)

,

where p(�) is the prior distribution for �, and For the
sake of simplicity, we omit the subscript of E�∼Ez[qθ (�|z)]

as E� when the context is clear. Since the first term in
Equation (4) (i.e., the evidence) is constant w.r.t θ , minimizing
Equation (3) is equivalent to maximizing the second term, i.e.,
Evidence Lower Bound (ELBO). By introducing a weighting
factor γ > 0 to the ELBO in Equation (4), we define the loss
function Le as:

Le = γ · KL
[

Ez[qθ (�|z)]‖p (�)
]

− E�∼Ez[qθ (�|z)]

[
∑T

t=1
logF

(

T
−1
ξ (Xt − ε) ,At ,�

)
]

. (5)

The Le is Equation (6) can further be approximated by:

p
(

y∗|X∗,A∗,X ,A,Y
)

(6)

=

∮

F

(

T
−1
ξ

(

X∗ − ε
)

,A∗,�
)

p (�|X ,A,Y) p (ε) p (ξ) d� dξ dε

≈

∮

F

(

T
−1
ξ

(

X∗ − ε
)

,A∗,�
)

p(z)qθ (�|z) p(ξ )p(ε) dz d� dξ dε

≈
1

J · K

J
∑

j=1

K
∑

k=1

F

(

T
−1
ξk

(

X∗ − εk
)

,A∗,�j

)

.

Similarly, we can obtain the saliency map from the following
distribution:

p
(

S∗c|X∗,A∗,X ,A,Y
)

(7)

=

∮

Tξ

(

g
(

T
−1
ξ

(

X∗ − ε
)

,A∗,�
))

p (�|X ,A,Y) p (ε) p (ξ) d� dξ dε

≈
1

J · K

J
∑

j=1

K
∑

k=1

Tξk

(

g
(

T
−1
ξk

(

X∗ − εk
)

,A∗,�j

))

,

where in Equations (7) and (8) ξk ∼ p(ξ ), εk ∼ p(ε), zi ∼ p(z), and

�j ∼ qθ (�|zi) are Monte Carlo simulation samples.

Finally, the total explanation uncertainty is quantified by the

variance of the saliency map S∗c under the probability distribution

described in Equation (7), i.e., VS∗c∼p(S∗c|X∗ ,A∗ ,X ,A,Y)[S
∗c].

In the subsequent lemma, we show that the explanation

uncertainty can be decomposed into aleatoric an

d epistemic uncertainty.
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Lemma 1. The explanation uncertainty can be decoupled into

explanation uncertainty attributed to data and to the model,

respectively:

VS∗c∼p(S∗c|X∗ ,A∗ ,X ,A,Y)[S
∗c]

= E�∼p(�|X ,A,Y)

[

VSc∼p(S∗c|X∗ ,A∗ ,�)[S
∗c]

]

+ V�∼p(�|X ,A,Y)

[

ESc∼p(Sc|X∗ ,A∗ ,�)[S
∗c]

]

(8)

≈ E�∼Ez∼qθ [qφ (�|z)]

[

VSc∼p(S∗c|X∗ ,A∗ ,�)[S
∗c]

]

︸ ︷︷ ︸

Aleatoric Uncertainty

+ V�∼Ez∼qθ [qφ(�|z)]

[

ES∗c∼p(S∗c|X∗ ,A∗ ,�)[S
∗c]

]

︸ ︷︷ ︸

Epistemic Uncertainty

. (9)

The proof for Lemma 1 is given as follows:

Proof. We first prove Equation (9).

E�∼p(�|X ,A,Y)

[

VSc∼p(S∗c|X∗ ,A∗ ,�)[S
∗c]

]

+ V�∼p(�|X ,A,Y)

[

ESc∼p(Sc|X∗ ,A∗ ,�)[S
∗c]

]

= E�∼p(�|X ,A,Y)

[

ESc∼p(S∗c|X∗ ,A∗ ,�)

[

(S∗c)2
]

−E
2
Sc∼p(S∗c|X∗ ,A∗ ,�)

[

S∗c
]
]

+ E�∼p(�|X ,A,Y)

[

E
2
Sc∼p(Sc|X∗ ,A∗ ,�)[S

∗c]
]

− E
2
�∼p(�|X ,A,Y)

[

ESc∼p(Sc|X∗ ,A∗ ,�)[S
∗c]

]

(Vx∼p(x)[x] = Ex∼p(x)

[

x2
]

− E
2
x∼p(x)[x])

= E�∼p(�|X ,A,Y)

[

ESc∼p(S∗c|X∗ ,A∗ ,�)

[

(S∗c)2
]]

(10)

− E
2
�∼p(�|X ,A,Y)

[

ESc∼p(Sc|X∗ ,A∗ ,�)[S
∗c]

]

.

Moreover,

E�∼p(�|X ,A,Y)

[

ES∗c∼p(S∗c|X∗ ,A∗ ,�)

[

(S∗c)2
]]

=

∫

p(�|X ,A,Y)

∫

(S∗c)2p
(

S∗c|X∗,A∗,�
)

dS∗c d�

=

∫

p(�|X ,A,Y)

∫

(S∗c)2p
(

S∗c|X∗,A∗,X ,A,Y ,�
)

dS∗c d�

(S∗c and (X ,A,Y) are independent given �)

=

∫∫

(S∗c)2p
(

S∗c,�|X∗,A∗,X ,A,Y
)

dS∗c d�

=

∫

(S∗c)2p
(

S∗c|X∗,A∗,X ,A,Y
)

dS∗c

= ES∗c∼p(S∗c|X∗ ,A∗ ,X ,A,Y)

[

(S∗c)2
]

. (11)

Plugging Equation (14) into Equation (11), we have:

E�∼p(�|X ,A,Y)

[

ESc∼p(S∗c|X∗ ,A∗ ,�)

[

(S∗c)2
]]

− E
2
�∼p(�|X ,A,Y)

[

ESc∼p(Sc|X∗ ,A∗ ,�)[S
∗c]

]

= ES∗c∼p(S∗c|X∗ ,A∗ ,X ,A,Y)

[

(S∗c)2
]

− E
2
�∼p(�|X ,A,Y)

[

ESc∼p(Sc|X∗ ,A∗ ,�)[S
∗c]

]

= VS∗c∼p(S∗c|X∗ ,A∗ ,X ,A,Y)[S
∗c].

Hence, Equation (9) is proved. Finally, by approximating

p (�|X ,A,Y) with Ez∼qθ [qφ(�|z)], Equation (10)

is proved.

The explanation uncertainty decomposition is depicted in

Figure 1B. Generally, the top and down portions of Figure 1B

portray the estimation of epistemic and aleatoric uncertainties,

respectively. As shown in the top portion, we first sample an z from

a prior distribution p(z) that is then fed to the Decoder jointly

with the prior distribution of the GNN model parameter p(�)

to output the estimated posterior distribution qθ (�|z). Next, we

sample a group of �s in qθ (�|z) to get a group of GNN models,

which further generate a group of explanations. The lower portion

of Figure 1B is the same as Figure 1A. Finally, the epistemic and

aleatoric uncertainties are computed with the guide of Lemma 1.

4 Experiment

In this section, we aim to establish a clear link between

methodological advancements and experimental validations. Our

experiments demonstrate that EU-GNN not only advances the

state-of-the-art in GNN explanation performance (Section 4.2)

but also provides a robust measure of uncertainty (Sections 4.3

and 4.4), leading to more trustworthy and interpretable GNN

models. We show the results of quantitative and qualitative

experiments that were performed to evaluate our method with

other comparison models. Three real-world graph classification

datasets are introduced in our experiments. The experiments in

this paper were performed on a 64-bit machine with 14-core Intel

Xeon(R) Gold 6330, 80 GB memory, and NVIDIA RTX 3090 GPU.

4.1 Experimental setup

4.1.1 Datasets
We investigate three binary classification molecular datasets:

BBBP (Martins et al., 2012), BACE (Subramanian et al., 2016),

and TOX21 (Mayr et al., 2016)1, focusing on the identification

of functional groups in organic molecules related to biological

molecular properties. Each dataset comprises experimentally

determined binary classifications of small organic molecules. All

three datasets are divided into training, validation, and testing sets

with a ratio of 8 : 1 : 1. the scaffold split method is employed for

both BBBP and BACE datasets, grouping molecules with similar

structures within the same division. Conversely, the TOX21 dataset

utilizes a random splitting approach. The detailed information for

these datasets is as follows:

• BBBP: The Blood-brain barrier penetration (BBBP) dataset

comes from a recent study (Martins et al., 2012) on the

modeling and prediction of barrier permeability. As a

membrane separating circulating blood and brain extracellular

fluid, the blood-brain barrier blocks most drugs, hormones,

and neurotransmitters. Thus, penetration of the barrier forms

a long-standing issue in the development of drugs targeting

the central nervous system. This dataset includes binary

labels for 2,053 compounds (graphs) on their permeability

properties.

1 Available online at https://moleculenet.org/datasets-1
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TABLE 1 Graph classification performance comparison with white noise.

Method

0% 5% 10%

ACC AUC F1 ACC AUC F1 ACC AUC F1

BBBP

GCN 0.658 (0.0056) 0.612 (0.0047) 0.584 (0.0046) 0.581 (0.0092) 0.534 (0.0087) 0.515 (0.0084) 0.548 (0.0114) 0.503 (0.0108) 0.48 (0.0105)

GAT 0.656 (0.0051) 0.604 (0.0054) 0.578 (0.0042) 0.596 (0.0082) 0.525 (0.0082) 0.511 (0.008) 0.549 (0.0106) 0.503 (0.0114) 0.478 (0.0112)

GIN 0.661 (0.0047) 0.614 (0.005) 0.586 (0.0046) 0.582 (0.0088) 0.539 (0.0084) 0.523 (0.0084) 0.558 (0.0111) 0.506 (0.0103) 0.479 (0.0099)

Bayesian GCN 0.659 (0.0033) 0.613 (0.0031) 0.584 (0.0021) 0.604 (0.0048) 0.555 (0.005) 0.526 (0.0058) 0.56 (0.0076) 0.525 (0.0073) 0.486 (0.0069)

BGNN-AE 0.659 (0.0029) 0.613 (0.0034) 0.584 (0.0025) 0.599 (0.0054) 0.554 (0.0052) 0.529 (0.0047) 0.566 (0.0071) 0.529 (0.0072) 0.488 (0.0075)

GDC 0.662 (0.0026) 0.614 (0.0034) 0.587 (0.0032) 0.601 (0.0052) 0.553 (0.0042) 0.528 (0.0046) 0.554 (0.0058) 0.527 (0.0051) 0.483 (0.0054)

EU-GNN 0.665 (0.0012) 0.619 (0.0016) 0.589 (0.0011) 0.615 (0.0027) 0.576 (0.0033) 0.542 (0.003) 0.592 (0.0042) 0.536 (0.0043) 0.51 (0.0046)

BACE

GCN 0.704 (0.0054) 0.653 (0.0059) 0.615 (0.005) 0.632 (0.0084) 0.583 (0.0076) 0.525 (0.0087) 0.604 (0.0102) 0.543 (0.0106) 0.5 (0.0107)

GAT 0.708 (0.0055) 0.655 (0.0045) 0.616 (0.0057) 0.631 (0.0089) 0.575 (0.0089) 0.545 (0.0081) 0.603 (0.0108) 0.548 (0.011) 0.497 (0.01)

GIN 0.712 (0.0044) 0.659 (0.0049) 0.62 (0.0042) 0.626 (0.0094) 0.588 (0.0084) 0.536 (0.0089) 0.606 (0.0106) 0.55 (0.0113) 0.504 (0.0113)

Bayesian GCN 0.709 (0.003) 0.655 (0.0032) 0.617 (0.0022) 0.642 (0.0059) 0.586 (0.0058) 0.553 (0.0057) 0.629 (0.0076) 0.566 (0.0071) 0.531 (0.0079)

BGNN-AE 0.713 (0.0034) 0.66 (0.0027) 0.621 (0.0034) 0.642 (0.005) 0.596 (0.0045) 0.558 (0.0057) 0.628 (0.0077) 0.572 (0.008) 0.528 (0.0078)

GDC 0.712 (0.0018) 0.661 (0.0022) 0.619 (0.0028) 0.656 (0.0055) 0.611 (0.0052) 0.562 (0.0047) 0.641 (0.0049) 0.582 (0.0056) 0.535 (0.0053)

EU-GNN 0.726 (0.0014) 0.664 (0.0018) 0.624 (0.0018) 0.681 (0.0033) 0.623 (0.0033) 0.575 (0.0032) 0.651 (0.0046) 0.593 (0.0047) 0.548 (0.0042)

TOX 21

GCN 0.788 (0.0048) 0.744 (0.0048) 0.707 (0.0058) 0.699 (0.0086) 0.658 (0.0081) 0.618 (0.0082) 0.676 (0.0106) 0.635 (0.0109) 0.601 (0.011)

GAT 0.786 (0.005) 0.743 (0.0041) 0.707 (0.0044) 0.699 (0.0092) 0.663 (0.0083) 0.631 (0.0081) 0.686 (0.0109) 0.636 (0.0098) 0.597 (0.0112)

GIN 0.791 (0.0041) 0.747 (0.0051) 0.711 (0.004) 0.704 (0.0084) 0.663 (0.009) 0.639 (0.0078) 0.686 (0.0105) 0.637 (0.0096) 0.607 (0.0103)

Bayesian GCN 0.788 (0.0024) 0.744 (0.0029) 0.707 (0.0026) 0.721 (0.0048) 0.673 (0.0047) 0.635 (0.0046) 0.707 (0.0072) 0.647 (0.007) 0.621 (0.0069)

BGNN-AE 0.789 (0.004) 0.745 (0.0034) 0.708 (0.0025) 0.717 (0.0046) 0.681 (0.0057) 0.638 (0.0054) 0.706 (0.0079) 0.658 (0.0072) 0.62 (0.0072)

GDC 0.789 (0.0021) 0.749 (0.0032) 0.714 (0.0031) 0.724 (0.0053) 0.693 (0.0046) 0.654 (0.0048) 0.712 (0.005) 0.664 (0.0053) 0.632 (0.005)

EU-GNN 0.793 (0.0017) 0.758 (0.0027) 0.718 (0.0008) 0.745 (0.0034) 0.711 (0.0035) 0.669 (0.0032) 0.716 (0.0039) 0.674 (0.0044) 0.641 (0.0039)

The results are obtained from 10 individual runs for every setting. The best is highlighted in bold. The percentage means the rate of noise added to the dataset.
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A B C

FIGURE 2

The misclassification performance on graph classification. The x-axis represents the False Positive Rate, and the y-axis represents the True Positive

Rate. (A) BBBP. (B) BACE. (C) TOX 21.

• BACE: The BACE dataset provides quantitative (IC50) and

qualitative (binary label) binding results for a set of inhibitors

of human b-secretase 1 (BACE-1) (Subramanian et al.,

2016). This dataset contains a collection of 1,522 compounds

(graphs) with their 2D structures and binary labels.

• TOX21: The “Toxicology in the 21st Century” (TOX21)

initiative created a public database measuring the toxicity of

compounds. The original dataset contains qualitative toxicity

measurements for 8,014 compounds (graphs) on 12 different

tasks, here we selected the NR-ER task, which is concerned

with the activation of the estrogen receptor (Mayr et al., 2016).

4.1.2 Compasion methods
In this work, we analyze the uncertainty of explanation

generated in the graph classification task. We analyze the

explanation uncertainty with respect to both aleatoric uncertainty

and epistemic uncertainty with two categories of methods:

• General GNNs that do not consider quantifying uncertainties:

(1) GCN (Kipf and Welling, 2016) is the classical graph

neural networks that specialize in learning representations and

patterns in graph-structured data, (2) GAT (Veličković et al.,

2017) leverages attention mechanisms to weigh and aggregate

neighboring node information effectively, (3) GIN (Xu et al.,

2018) is a powerful graph neural network architecture

designed to capture intricate structural information by

considering node and edge attributes for graph representation

learning.

• GNNs with uncertainty quantification mechanisms: (1)

Bayesian GCN (Pal et al., 2019) is a novel approach

that combines Bayesian inference and non-parametric

graph learning techniques to improve the robustness and

interpretability of GNNs, (2) GDC (Hasanzadeh et al.,

2020) proposes a unified framework for adaptive connection

sampling that generalizes existing stochastic regularization

methods for training GNNs, (3) BGNN-AE (Munikoti et al.,

2023) proposes a unified framework to measure the aleatoric

and epistemic uncertainty for GNNs.

TABLE 2 Explanation misclassification detection performance on BBBP

dataset.

Method Node
ACC

Node
AUC

Edge
ACC

Edge
AUC

BGCN 0.715

(0.0033)

0.678

(0.0041)

0.844

(0.0027)

0.803

(0.0036)

BGNN-AE 0.722

(0.0043)

0.687

(0.0045)

0.852

(0.0038)

0.825

(0.0035)

EU-GNN 0.746

(0.0015)

0.703

(0.0017)

0.877

(0.0017)

0.846

(0.0021)

The results are obtained from 10 individual runs for every setting. The best is highlighted in

bold. The percentage means the rate of noise added to the dataset.

4.1.3 Implementation details
In this paper, our method is implemented in PyTorch. The

decoder network is a three-layer feed-forward network (FNN) with

a hidden size of 512, 256, 128, and the Sigmoid activation function.

The mean operator is utilized as the readout function and the

activation function is Softmax. For optimization, we use the Adam

optimizer (Kingma and Ba, 2014) with a learning rate of 0.001 for

all the baselines. The node-level explanation is calculated by the

Grad-CAM formulation, and the edge-level explanation is specified

following the gradient-based formulation in Gao et al. (2021). All

experiments are repeated 10 times for each method, and we report

the average results and the standard deviation in the following

quantitative analysis.

4.1.4 Evaluation metrics
Since we aim at the general graph classification problem. To

this end, we introduce three fundamental classification metrics,

carefully chosen to evaluate the methods in a comprehensive

manner: (1). Accuracy (ACC): ACC serves as an intuitive

performance metric to assess a model’s effectiveness in

distinguishing different graph structures. (2). F1 score (F1):

Given the potential class imbalance in graph classification tasks,

the F1 score, as a harmonic mean of precision and recall, offers

a more balanced evaluation of a model’s ability to correctly

classify graphs while minimizing both false positives and false

negatives. (3). Area Under Curve (AUC): AUC quantifies a
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model’s discriminative power between different graph classes, with

higher AUC values indicating superior classification performance

irrespective of varying class distributions.

4.2 Graph classification performance
analysis

To make a trustworthy prediction explanation, the first step

is to analyze the prediction accuracy. Following the experiment

setup in Munikoti et al. (2023), we manually add white noise (i.e.,

aleatoric uncertainty) to the test data and see how each model

resists the perturbation. Specifically, we add noise (sampled from

Gaussian Distribution) randomly to a portion of nodes’ features

(i.e., 0, 5, 10%) and demonstrate the performance comparison on

three molecule classification datasets.

According to Table 1, our proposed EU-GNN constantly

achieves the best performance among all GNN models in three

molecule datasets. To be more specific, without any perturbations

(0%), our proposed EU-GNN can already surpass other methods.

For example, EU-GNN achieves the best results in all three datasets

by excelling other baselines on the most 1.8% in the BACE

dataset. With gradually adding perturbations, our method still

achieves the best classification accuracy and guarantees robustness.

Notably, Compared with the optimal baseline, EU-GNN achieves

the improvement of 5.8 and 3.9% under 5 and 10% perturbation,

respectively. The variance of 10 rounds of experiments on all

datasets is <0.002. The performance achievement is mainly due

to the unified uncertainty measurement and data-based parameter

generation reducing the risk of overfitting. An interesting finding is

that state-of-the-art GNN with UQ, BGCN, and BGNN-AE do not

always outperform GIN in low-noise conditions. This may benefit

from the ability of GIN to extract graph structure information,

while the introduction of randomness affects the accuracy of BCGN

and BGNN-AE.

4.3 Explanation uncertainty measurement

To evaluate the quality of the measured uncertainty, we

conduct themisclassification detection experiment. Specifically, the

misclassification detection experiment involves detecting whether

a given prediction is incorrect using an uncertainty estimate. The

misclassification detection experiment is used as an application to

test the performance of our method. Intuitively, if the explanation

of the prediction is wrong, our model should give a relatively higher

uncertainty score. Conversely, our model should give a lower

uncertainty score for those correctly classified samples. We regard

all misclassified samples as positive samples, use the uncertainty

score output by the model as the score and draw the ROC curve.

Figure 2 shows that our EU-GNN outperforms other UQ for GNN

methods with improvements of 11.9, 8.5, and 19.7% on BBBP,

BACE, and TOX21 datasets, respectively. The results prove that for

misclassified samples, our method has a good recognition ability

based on uncertainty measurement. Further, we decouple the total

uncertainty into aleatoric uncertainty and epistemic uncertainty. It

is clear that both aleatoric uncertainty and epistemic uncertainty T
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FIGURE 3

Visualization of explanation uncertainty on molecule samples. For human notation, dark nodes and edges represent important explanations. For

EU-GNN, deeper nodes and edges represent greater uncertainty.

exhibit excellent misclassification detection capabilities. Moreover,

we observe that the performance of aleatoric uncertainty is

better, which indicates the importance of conducting explanation

uncertainty based on aleatoric uncertainty. Such a discerning

distinction in uncertainties facilitates an enriched understanding,

aiding in not only enhancing the predictive model but also in

providing a potential for explanation analysis.

4.4 Uncertainty explanation performance

As depicted in Table 2, we employ the public human-annotated

explanations for the BBBP dataset from Gao et al. (2021) to assess

the explanation uncertainty of our model. Specifically, for each

molecule, we take the mean value of the calculated node-level and

edge-level saliency maps. We then normalize these values to a 0–

1 range and use 0.5 as the threshold for explanation classification.

Subsequently, we perform explanation misclassification detection

leveraging both measurement and structural uncertainties. For

BGCN and BGNN-AE, we directly employ the Grad-CAM

output on the node and edge feature maps and compute the

variance to represent uncertainty. The results indicate that EU-

GNN provides a more accurate and consistent performance in

explanation misclassification detection compared to other UQ for

GNN methods, underscoring the effectiveness of our explanation

uncertainty.

4.5 Ablation study

We further conduct the ablation study to investigate the

importance of the proposed components of EU-GNN. We

consider two variants: (1) EU-GNN-NT represents EU-GNN

without reversible transformation. (2) EU-GNN-NV removes

the Decoder and directly optimizes the parameters during

training. The results shown in Table 3 prove the necessity of

our proposed components. Particularly, EU-GNN-NT outperforms

its counterpart albeit exhibiting a tangible limitation primarily

attributed to its inability to accurately capture data fluctuations,

which ostensibly hampers its predictive prowess in scenarios

characterized by volatile data points. Moreover, EU-GNN-NV,

even though it degenerates into a conventional GCN post the

Decoder’s removal, the intrinsic incorporation of the reversible

transformation fortuitously ensures it maintains a commendable

performance, especially when confronted with datasets suffused

with high noise levels. Thus, it outperforms the benchmark GCN

under, further corroborating the imperative role of the reversible

transformation in safeguarding model robustness and enhancing

performance efficacy.

4.6 Visualization

Finally, we visualize three samples to demonstrate the

effectiveness of both measurement uncertainty and structural

uncertainty in detecting misclassification explanations. As depicted

in Figure 3, it’s evident that our explanation uncertainty effectively

identifies incorrect explanations. Taking a deeper dive into the

specificities, consider sample 1: the measurement uncertainty

notably brings to light an erroneous identification, wherein two

carbon atoms situated on the furan were mistakenly recognized as

valid structures with regard to barrier permeability. Furthermore,

the structural uncertainty embedded within EU-GNN comes

to the fore in sample 3: it projects a heightened uncertainty

for the furan and its interconnected edges. Notably, when

juxtaposed with human annotations, none of these highlighted

structures were deemed valid constructs, thereby underpinning

the precision and applicability of our model in discerning

and subsequently spotlighting the anomalies in classification

explanations.
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5 Conclusion

In this paper, we propose a novel framework called

EU-GNN, which is the first to quantify uncertainties of

explanation on graph classification problems. EU-GNN

is a unified framework to calculate different uncertainties

simultaneously, in which we add the measurement uncertainty

and structure uncertainty designed for graph data. Through

the parameter distribution learned from the data, EU-GNN

achieves to provide accurate uncertainty measure without prior

knowledge. Meanwhile, our method can incorporate any GNN

explanation techniques to measure explanation uncertainty.

Extensive experiments on real-world datasets demonstrate

the effectiveness and robustness of EU-GNN. Besides, our

method shows superiority in measuring the uncertainties

of explanation.

Future work can explore the following three directions:

(1) Future research can further explore the impact of

different types of uncertainties on GNN interpretability.

For example, model structure uncertainty and data quality

uncertainty, and study how they individually or jointly affect

the interpretability of GNN. (2) Future research can focus

on reducing the uncertainty faced in the GNN interpretation

process. This may be achieved by creating new explanatory

models that are able to minimize the impact of uncertainty

while maintaining high interpretability. (3) Consider extending

the EU-GNN framework to node classification tasks and

large-scale graphs while maintaining accurate quantification of

uncertainty.
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