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With the increase in available data from computer systems and their security

threats, interest in anomaly detection has increased as well in recent years. The

need to diagnose faults and cyberattacks has also focused scientific research on

the automated classification of outliers in big data, as manual labeling is di�cult

in practice due to their huge volumes. The results obtained from data analysis can

be used to generate alarms that anticipate anomalies and thus prevent system

failures and attacks. Therefore, anomaly detection has the purpose of reducing

maintenance costs as well as making decisions based on reports. During the last

decade, the approaches proposed in the literature to classify unknown anomalies

in log analysis, process analysis, and time series have been mainly based on

machine learning and deep learning techniques. In this study, we provide an

overview of current state-of-the-art methodologies, highlighting their advantages

and disadvantages and the new challenges. In particular, wewill see that there is no

absolute best method, i.e., for any given dataset a di�erent method may achieve

the best result. Finally, we describe how the use of metaheuristics within machine

learning algorithms makes it possible to have more robust and e�cient tools.
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1. Introduction

By anomalies, we mean values that deviate significantly from the distribution of a dataset

or events that do not conform to an expected pattern. Anomalies can be caused by errors,

system tampering, or novelties such as never-observed events. The detection of anomalies

can be done by setting a decision threshold that allows an objective criterion to separate

the outliers from the normal values, but on large volume data, this or the application of

traditional methods becomes quite impractical if not impossible. Anomaly detection (AD) is

applied in various fields such as log analysis, industrial control systems, diagnostic imaging,

cybersecurity, and network monitoring. For instance, identifying medical anomalies allows

for the provision of preventive treatments; the analysis of irregular images, videos, and

audio has a great social impact because it also allows for the identification of identify fraud,

illicit behavior, or fake users on social networks. In log analysis, where the goal is to find

text that explains the nature and reason of the problem, the significant challenge comes

from unstructured log data and messages differing in format. Creating a model based on

historical data that identifies the normal behavior and/or values of a system allows for the

establishment of a predictive maintenance program, the control or mitigation of threats and
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thus the reduction of financial losses due to fraud or failures.

Anomalies can be identified through content-based, time-based,

or connection-based analysis. Choosing the right model for the

context and data to be analyzed presents a difficult challenge, as

inefficient anomaly detection could generate false alarms or ignore

problems, labeling them as normal behavior. In this work, we

illustrate the advantages and limitations of each technique used in

AD. Our review started from our research interests and, following

keywords such as “anomaly detection; intrusion detection; machine

learning in anomaly detection; and metaheuristics in anomaly

detection,” we believe it covers the relevant literature, both in

journals or conference proceedings, in a fairly adequate, balanced,

and unbiased manner.

The paper is organized as follows: In Section 2, we will describe

various machine learning methods, along with their variants,

which are commonly used to detect fast or even in real time

anomalies that could affect the proper functioning of an industrial,

automotive, cyber, or space system; Section 3 briefly introduces

some well-known metaheuristics and shows how they can be

employed to optimize machine learning in choosing parameters

and hyperparameters and in discovering anomalies in big data.

In Section 4 we will focus on one specific case study that shows

a way to further improve the performance of existing machine

learning methods for anomaly detection by using metaheuristic

algorithms, and in particular the accuracy of a neural network

for anomaly detection. Finally, in Section 5, the conclusions are

presented and possible future research is addressed.

2. Machine learning and anomaly
detection

Let us now briefly describe some of the machine learning

methodologies applied to AD in different sectors.

We will start by reviewing some basic notions on neural

networks. In a neural network, also called multilayer perceptron,

the set of neurons or nodes that receive information from the

outside represents the input level; the hidden levels are formed by

internal neurons that share the same information of the same level

and the output level at which neurons transfer already processed

information. When the signal flow reaching the nodes of the

network is multiplied by the respective weights, the weighted

sum of each input signal is added to a threshold value called

bias and evaluated by the non-linear activation function. Those

usually used in artificial neural networks are the softmax function

for the multi-label models and the sigmoid function for binary

classification.

In more detail,

• the softmax function takes as input a vector of n real

numbers and turns it into a probability distribution, i.e., n

probability values proportional to the exponentials of the

input numbers. In other words, before applying softmax, the

vector components could be >1, or they might not sum to 1,

or they might even be negative values. After applying softmax,

each value will be in the interval (0, 1) and the sum of all values

will be 1 and so that they can be interpreted as probabilities.

• the sigmoid function returns the weighted sum of inputs

passed through an activation function and this output serves

as an input to the next layer.

The training of the neural network serves to adjust the weights

between the nodes and the bias so that the result provided is as

close as possible to that of the ground truth. Therefore, the training

phase is considered as an optimization problem (with the choice of

suitable parameters), where we want to obtain the minimum value

of a loss function. The appropriate hyperparameters to choose are

concerned both with the structure of the neural network and with

its training.

The architecture of a convolutional neural network (CNN) is

formed by fully connected layers, pooling layers, and convolutional

layers and its performance is influenced by the choice of number

and size of these or other hyperparameters. Choosing them

manually is expensive both in terms of time and hardware;

therefore, methods such as the grid search, random search, and

Bayesian optimization are used. The first requires a large number

of combinations to test and evaluate the choice of hyperparameters,

the second works with a random combination but it is suitable

for small datasets, and the third performs well with a low

number of dimensions.

2.1. Industrial control systems

In industrial control systems (ICS), the timely detection of

anomalies in process dynamics requires strategies capable of

signaling failures, attacks, or misconfigurations in real time and

on a large scale. In fact, an anomaly in the physical components

of an ICS could lead to unacceptable service interruptions or a

risk to people’s safety. Fortunately, the operation of an industrial

plant follows a generally stable behavior as the data is correlated

to the design specifications. Moreover, by using machine learning

techniques and imposing spatial and temporal thresholds relating

to the operation of the plants, we can limit the computational

complexity. The experiments in Raman et al. (2021) were based on

a real-time plant and a state of the art testbed called the Secure

Water Treatment (SWaT). Sensor measurements were processed

continuously and the reference model, which takes into account

component aging and the performance lag of an ICS, was updated

at regular intervals. In fact, the work showed that supervised

learning algorithms, unlike unsupervised ones, based on historical

data return a smaller number of false alarms, but on new data

they fail to identify new anomalies. By testing various machine

learning approaches on SWaT data, a semi-supervised detection

technique based on multilayer perceptron (MLP) was found to be

the best compromise.

In addition to the detection of anomalies, the control of

industrial plants must consider the analysis of failures. It is difficult

to recognize anomalies that have never occurred or to distinguish

between different types of faults, especially when the working

conditions are variable or the data is influenced by noise, which

causes intraclass variance of the raw data and, in turn, degrades

model performance. Manual extraction of failure characteristics

is time consuming and subjective. This influences maintenance
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decisions, and relying only on previous knowledge of the plant

is limiting. Huang et al. (2022) proposed a monitoring method

that combines fault and anomaly detection with metric learning

that avoids intraclass interference. The data are preprocessed by

transforming them so to make them uniform in format and

normalizing them to avoid large differences between them. The

distance used to measure the similarity between the data is that

of Mahalanobis (De Maesschalck et al., 2000) and, introducing the

multicentric loss, features with small intraclass distances and large

interclass distances are extracted. Features are mapped from a high-

dimensional to a low-dimensional space, and the center of each

found category is computed. Finally, the interclass loss, defined as

the distance of each feature from the centers, and the interclass

distance, the distance between centers, are taken into consideration

and if the analyzed data belong to the known category of the

training model, they are labeled as faults, otherwise as anomalies.

In the training phase, the maximum distance from the centers is

chosen as a decision-making threshold for identifying anomalies.

The fault tracing module consists of a fully connected level and a

softmax function that returns the probability that the input belongs

to different features. Adam optimization algorithm (Kingma and

Ba, 2015) was chosen in the learning process while the Silhouette

score (de Amorim and Hennig, 2015) was used to evaluate the

separation and cohesion between the clusters. Thanks to this, it

was confirmed that multicentric loss gives better clusters, with

similar data grouped together and well separated from those with

different labels.

2.2. Industrial cyber-physical systems

Industrial cyber-physical systems (CPSs) allow the automation

of large-scale production and distribution by connecting

heterogeneous infrastructures together. Since remote access,

cloud services, and applications used by CPSs are used in cyber-

attacks, there are numerous vulnerabilities that can be exploited.

Often, also because of an insufficient number of examples of

high-quality attacks, the adopted security measures are poor

and, therefore, intrusion detection schemes are necessary in this

context. For this purpose, Li et al. (2021) developed DeepFed,

based on a federated learning framework and a convolutional

neural network with a gated recurrent unit (CNN-GRU). In

this system, each industrial agent trains a local deep learning

model on its own data (100 k entries with 26 parameters) and

communicates with the cloud server, which through multiple

iteration cycles learns the parameters for the common intrusion

detection scheme and updates them. In the proposed Deep

Learning model there is also a multilayer perceptron (MLP)

module, consisting of two fully connected layers and a dropout

layer that solves the overfitting problem. Finally, a softmax layer

distributes the probability values of the predicted classes (different

attacks or normal operations of the CPS). The performance of the

proposed model was evaluated on various types of cyberthreats,

showing that, with a reasonable number of communication

cycles, the results in terms of accuracy and precision stabilize.

DeepFed outperforms the local patterns of each agent and is

also more effective than the state-of-the-art patterns of federated

learning frameworks.

Among the CPS we mention, the modern automotive

vehicles in which the hardware and software components are

in communication with each other and an on-board computer

must be monitored to identify anomalies. In the controller

area network (CAN) used in programmable cars there is no

authentication mechanisms and message encryption; therefore, an

intrusion detection system (IDS) must be used to protect the

network. An IDS system is responsible for monitoring traffic and

alerting when anomalies such as known attacks or suspicious

activity arise. CANnolo (Longari et al., 2021) is an IDS that

analyzes CAN data streams during the training phase and detects

anomalies using long short-term memory (LSTM)-autoencoders

(Hochreiter and Schmidhuber, 1997; Yu et al., 2019). Autoencoders

are unsupervised neural networks that compress input messages

(and subsequently decode them), thus removing data noise and

unnecessary information. During communication with a CAN,

states, sensor values, and commands are transmitted. Although it is

not possible to know the sender of themessage, they are transmitted

in a regular sequence, therefore they can be treated as a time series

to be predicted. The dataset used to test this IDS included 10million

real-world packets retrieved from an Alfa Romeo Giulia Veloce.

Malicious data differs from the ideal model created by LSTM and

would be labeled as an anomaly. Through deep learning, the traffic

sequence is in fact reconstructed, but using only legitimate data.

To identify an anomaly, the reconstruction error between the real

sequence and the modeled sequence is compared. An anomaly

score, which represents the probability that an event is anomalous,

is derived from the Mahalanobis distance between the observed

data and the data in the model. CANnolo has been tested on a

set of real urban and highway driving data of a car with an on-

board computer (electronic control unit). To evaluate the system

performance against real attacks, malicious messages are injected

by sending commands, random data, ECU (Electronic Control

Units) silencing, or repeating states previously transmitted. Unlike

other CAN approaches, it does not require semantic knowledge of

the data and no attack data has been used to train the detector, but

it has the limitation of being relatively slow.

Another model for CAN packet intrusion detection was built

by Boumiza and Braham (2019), using hidden Markov models

(HMM). HMM have been applied in other fields such as speech

recognition and computer vision and are effective for dealing with

non-linear and time-varying systems. The attack hypothesis is that

the attacker is able to access the network to know the IDS and

the commands sent. Therefore, having knowledge of the regular

communication flow and of the specific packets of the car model to

be hacked, the attacker may modify the data field of the messages.

The IDS system parameters are trained by extracting characteristics

from the CAN messages and the constructed transition sequences

are compared with the real data. The anomaly detection of

the proposed IDS is in real time and, unlike signature-based

detectors, it does not need many updates to identify already known

attacks. Feature extraction from CAN packets occurs offline during

training via the HMM architecture. It consists of hidden states

and observable features and the transition between these is given

by a probability distribution. The state transition from i to j is
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the probability of being in state i at time t and transitioning into

state j at time t+1. By setting a decision threshold, if the real

flow misaligns beyond this value with respect to the reconstructed

sequence, the analyzed data is identified as an anomaly. In fact, each

ID is responsible for delivering certain types of messages and, when

the mode of action changes, the generated packets are probably

illegitimate. To test this approach, multiple CAN packets recorded

on a real vehicle for 24 h over several months were evaluated. The

proposed IDS shows good performance with a higher detection rate

than deep neural networks (DNN) and returns a lower number of

false alarms in the same comparison. If we increase the number

of parameters of the HMM, i.e., the number of mode values,

the performance gets worse, and this is the limitation of this

method.

2.3. Machine learning algorithms and IDS

In Saranya et al. (2020), we see the comparison of the

performances of three supervised machine learning algorithms to

detect intrusions on simulations of a military network (KDD Cup

1999 dataset, Lee et al., 1999). It is observed that the results depend

on the nature and size of the data, and that in the case studied

the random forest (RF, in Li et al., 2016) algorithm outperformed

linear discriminant analysis (LDA) and classification regression

trees (CART, in Breiman, 1984). The more trees present in the

model, the higher the accuracy of RF, although it increases the

probability of overfitting.

Tait et al. (2021) compared six ML methods applied to

the UNSW-NB15 (Moustafa and Slay, 2015) and CICIDS2017

(Sharafaldin et al., 2018) datasets and showed that in multiclass

classification (different attack types and benign traffic), k-nearest

neighbor (K-NN) gives more accurate results, while in binary

classification (intrusions and normal values), RF provides higher

accuracy scores. All the techniques used are supervised, except

the k-means, which is an unsupervised clustering algorithm

and misclassified almost half of the data (binary classification)

and a third with multiclass labels, thus being considered the

worst approach. The datasets were large in volume and required

a reduction of the attributes based on the evaluation of the

information gain through the Weka tool: the advantage lies in the

impact on the computational power of the ML algorithms on the

preprocessed data.

A network intrusion detection system can generate alerts based

on signatures, anomalies, or a combination of the two. The first is

a static analysis, limited to known intrusions; the second is based

on the normally observed traffic. Song et al. (2020) presented a

deep learning-based IDS of network traffic via a deep convolutional

neural network (DCNN). During the training phase, the labeled

CAN messages are exploited for offline supervised learning while

the real communication flow is examined in the detection phase

by classifying the messages into two classes: normal or anomalous.

The structure of the Inception-ResNet model was used, but the size

and levels of the DCNNwere reduced in order not to delay message

collection and attack detection. This system protects against attacks

such as injections of manipulated messages, but does not overload

the network as happens when using signatures with secret keys. In

addition, training is less expensive than a deep belief network-based

model (DBN) and the proposed IDS has significant detection

performance.

Saboori et al. (2010) showed an application of Apriori (Agrawal

et al., 1993), a data mining algorithm, to generate meaningful

relationships between available data and network attacks. In this

way, it is possible to make predictions of the type “if there is an

antecedent, then there is a consequent with a certain probability.”

These are called association rules and can be used to check for

antecedent-consequent implications for coexisting anomalies in

at least a fixed percentage of the data. Apriori represents an

advantageous method as it is able to extract frequent patterns from

large volumes, which would be impractical to identify with brute

force methods and using distance metrics for comparisons.

2.4. AD and urban tra�c

Anomaly detection can also be applied in urban informatics.

The approaches used in the literature for the detection of traffic

anomalies are divided into clustering, classification with supervised

and unsupervised learning, and statistical detection algorithms

based on the nearest neighbor. In Zhu et al. (2018), London

vehicular data was analyzed so as to evaluate an incident prediction

method. Traffic can be divided into recurring and non-recurring;

the former is linked to congestion at peak times and weekends,

and the latter is classified as an anomaly linked to accidents,

dangers from adverse weather conditions, or unforeseen works.

Vehicular flows were recorded by inductive loop detectors (ILD),

and contained recurring traffic and unplanned incidents during the

study period from 1st January 2015 to 24th March 2015. The aim of

predicting non-recurring traffic as accidents is to mitigate vehicular

congestion, obtaining economic, and environmental benefits for

road drivers, as well as avoiding further negative impacts on safety.

It also makes it possible to manage traffic to quickly restore regular

flow. While other works in the literature are limited to predicting

accidents in specific straight sections such as tunnels or highways,

the described method pays attention to complex road networks.

Anomaly detection has also been applied to video and object

recognition so as to tag anomalous trajectories, such as u-turns,

unusual stops, and driving in the wrong direction. A framework

named ELM-HTM was presented in Sekh et al. (2020) for the

unsupervised classification of time series based on extrememachine

learning (ELM, in Huang et al., 2012) and hierarchical temporal

memory (HTM, in Wu et al., 2018). The latter learns the low-

level characteristics of the model, and the former the high-level

similarities. Key challenges in this context include the noise and

changing nature of data in the real world, the limited availability

of labeled data, and the necessity for the amount of learning

time to be small enough so to apply the online method. ELM

is a very simple model that requires little data and takes less

time to learn than traditional deep learning methods. It has the

disadvantage of assigning random values to the weights of the

hidden layers. To avoid this, statistical weights are assigned from

probability distributions using the restricted Boltzmann machine

(RBM, in Pacheco et al., 2018). HTM has a structure made up

of local context, feedback, and flashfoward, and transforms the

input pattern into spatio-temporal mini-columns with reduced

data. A strong feature of HTM is that it can be trained in real
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time by inputting the transformed sequences into sparse distributed

representations (SDR). Subsequently, a spatial pooler (SP, in Cui

et al., 2017) is applied to reduce the complexity of the trajectory, and

the DBSCAN algorithm (Ester et al., 1996) is also applied to set the

number of hidden levels of ELM equal to the number of obtained

clusters. The highest level of the architecture is softmax which

returns the index of normality; the similarity of the space-time

sequences is evaluated with the overlap with the model. Normality

distance is determined through DTW barycenter averaging (DBA,

in Petitjean et al., 2011). Finally, the sequences of anomalous

points are classified as anomalous trajectories in the output and

a normality score is associated to the sequences that fall within a

chosen threshold. Evaluating the obtained results, it is highlighted

that the training time is significantly shorter than that for LS-SVM

(Chen and Lee, 2015), ELM, HTM, and LSTM, even if the number

of samples increases.

Short text messages from the social media Twitter were used

by Zhang et al. (2018) to detect anomalies in road traffic using a

deep learning approach. The time frame under investigation, 1

year, included about 3 million tweets geolocated in the New York

and Northern Virginia areas and a list of incidents published by the

Department of Transportation was used as ground truth. Since the

data was noisy, text mining methods were applied to extract key

terms related to traffic accidents, called tokens. From a collection

of 100 newspaper articles discussing accidents, the most frequent

words describing them were selected and then candidate tweets

containing these terms were extracted. Some texts may contain

grammatical errors, therefore terms similar to the keywords were

checked and tagged manually. Furthermore, all derived words

were transformed into their common linguistic root. Regarding the

spatial location and the date and time of the tweets, a space-time

tolerance was set as the incidents took 1–2 h to resolve and users

may have published their posts after having moved a few miles

away from the incident. After mining tokens in candidate tweets, a

deep belief network (DBN) was applied and the results compared to

other supervised deep learning methods. Furthermore, to capture

relationships between different tokens, the associations rules of the

Apriori algorithm were extracted, showing that the accuracy in

detection was thus improved. When comparing the findings with

the official incident register, the accuracy obtained from the tweets

was 85%, which exceeds that of SVM, LSTM, and supervised latent

Dirichlet allocation (sLDA). The performance further improved

when the number of tokens in the used model was increased. More

clusters of tweets in the same area led to the higher likelihood

of true positives. As for false positives, they could be due to

geolocation errors. For minor accidents that did not require the

intervention of the traffic police, it emerged that 80% of the tweets

talking about accidents could be linked to these anomalies even if

they did not appear in the official register. Twitter’s textual data are

effective due to their timeliness, but they cannot constitute a main

source for detection, rather they are to be integrated with other

traditional ones.

2.5. AD and crowd modeling

Cavallaro et al. (2020) proposed a multi-agent system aimed

at travel planning to recommend, according to preferences, highly

visited places, or avoid crowds. A probability algorithm estimates

the number of people who move around the city, staying for a

significant time in areas called staypoints (SPs). The collaboration

system is based on the choices of other users (collaborative filtering)

and is supported by a large amount of data, sent to a server that

processes the occupied positions. It was tested on the trajectories

formed by a total of 11 million GPS points, and the routes are

divided into six daily time slots in order to characterize the

movements and stops of people at different times of the day.

Starting with the map of San Francisco, the space was divided

through a grid of equal square cells, and the SPs are projected

onto these. The greater the number of SPs falling into the same

cell, the more crowded it will be considered. The algorithm labels

cells with a high probability of visiting and large crowding (greater

at a fixed density) with 1 and those a low probability of visiting

with 0. The estimate is based on the co-occurrence of places (and

predictable routes between SPs) highly frequented by a number of

people exceeding a threshold. The application that acts as an agent

tracks the movements of the users and has the purpose of alerting

the visitor when the preferred destinations are overcrowded.

After having identified the trajectory flows (i.e., spatio-temporal

sequences of different vehicles) common to a considerable number

of users and the relative destinations, these are compared with the

overcrowded SPs. If a considerable number of users go to an area

not identified as an SP and stop there, the flow in question will be

considered an anomaly as it deviates from the system’s forecast.

The analysis of the images for the identification of anomalous

behaviors and for the estimation of the crowd density is extremely

important in video surveillance because it allows the possibility

to alert human operators and to design public spaces respectively.

Chaker et al. (2017) developed an unsupervised method for

anomaly localization in crowd analysis using a social network

model (SNM), which is represented as a graph in which the

nodes are people and the links are the social relationships between

individuals. The video frames are divided into space-time cuboids,

with a partitioning that is proportional to the density of the

crowd, and a local social network (LSN) model is created in

each of them. Spatially close nodes, within a fixed threshold,

form a connected component for the graph. To identify local

behaviors, similar characteristics such as direction and amplitude

of motion are grouped through cosine similarity, and dynamic

time warping (DTW) is used to measure velocity similarity. For

each scene, the results are stored in similarity and adjacency

matrices. Finally, the global crowd behavior is modeled with a

global social network (GSN), in which Hierarchical agglomerative

clustering unites similar LSNs from different cuboids in a time

window. Using the hierarchical partitioning scheme, some lower

level LSNs with few nodes marked as abnormal can be merged

with other higher level LSNs. Finally, global anomalies such

as those small and isolated social networks are detected and

localized in the video scenes. The approach was tested on two

video sequences generated by fixed cameras and the results

of the SNM were compared with state-of-the-art methods. In

conclusion, it is shown that other models such as the social

force model (SF, in Mehran et al., 2009), mixture of dynamic

texture (DTM, in Mahadevan et al., 2010), or the mixture of

optical flow (MPPCA, in Kim and Grauman, 2009) have a lower

accuracy in the detection and localization of crowd anomalies

than SNM.
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Cavallaro and Vizzari (2022) presented a different approach to

spatio-temporal analysis for the detection of groups of pedestrians

within a large data set. The movements are acquired by sensors

in a shopping center and, through an algorithm, the hesitation

points, which characterize the cadence of the pedestrian path,

are identified. Quickbundles (QB), an unsupervised clustering

algorithm used in tractography to bundle brain fibers, is used

to identify groups of pedestrians moving together throughout

their path. QB efficiently groups large quantities of trajectories

into pedestrian flows according to their proximity and angle

of movement (spatial similarity criterion). A subsequent phase

of the proposed algorithm instead filters the identified groups

moving together according to a temporal similarity criterion. The

anomalies highlighted by the results are of two types: groups

of pedestrians (clusters) which exceed a reasonable density of

individuals for the corridors under examination (overcrowded

areas) and spatio-temporal trajectories similar to the identified

clusters but not included in these because they are interrupted

or segmented, as they are no longer detected by sensors by

mistake. Crowd analysis is effectively managed by QB while

having minimal assumptions about the nature of the groups

and the space and supports the architectural design of the

interior environments.

2.6. AD and social networks

Anomaly detection also finds application in social networks,

in order to guarantee the security and privacy of users. However,

the growth of data represents a clear challenge. Anomalous

online activities include spreading fake news, spam, phishing,

harassing messages, and unusual/atypical behavior. Rahman et al.

(2021) proposed DT-SVMNB, a hybrid system consisting of

three cascading machine learning algorithms for the identification

of anomalous users based on extracted characteristics. Their

experiments were performed on a synthetic dataset of 20 k users

and on 10 k (real) Facebook profiles. The growing phenomenon

of cyberbullying leads vulnerable teenagers to extreme acts,

including suicide. DT-SVMNB uses the decision tree (C5.0),

support vector machine (SVM), and naive Bayesian classifier

(NBC) for the classification of depressed or suicidal users in

social networks. Initially, characteristics associated with class labels

are identified, based on the user’s profile (such as number of

friends, followers, and posts) and the content of the messages.

In the first phase, the C5.0 makes a distinction between normal

and anomalous users from the data set of social networks

and the training uses synthetic and real data. This method is

advantageous because it requires less memory than the other

algorithms and allows you to remove irrelevant attributes from

the data. In the second step, the SVM classifies the anomalous

users identified in the previous phase into happy and disappointed

users. In the last phase, the NBC extracts suicidal users from

the “disappointed users” subset on the basis of a dictionary.

The proposed approach had an accuracy of 98% on the dataset

used. Furthermore, the system provided a higher level of accuracy

in the detection of suicidal users compared to other existing

methods.

2.7. AD and climate events

Large-scale climate simulations are of great importance as

they can be used for risk management and climate change

mitigation. Racah et al. (2017) have provided a public dataset,

ExtremeWeather, which collects a simulation of extreme climate

and weather events from 1979 to 2005. Through a temporal

resolution of 3 h, more than 78 k images are available. These

multivariate data are used for training semi-supervised models,

in order to detect and localize four extreme climatic events:

tropical cyclones, tropical depressions, extratropical cyclones,

and atmospheric rivers. The ground truth labels relating to the

four types of meteorological anomalies were derived from the

Toolkit for Extreme Climate Analysis (TECA) application. As

input, 16-channel climatic images were provided for each time

slot, representing the 16 climatic variables such as pressure,

temperature, precipitation, wind, cloud fraction, and water vapor.

The model was trained with Adam. The authors implemented a

3D convolutional encoder-decoder (on dimensions height, width,

and time), showing its significantly better performance than

a 2D encoder-decoder (height and width). It is used for the

reconstruction of unlabeled data. Good and reliable predictions

have been made on the areas where extreme weather events

can occur.

2.8. AD and log analysis

The CNAF (National Center of Information Technologies)

hosts the Italian Tier-1 center, one of the eleven Tier-1 centers of the

Worldwide Large Hadron Collider (LHC) Computing Grid. It is the

IT department of the National Institute of Nuclear Physics (INFN)

that provides and maintains the computing infrastructure. In this

datacenter, a large amount of data for high-energy experiments

is securely stored and the CNAF provides support to the LHC

experiments at CERN in Geneva. The status of services used

by users is stored in specific log files, in which it is difficult

for runtime properties to be understood by manual analysis.

Therefore, it is necessary to automatically diagnose problems that

interfere with the proper functioning of the data center, detecting

anomalies in the log files based on the messages in order to

implement solutions. Identifying machine behavior patterns allows

for predictive maintenance, so as to act promptly and reduce

breakdowns and downtime. The analysis of the logs for the

anomaly detection at the CNAF was performed by Cavallaro and

Ronchieri (2021) through the invariant mining model and NLP

techniques that do not require any knowledge of the data. These

approaches have been combined for a scan of Tier-1 log messages

to help system administrators understand the health of services

and code anomalies. The challenge in this type of AD is due to

the heterogeneity of the logs that are produced; moreover, they

are semi-structured texts with timestamps that grow in size as

the operations of the machines increase. The log files are open

for writing and contain the date and time of the service activities

(with an average of 120 k lines for a daily summary), but each

software or application can use a different keyword to refer to

an anomaly. Through an NLP approach to this work, the logs
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are preprocessed, such as dictionary-based log compression and

the removal of unwanted characters. In addition, variables to be

included for learning are selected, such as date, time, hostname,

Internet Protocol (IP) address, service name, process identifier,

component name, andmessage. Through word2vec (Mikolov et al.,

2013), the keywords are mapped in space and the vectors that

represent them are compared to each other through the Euclidean

distance. The goal is to produce distance-based clusters to group

and classify the normal and anomalous events recorded by the

logs. Invariant mining is a machine learning model that is not

based on the nature of the data but that automatically highlights

the breaking of invariants. In a process, the opening of a file

must correspond to its closing, or the number of jobs of the

same type started and finished must coincide. The input of the

algorithm is an event counting matrix, built starting from the logs

that expresses the relationships between messages and originating

hosts. The output returns 1 or 0 depending on whether there

is an anomaly or not, respectively, in the message for a specific

event, and this allows the tracing of the hosts and the causes

that triggered the errors. The adopted techniques start from the

conditions of the systems with off-line monitoring and allow the

prediction of future states and the generation of alarms in real

time when the same anomalousmessages occur. The results showed

an F-measure above 86% in the detection of unusual activity at

Tier-1; thus, the approach is promising for short and long term

management.

The CNAF is one of the primary contributors of the EU-

founded IoTwins project and created a big data platform (BDP,

in Tisbeni et al., 2021) for optimized and replicable industrial

and facility management models. It focuses on the monitoring

of IoT/Edge/Cloud integrated infrastructure and on predictive

analysis of faults and support on troubleshooting. The CNAF’s

alarm system is based on Sensu and Slack. BDP is important for

the detection and the analysis of heterogeneous data from different

sources. It is an infrastructure as service that can be accessed to

perform the analysis of anomalies. BDP deals with the management

of different resources and different technologies has been developed

for the monitoring system to control the status of services at CNAF.

BDP is a reliable, extensible, scalable, and manageable platform for

the collection and analysis of big data to be offered as a service. It is a

cloud-native architecture, that can be federated with other clusters.

The users are able to visualize the data in a simple way through

an interface. The anomaly detection at CNAF greatly benefits from

BDP; through the performed clusterization, it is possible to perform

the analysis in streaming to label the new entries as they are

included in the database.

3. Metaheuristics, machine learning,
and anomaly detection

Wewill now briefly introduce some well-knownmetaheuristics

and discuss their use in discovering anomalies and the optimization

of machine learning methodologies.

In several of the examples we will overview, we will refer to the

NSL-KDD dataset (Tavallaee et al., 2009), which is an improved

version of the KDD CUP 99 dataset for intrusion detection. The

dataset comprises various types of attacks that can compromise

the security of a computer network by unauthorized individuals.

It consists of 41 features, 125, 973 records in the training set, and

22, 544 records in the test set. The attack classes are divided into

four different categories: U2R (User to Root), R2L (Remote to

Local), Probe (surveillance), and DoS (Denial of Service).

3.1. Evolutionary computation

By evolutionary computation, we mean a class of algorithms

inspired by biological evolution. Typically, they have a population-

based trial and error stochastic metaheuristic (see Fogel, 2006).

In evolutionary computation, an initial population (i.e., a set of

candidate solutions) is randomly generated and iteratively updated.

Each new generation is produced by stochastically selecting some

good solutions and removing some bad ones. In other words,

the population of solutions is subjected to natural selection and

mutation. The most widely known examples of evolutionary

algorithms are: genetic algorithms (GA, see Goldberg, 1989),

artificial immune systems (see Castro and Timmis, 2002), and

differential evolution (see Storn and Price, 1997). Most common

problems faced when designing a population-based optimization

algorithm are related to the evolutionary operators which are used

and the way the parameters are experimentally fixed, such as the

number of generations a particular solution stays in the population

(see, for instance, Di Stefano et al., 2016; Vitale et al., 2019).

3.1.1. Genetic algorithms
Genetic algorithms (GA) are well-known search algorithms

which are used to find approximate solutions to hard

computational problems, often very close to the optimal one.

Thanks to their key features, i.e., working with a population of

solutions, the ability to exploit the information discovered during

the evolution, the combination of random and deterministic

rules, the recombination of good solutions to create, statistically,

a population of better solutions (as guaranteed by the schema

theorem), and many others, GAs are well-suited to efficiently

explore the search space, especially when it is of large size. As

experimentally verified, GA’s often quickly converge toward

approximate and acceptable solutions. It is well-known and

documented in the literature that genetic algorithms and any

population-based metaheuristic in general work well when dealing

with very large instances of hard problems, that is, those instances

where exact polynomial-time approximation algorithms become,

in practice, too slow. GA’s and metaheuristics in general are

furthermore widely used in real-time optimization problems,

where time constraints are crucial, because they are able to

significantly reduce the search time. For more details, see Talbi

(2009).

In the first example of the use of GA described here, combined

with neural networks, we can see how we can manage to determine

the optimal solution in choosing the hyperparameters in a limited

number of iterations or try to converge to the global optimum

as fast as possible. Furthermore, these algorithms are also easily

deployable and parallelizable. Muhuri et al. (2020) presented an

IDS to classify the NSL-KDD dataset, through the combination
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of the GA metaheuristics with deep learning. In particular, GA

was combined for the optimal feature selection in a long short-

term memory-recurrent neural network (LSTM-RNN) model. The

hyperparameters set in the experiments concern the batch size,

epoch, learning rate, dropout, and activation function. A fitness

value corresponds to each solution, and, based on this, a list of

selected features is provided instead of a single solution. This

method performs well on big data and it obtains approximate but

acceptable results both in terms of time and in terms of quality, as

it returns the near-optimal hyperparameters in less time without

using the entire feature set. With regards to optimization methods,

the stochastic gradient descent (SGD) and Adam for multiclass

and binary classification, respectively, were chosen. Experimentally,

one can see that the former is computationally faster while the

latter requires less memory. The feature set selection is a difficult

task, because the set is specific for each anomaly class and depends

on the attack scenario. It serves to eliminate insignificant features

and use the relevant ones in training. The results of their work

were compared both on multiclass and binary labels, and this

approach has a high detection rate with respect to support vector

machines (SVM, in Yan and Jia, 2018) in the first case and a

similar performance of RF in the second case. In addition, the

use of metaheuristics improved anomaly detection compared to a

pure application of LSTM. LSTM-RNN-with-GA performs better

on large data volumes when comparing its results with those on

small datasets.

In Nashville (TN), a city in the USA, 900 million records,

such as vehicle speed and traffic jam indicators were classified

by Sun et al. (2017) in order to identify traffic anomalies in

real time. Two of the open problems in this area are how to

synthetically represent data in order to process it without losing

useful information and how to augment data with labels useful

for supervised machine learning. The crossover operator, used in

GA to vary the chromosomes from one species to another, is

used in this context to increase the data for training and have

balanced classes, while the ROC curve is used to adjust the classifier.

In small intervals of time which are assumed to have the same

traffic conditions, new data with the same labels are generated.

Furthermore, the authors presented an efficient algorithm that

converts the available data into traffic condition images (TCI),

where each pixel represents a road section and its grayscale value

at the average speed therein. Three scenarios were considered to

evaluate the impact on traffic and the model used: football matches,

hockey matches, and road accidents. Each event has a unique

pattern and was used to identify anomalies that deviate from this. A

CNN is used which returns a vector in output; it indicates whether

an event is recurring traffic or not and the relative time slots, before

and after the events, which affect congestion. A random forest was

built and tested on the same data, but was surpassed for greater

accuracy and lower rate of false anomalies by the CNN. In the

hockey game scenario, both methods had more difficulty detecting

non-recurring traffic because they have less impact on traffic.

3.1.2. Immune inspired metaheuristics
The human immune system (HIS) is a natural IDS, which

distinguishes normal cells from malignant cells and in which killer

cells (NK) respond quickly to pathogenic infections by viruses

and bacteria. The behavior of the HIS has been modeled to build

an artificial immune system applicable to computers. The main

characteristics of the immune system are the ability to distinguish

self from non-self and the cloning principle. In the artificial

immune system research area, the first characteristic has produced

many algorithms, denoted as negative selection algorithms (Gupta

and Dasgupta, 2022), which have also been applied to the general

problem of intrusion detection (Singh et al., 2022) and also

anomaly detection (Saurabh andVerma, 2023). The clonal selection

principle, likewise, has inspired the design of many algorithms

obtained by setting and combining the parameters of the main

operators: (i) cloning; (ii) hypermutation; and (iii) aging. In Cutello

et al. (2010), the authors studied a large set of numerical functions

in order to understand both the search capability and the ability to

escape from a local optimal of a clonal selection algorithm.

The detection system called cyber immune system (CIS)

designed by Bejoy et al. (2022) was tested on the NSL-KDD dataset,

combining the negative selection algorithm with the positive

selection algorithm. If the CIS detector identifies a regular traffic

pattern, it is removed using negative selection. Using positive

selection, random detectors are created to detect personal data,

which are saved, otherwise an anomaly is extracted. When the

activating receptor of NK cells is activated, they strike; when their

inhibitory receptors are activated, they do not. Artificial NK cells

likewise spread through the network to detect an intrusion, and

are modeled as a non-deterministic finite automaton. For each NK

cell an activating range is defined, whereas its fitness defines the

probability of proliferation. Each NK cell can be in any six states,

denoted as passive, active, activating response, inhibitory response,

mature, and cloning, and it has a memory that stores the IDS of

detected antigen agents. The higher the fitness value, the lower

the mutation rate in the NK cell system. NK cells are initialized

to the passive state and when they encounter an abnormal system

condition, they switch to the state of activating response. If the NK’s

fitness value exceeds a certain threshold, its state becomes mature;

otherwise, it becomes passive again. Until the maximum NK

cell population reaches the mature state, cell proliferation occurs;

conversely, the cells revert to the passive state. The threshold values

and the maximum population of the algorithm are set by the

user. The Euclidean distance or the Hamming distance are chosen

to measure the proximity and therefore the affinity between the

antigens (anomalies) and the antibodies (artificial NK cells). CIS

has a small response time; therefore, it is suitable for real-time

intrusion detection and the results have a low false alarm rate.

Hosseini and Seilani (2019) combined negative selection with a

ranking algorithm in order to decrease training time and increase

its accuracy in the analysis of CICIDS2017 and NSL-KDD datasets.

Since network settings are changed periodically by an administrator

and new threats can arise, the IDS should detect anomalies in

real time. Therefore, in their work, the authors aimed for an

updated and improved IDS because it provides two different

classes of anomalous and normal data sets in the training phase.

Using the Weka tool, the characteristics were selected based on

correlation (correlation-based feature selection, CFS), i.e., those

that have the highest correlation in the prediction class. As for the

negative selection algorithm, they use the cosine similarity formula;
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automatic training occurs with the five-fold cross validation. The

machine learning model is built by an appropriate combination

of logistic regression, random forest, K-NN classifier, and decision

tree classifier. Furthermore, the use of negative selection makes

classification more effective than the use of machine learning

algorithms alone, reducing training time for the same performance.

The negative selection algorithm generates detectors and then

monitors anomalies, but has the limitation that, on large data

sizes, it leads to poor results or an excessive number of detectors.

The - distribution estimation-based negative selection algorithm

(DENSA) proposed by Fouladvand et al. (2017) has been combined

with the Gaussian mixture model (GMM, in Spall and Maryak,

1992) which obtains results in real time and interprets a large

amount of data. The parameters of the GMM are determined

according to the maximization of the likelihood, through the

expectation-maximization algorithm (EM). It is initialized using

the k-means clustering algorithm with the Euclidean distance.

GMM randomly generates a fixed number of detectors and through

an objective function chooses which will be the optimal number of

these for a future choice. In fact, the number of detectors must be

as small as possible, but in such a way as to cover the entire space.

The objective function evaluates the anomaly detection rate and

the false positive rate. The proposed algorithm was tested to detect

anomalies in archaeological sites in Silakhor, Iran, and also on the

NSL-KDD dataset. The results have been compared with that of the

V-detector algorithm and those obtained by the proposed method

are more accurate.

3.2. Swarm intelligence

By swarm intelligence (SI), we mean the collective behavior of

decentralized, self-organized systems. There are many models in

literature; in all these models, we see that SI systems consist of a

population of simple agents which interact with one another and

with their environment. Such interactions lead to a global behavior

which, externally, appears or is intelligent. Let us briefly describe

the two most famous examples:

• The particle swarm optimization (PSO) of (see Kennedy and

Eberhart, 1995) reproduces the behavior of swarms of birds

and fish. A population of particles, possibly divided into

clusters, is the set of candidate solutions. The velocity and

the position of each particle are randomly initialized. The

algorithm searches for an optimum solution based on fitness

value as a measure of quality, weighing particle components

such as inertia which affects velocity.

• Ant colony optimization (ACO; see Dorigo et al., 1996)models

the behavior and the actions of an ant colony. ACO is a

randomized search technique which could be very naturally

used in the optimization of paths through graphs.

ACO is a particular example of a general methodology which

is denoted as stigmergy (Theraulaz and Bonabeau, 1999). It

is a mechanism of indirect coordination and a form of self-

organization, through the environment, between agents. The

underlying idea is that any trace left in the environment by an

individual action has an impact on the actions and performances of

other agents. During movement, each individual releases “digital”

pheromones similar to those released by ants while searching for

food and pheromone traces counteract evaporation when many

individuals follow the same path.

Following the work in Gaspar et al. (2021), where four different

SI metaheuristics are introduced and compared, we can also

mention as examples:

• Ant lion optimization (ALO, in Mirjalili, 2015a) is also

inspired by the behavior of ants and the hunting mechanism

of the lion ant. The preys communicate with each other

through pheromones and the steps of the algorithm include

a causal initialization of the population of lion ants and preys,

a random walk, a construction of traps, trapping of the preys,

reconstruction of the traps, and elitism. For each element of

the population, a fitness value is calculated; the population is

updated and replaced by choosing the best of it as optimal. The

operator called the roulette wheel selects the ants and the lion

ant based on their fitness value.

• Artificial bee colonies (ABC, in Garg, 2014) simulates the

behavior of onlooker, scout, and employed bees. The search for

food resources must be efficient and fast to allow the survival

of the colony; therefore, it is necessary find a near-optimal

solution in the shortest possible time.

• The bat algorithm (BA; see Yang, 2010) models the behavior

of bats, which must distinguish obstacles and prey in the dark,

recognizing the various types of insects. Each bat initially

moves randomly at a certain speed and with a fixed frequency,

subsequently adjusting the wavelength of the sound waves

emitted toward the target. The algorithm then updates its

position and speed and selects the best solution as the position.

Let us now describe some applications of swarm intelligence

metaheuristics to different fields with a particular attention to

anomaly detection.

3.2.1. Bee colonies and IDS
In Korczynski et al. (2016), the authors proposed DIAMOND,

a fully distributed coordination framework for the cyber defense

of a network, inspired by the collaboration of honey bees in

search for resources (Karaboga and Akay, 2009). It has among its

advantages the ability to find anomalies quickly through a self-

organizing system and using little memory. During the collection

of nectar and pollen by bees, the constraints of the environment

change over time. For the survival of the colony during the winter

and reproduction, the bees look for the richest resources and,

once they run out of nectar and pollen, they move in search

of other resources. Their location and the level of excitement

of the bees, corresponding to the abundance of found food, are

communicated to their companions through a dance. From the

intensity of the signal, the bees decide whether to go to the site

and if satisfied, they return to the other bees to recruit them;

otherwise, they leave to locate other sites. The same behavior is

transposed into DIAMOND for attack detection: sensors cooperate

to detect new patterns through their “excitation” about a detected
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event, without sharing any sensitive information about the attack.

During the research process, DIAMOND coordination nodes

adjust their sensors autonomously and exchange energy levels

called “concern levels” between neighboring nodes, which reflect

the perceived probability of network attacks. In addition to the

detection units, DIAMOND is equipped with a coordination unit

which determines the level of concern, a function of the level of

threat it perceives, and the level of concern of the nodes. If enough

nodes, also called sensing units, agree to report an anomaly event,

it becomes a network attack model. Each detection unit uses its

own algorithm for anomaly detection with sensitivity thresholds,

which are updated dynamically and independently of the others.

The threat level is classified as low (no threat), medium (traffic

deviating from the deployment but within the threshold), and

high (attack). The detection model combines principal component

analysis (PCA), the gamma distribution, and the Kullback-Leibler

divergence (Kullback and Leibler, 1951). Furthermore, a limit traffic

speed per IP address is considered, above which potential anomalies

are reported. Sensitivity and specificity parameters, represented by

the percentage of correctly identified malicious packets and that of

legitimate packets, are calculated to evaluate the effectiveness of

the detection. Comparing these values with those obtained from

a (traditional) local reference intrusion detector, there is a 20%

improvement and a gain in information starting from when 30%

of the nodes coordinate in detecting anomalies.

3.2.2. Metaheuristics vs. fake news
Yildirim (2022) addressed the fake news detection problem

through a hybrid multi-thread (HTM) metaheuristic method, in

which a supervisor thread (SvT) monitors metaheuristic models

that are tested in parallel on different worker threads (WrT). Text

on social media is preprocessed by converting all uppercase to

lowercase, removing punctuation, and assigning a weight to each

word given by the number of repetitions of it present in the news.

Only recurring terms with a frequency above a given threshold

are chosen to be part of the search space. For each metaheuristic

algorithm, the population containing the candidates for that search

space is constructed, to which fitness values are assigned for each

one. It takes into account the similarity with the text records.

At each iteration, the metaheuristic algorithm for searching for

fake news is updated by selecting the best solution among the

candidates. The best values, gradually obtained by the WrT, are

shared on a shared object (ShO) in the multi-thread framework,

i.e., SvT and WrT communicate through the ShO. The algorithms

applied are PSO, gray wolf optimization (GWO), and dragonfly

optimization (DrO) respectively tested on data related to COVID-

19 (Koirala, 2021, dataset available in1), the Syrian civil war (Salem

et al., 2019), and daily politics (Ahmed et al., 2017). Let us briefly

describe GWO and DrO.

• GWO (Mirjalili et al., 2014) considers four types of wolves,

alpha, beta, delta, and omega, and mimics their hunting

behavior consisting of searching, encircling, and attacking the

prey. Alpha represents the best candidate for GWO, which

1 https://data.mendeley.com/datasets/zwfdmp5syg/1

however also considers beta and delta successful candidates as

second and third place in the Canis lupus hierarchy; omega is

the wolf who follows the three leaders. In this case, therefore,

for each WrT, the three best candidates obtained in the

iterations are compared with those of the ShO. Population

candidates are recommended by SvT if better and removed if

worse. When one of the thread values comes out better than

the three in the ShO, it is added to it and the worst candidate is

removed. Conversely, when theWrT contain candidates worse

than the ShO, the WrT are updated with a variable better than

the ShO.

• DrO (Mirjalili, 2015b) mimics the behaviors of dragonflies

in static and dynamic swarms, through different movements

within the group such as cohesion, separation, alignment,

attraction to the food source, and distraction from enemies.

Food and enemies, respectively, represent the best and worst

value for the location.

The approach was evaluated on the three datasets and the

performances compared with those of 15 known methods. The

results showed that HTM is competitive in identifying fake news

and works better with PSO, which was faster than GWO, whereas

DrO lagged behind the others.

3.3. Whale optimization algorithm

We close this section by mentioning another nature-inspired

metaheuristic for optimization problems, recently proposed in

Mirjalili and Lewis (2016) and denoted as the whale optimization

algorithm (WOA). The meta-heuristic is inspired by the special

hunting method of humpback whales, called the bubble-net

huntingmethod. Bubbles are created in a spiral pattern as the whale

moves to the surface to eat krill and small fish herds. In a WOA,

a search agent, which simulates a whale, updates its position in

the neighborhood of the current best solution obtained, for the

encirclement of the prey. In addition to the bubble method, whales

search randomly for prey (exploration phase). WOA algorithms

have been shown to have a good balance between exploration and

exploitation of the search space, which helps to avoid local optima.

3.3.1. WOA and COVID-19 re-opening policies
A very interesting example of the application of such a

metaheuristic to anomaly detection is given by the work in Cuevas

et al. (2023). The recent COVID-19 pandemic, aka the coronavirus

pandemic, is certainly a good example of anomalies and the

WOA metaheuristic is used to support the evaluation of reopening

policies and measures so as to minimize the risk of transmission

from COVID-19 (anomaly). An effective reopening policy is driven

by the whale optimization algorithm integrated with an agent

scheme. The collective interaction of these agents on various levels

(internal structure, country, city, state) simulates the behavior of the

population with a six-rule scheme that controls the risk of infection.

In the mentioned work, the authors proposed three scenarios for

an optimal evaluation of plausible reopening conditions, under
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minimal transmission risk, with the agents and their parameters

and attributes simulating a hypothetical re-opening context.

Vaccinations, infection, onset of symptoms, incubation,

quarantine period, and death are considered, as well as the

circumstances under which an agent can become infected.

The social behavior of humpback whales through the stages of

searching for prey, the bubble-net hunting method, and prey

encirclement yields more realistic results than mathematical

macro-models. Each solution represents a vector of decision

variables, which are modified at each iteration by the WOA

operators to obtain the optimal scenario within the stopping

criterion. The process to obtain the optimal scenario starts from

the initialization of different scenarios, then the infection risk

is evaluated through the agent-based model, with each scenario

modified according to the operators of the WOA algorithm. In

order to determine less restrictive interventions with the lowest

risk of infection, the minimum number of vaccinated people inside

and the maximum number of people who can be hosted inside

a place are estimated, guaranteeing that a low infection rate is

still maintained. Determining the number of individuals required

to achieve immunity is an optimization problem that balances

two important goals: minimizing the number of inoculated

people and maximizing the number of people without immunity

unimmunized individuals who for either for health reasons or

for personal choice are unable to be vaccinated. Furthermore, a

relationship is established between the size of a workplace and the

maximum capacity as the maximum number of individuals to keep

the transmission rate low.

3.3.2. WOA and gene-expression datasets
DNA gene expression datasets are quite significant in the

biological research community because they can help in identifying

diseases using the so-called “bio-markers” in the gene sequence.

Bio-markers are specific alterations or anomalies in the DNA

sequence that represent a particular disease. Such anomalies,

however, appear in small number, i.e., compared to the gene

sequence, only a small number are bio-markers. In Kundu et al.

(2022), the authors proposed an improvement of the WOA

meta-heuristic, called the altruistic whale optimization algorithm

(AltWOA) to efficiently select relevant features (genes) from data

for classification. Exhaustively searching for an optimal feature set

is an NP-hard problem; therefore, smart approaches are needed

to select the optimal subset. The concept of altruism that is being

incorporated into the whale population is that some “mediocre”

fitness solutions could evolve into promising solutions if allowed

to propagate through other iterations. Thus, a more suitable

solution might sacrifice itself in favor of one with “potential”

(i.e., a solution with more diverse characteristics) and this strategy

showed better predictive ability than WOA or other state-of-the-

art methods on eight test datasets. Gene expression data, binary

class and multiclass, chosen to analyze the performance of the

proposedmethod, were used to detect cancer, leukemia, lymphoma,

and other anomalies. Dimensionality reduction techniques and

feature selection on a large amount of data have become important

tasks nowadays to optimize information storage. In the proposed

approach, features with lower entropy values are considered

more informative; furthermore, the continuous search of WOA is

mapped to the binary search to make the algorithm suitable for

the selection of features. To facilitate the choice of solutions, they

are grouped in pairs so that each candidate solution is matched

to the “most similar” one through a similarity index and the

Hamming distance. This metric, given two binary coded candidate

solutions, measures the number of places where the elements are

different. For each pair, one will be sacrificed for the other based

on their generated correlation score. A lower correlation score

identifies the chosen solution, because a small score indicates a

greater importance of the features, while a high correlation denotes

redundancy. The obtained results showed a much more reliable

performance of AltWOA compared with 10 other popular feature

selection algorithms and its ability to quickly converge (within 10

iterations). While AltWOA takes slightly more computation time

than WOA, it performs significantly better.

4. Metaheuristic integration to
optimize deep networks: a case study

As described in the previous sections, various machine learning

techniques are commonly used to detect fast or even in real

time any anomaly which could affect the proper functioning

of an industrial, automotive, cyber, or space system. Here, we

will focus on one particular case study that shows a way to

further improve the performance of existing methods by using

metaheuristic algorithms.

The integration of machine learning and metaheuristics is a

new area that has become increasingly important in recent years.

For example, in Kumar Pandey et al. (2022), a genetic algorithm

was used to improve the prediction accuracy of a deep network. A

tuning of hyperparameters based on metaheuristics was performed

and its advantages were discussed. Finally, in Zito et al. (2023a,b),

the authors proved that a metaheuristic approach can be used

to improve a machine learning model to infer a gene regulatory

network from gene expression time series data, which is known to

be a non-simple problem.

4.1. Designing machine learning
architecture

To design amachine learningmodel, three types of information

must be specified: a structure, the parameters of the model (also

called hyperparameters), and working parameters. Inmore detail:

• A model structure defines the behavior of the model and

must be selected according to the distribution of data to be

predicted.

• Hyperparameters control the model and its behavior. They

are also independent of the data used to train the model and

must be chosen during the design of a model. Examples of

hyperparameters include the number of neurons in a fully

connected layer, the type of activation function, and the

dropout probability in the dropout layer.
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FIGURE 1

Structure of a recurrent layer.

• Apart from hyperparameters, working parameters are finally

obtained through learning algorithms such as adaptive

moment estimation (Adam, in Bock and Weiß, 2019) and

stochastic gradient descent (SGD, in Bottou, 2012). A learning

algorithm is used to extrapolate knowledge from the data and

use it later to solve a specific task. In our case, such a task is the

detection of an anomaly in a system.

Among all the machine learning models presented in the

literature, here we consider the architecture of a recurrent neural

network as a case study. Basically, a recurrent neural network

(RNN) is a class of neural networks characterized by the fact

that information from past values can be used to compute future

values. For this reason, they are used primarily in time series

forecasting problems (Hewamalage et al., 2021). Unlike other

classes of neural networks, such asmultilayer perceptron (MLP) and

convolutional neural networks (CNN), where each layer is stateless,

i.e., it computes the output using only the output of the previous

layer as input, in a RNN, each layer has an internal state.

The output of a recurrent layer is then a combination of the

output of the previous layer and its internal state, which is updated

based on the type of recurrent layer used. A classic representation

of a neural network can be seen in Figure 1. Two recurrent layers

most commonly used to implement a recurrent neural network are

long short-term memory (LSTM) and gated recurrent units (GRU, in

Shen et al., 2018).

4.2. Metaheuristic optimization

The performance of a machine learningmodel can be enhanced

by metaheuristic optimization. Hence, in this subsection we

describe how a metaheuristic can be applied to find the optimal

combination of hyperparameters for improving the accuracy of a

neural network for anomaly detection. For this purpose, in this case

study, we employ a long short-term memory neural network, and a

genetic algorithm.

Before using a metaheuristic algorithm to optimize its

hyperparameters, the architecture of the neural network under

consideration must be specified. In this phase, instead of defining

a complete neural network with fixed parameters for each layer,

we consider a neural network with variable hyperparameters

(see Figure 2). The difference between these two types of neural

networks is that each solution of the metaheuristic algorithm

corresponds to a hyperparameter vector that assigns a value to each

parameter of each layer.

Each hyperparameter vector then defines a complete neural

network that can be trained and evaluated using a dataset. The

evaluationmetric used tomeasure the performance of such a neural

network is considered as the fitness function of the solution by the

metaheuristic algorithm to find the best hyperparameter vector. At

the end of the metaheuristic algorithm, the best hyperparameter

vector is returned and used to construct and train the final neural

network that is used in practice for this task.

Table 1 shows the range of possible values for each

hyperparameter of each type of layer. Only the layers whose

hyperparameters are optimized by the metaheuristic algorithm are

included in this table. The neural network considered in this study

consists of four types of layers: the LSTM layer, dropout layer, fully

connected layer, and activation function.

4.3. Evaluation

We will use the NSL-KDD dataset to train a recurrent neural

network for anomaly prediction. The problem we are dealing with

can be defined as a classification problem, since we are interested

in predicting the class of the ongoing attack. To evaluate the

performance of the neural network optimized by a metaheuristic,

we need to use metrics that can capture how well it predicts each

class and how confident it is about its predictions. Some common

metrics for multi-class classification are accuracy, precision, recall,

and F1 score.

Accuracy is the simplest metric. It measures how many

predictions are correct out of all predictions. If we partition the

total number of samples N into true positive (TP), true negatives

(TN), false positive (FP), and false negatives (FN), the accuracy

is calculated by simply dividing the sum of the numbers of

true positives TP and true negatives TN by the total number

of samples N.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision is a metric that measures how many positive

predictions are actually correct. It tells us how reliable our model

is when it predicts a certain class.

Precision =
TP

TP + FP
(2)

Recall is a metric that measures how many positive samples

are correctly predicted. Thus, it tells us how complete our model
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FIGURE 2

Architecture of the recurrent neural network considered.

TABLE 1 List of hyperparameters for each type of layer.

Layer type Symbol Hyperparameter Possible values

Fully connected layer FC Output size From 10 to 200

Dropout layer DP Dropout rate From 0 to 1

Activation function AF Non-linear function name ReLU, LReLU, ELU, Tanh

LSTM layer NumUnits Number of LSTM hidden units From 50 to 400

is when it covers a certain class.

Recall =
TP

TP + FN
(3)

F1 score is a metric that combines precision and recall into

a single value. It is calculated by taking the harmonic mean of

precision and recall. F1 score gives us a balanced measure of both

reliability and completeness for each class.

F1-score = 2 ·
Precision · Recall

Precision+ Recall
(4)

To compute these metrics for multi-class classification, we

need to use a macro-averaging method that treats each class as

an individual binary problem and averages them across all classes

(Grandini et al., 2020).

To visually represent the performance of a classification model,

a confusion matrix is often employed. Unlike binary classification,

in situations where multiple classes are being considered, such as in

our case, the confusion matrix will have more than two classes. In

the case study analyzed in this section, each class refers a different

type of attack. A confusion matrix for multi-class classification

is basically a table that is used to evaluate the performance of

a machine learning classification model. The confusion matrix is

a square matrix with dimensions M × M, where M represents

the number of classes. In this particular case, M is equal to 5,

corresponding to the class of attack under consideration. In more

detail, it provides an organized way of mapping predictions to

original classes and summarizing correct and incorrect predictions

with count values broken down by each class. This allows an easy

interpretation and evaluation of a machine learning classification

model’s performance. In a confusion matrix, each row corresponds

to the instances of an actual class and each column corresponds to

the instances of a predicted class. The elements along the diagonal

TABLE 2 Parameters used by a genetic algorithm to tune the

hyperparameters of a neural network.

Parameter name Value

Max iterations 200

Population size 50

Crossover probability 0.6

Mutation probability 0.4

Tournament size 3

indicate the number of instances for which the predicted label

matches the true label. Conversely, elements outside the diagonal

represent instances that have been misclassified by the classifier. A

high value along the diagonal of a confusion matrix is desirable as

it denotes a high number of correct predictions.

4.4. Results

Let us now show the results obtained by comparing

a non-optimized neural network with an optimized neural

network. The configurations of the hyperparameters for each

layer in a non-optimized neural network were taken from

the lstm-nsl-kdd-2022 site,2 while the hyperparameters in an

optimized neural network were set by using a discrete genetic

algorithm (Lin and Hajela, 1992) whose settings are listed in

Table 2.

The performance metrics of a non-optimized neural network

and an optimized neural network are presented in Tables 3, 4,

2 https://www.kaggle.com/code/lionsai/lstm-nsl-kdd-2022
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TABLE 3 Performance metrics of a non-optimized neural network.

Classes Precision Recall F1 score

Dos 0.996082 0.999158 0.997618

Probe 0.973099 0.986904 0.979953

R2L 0.886624 0.878788 0.882689

U2R 0.764706 0.520000 0.619048

Normal 0.990970 0.987314 0.989139

Macro-averaging 0.922296 0.874433 0.893689

Accuracy 0.988251

TABLE 4 Performance metrics of an optimized neural network.

Classes Precision Recall F1 score

Dos 0.997944 0.999251 0.998597

Probe 0.975384 0.994543 0.984870

R2L 0.927649 0.906566 0.916986

U2R 0.700000 0.560000 0.622222

Normal 0.993703 0.990809 0.992254

Macro-averaging 0.918936 0.890234 0.902986

Accuracy 0.991584

respectively. These metrics are based on the evaluation criteria

defined in Section 4.3. A comparison of the results reveals that

the optimized neural network achieves a higher overall accuracy

than the non-optimized one. Moreover, the macro-averaged F1

score, which is a crucial measure for assessing the performance

on unbalanced datasets, also shows a slight improvement in the

optimized neural network over the non-optimized version. These

performance metrics are derived from the two confusion matrices

for the optimized and non-optimized neural networks. We express

the values as percentages of the total number of observations.

Tables 3, 4 show the confusion matrices for the non-optimized

network (Figure 3A) and the optimized network (Figure 3B),

respectively. In this case, the accuracy of the original neural

network is slightly inferior to that of the optimized neural network.

This raises the question of whether it is worth the computational

effort spent on training the hyperparameter-optimized network.

It is important, however, to emphasize that in some applications,

such as for instance healthcare or security (as in this case), a small

improvement of 1% in accuracy can be considered successful and,

as a result, the time taken to train the network becomes irrelevant.

The choice of whether or not to optimize hyperparameters depends

on the requirements of the application and, therefore, it is

important to carefully consider the trade-offs between accuracy and

training time when making such decisions.

5. Conclusion and future works

Anomaly detection represents a challenging and important task

in many application areas, from industrial cyber-physical systems

FIGURE 3

(A) Confusion matrix of the non-optimized NN. (B) Confusion matrix

of the optimized NN.

and related security problems to urban traffic, crowd modeling,

social networks, and user privacy. This research work presents

a review of several approaches used for anomaly detection,

with a main focus on machine learning and metaheuristics.

This review highlights how both approaches nowadays have

increased their reliability in detection, diagnosis, and in

preventing anomalies thanks to their ability to effectively

handle and tackle large data. Machine learning methodologies

have been commonly used in uncovering anomalies, especially in

real time. A hybrid approach for intrusion detection is also

presented as a case study. A metaheuristic is integrated

within a machine learning model, developing a more robust

and efficient solving tool, able to reach high accuracy

and precision values. To prove this, the results obtained
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using the well-known NSL-KDD dataset are presented

and described.

The latter approach is part of a new and recent

rapidly growing research area, which is the integration

of metaheuristics and machine learning. This new hybrid

computational method, encouraged by the results presented

and included in this paper, may represent an efficient

and reliable anomaly detection tool for new future

research.
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