
TYPE Methods

PUBLISHED 12 May 2023

DOI 10.3389/fdata.2023.1149402

OPEN ACCESS

EDITED BY

Munehiro Fukuda,

University of Washington Bothell, United States

REVIEWED BY

Feng Chen,

The University of Texas at Dallas, United States

Luis Campos,

Projecto Desenvolvimento Manutenção

Formação e Consultadoria, Portugal

*CORRESPONDENCE

Eugenio Cesario

eugenio.cesario@unical.it

RECEIVED 21 January 2023

ACCEPTED 18 April 2023

PUBLISHED 12 May 2023

CITATION

Cesario E (2023) Big data analytics and smart

cities: applications, challenges, and

opportunities. Front. Big Data 6:1149402.

doi: 10.3389/fdata.2023.1149402

COPYRIGHT

© 2023 Cesario. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Big data analytics and smart cities:
applications, challenges, and
opportunities

Eugenio Cesario*

University of Calabria, Rende, Italy

Urban environments continuously generate larger and larger volumes of data,

whose analysis can provide descriptive and predictive models as valuable support

to inspire and develop data-driven Smart City applications. To this aim, Big data

analysis and machine learning algorithms can play a fundamental role to bring

improvements in city policies and urban issues. This paper introduces howBigData

analysis can be exploited to design and develop data-driven smart city services,

and provides an overview on the most important Smart City applications, grouped

in several categories. Then, it presents three real-case studies showing how data

analysis methodologies can provide innovative solutions to deal with smart city

issues. The first one is an approach for spatio-temporal crime forecasting (tested

on Chicago crime data), the second one is methodology to discover mobility

hotsposts and trajectory patterns from GPS data (tested on Beijing taxi traces), the

third one is an approach to discover predictive epidemic patterns from mobility

and infection data (tested on real COVID-19 data). The presented real-world cases

prove that data analytics models can e�ectively support city managers in tackling

smart city challenges and improving urban applications.

KEYWORDS

smart cities, big data analysis, crime forecasting, mobility patterns, trajectory mining,
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1. Introduction

In several reports the twenty-first century is frequently referenced as the “Century of

the City” (Nat, 2010; Zheng et al., 2014). The main reason of this definition is due to the

unprecedented global migration of people into urban areas that is happening nowadays

(Cesario et al., 2016b). In fact, the world is currently experiencing the largest urban growth

seen in history so far, and it is rapidly urbanizing. For example, several United Nations

reports state that urban population is expected to grow to 4.98 billion in 2030 (UNR, 2014).

As a matter of fact, this means that around sixty percent of the global population will be

living in cities by 2030.

The above described urbanization process is transforming the organization of cities,

making urban environment bigger and more crowded, and it is causing significant

environmental, economic and social transformations. In fact, on the one hand it is

bringing modernization in people’s lives, and providing challenging opportunities offered

in urban areas; on the other hand, it is bringing new issues in city management, such

as increasing traffic congestion, large-scale resource planning, air pollution, crime rising,

energy consumption, water quality, etc. (Zheng et al., 2014; Altomare et al., 2019; Cesario,

2019; Piaggesi et al., 2022).

Considering the complex and dynamic settings of cities, just a few years ago it seemed

nearly impossible tackling the aforementioned challenges. However, the pervasive presence
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of sensors in cities, as well as the availability of large-scale

computing infrastructures (Cesario et al., 2013; Al Nuaimi et al.,

2015), has been facilitating the gathering of huge volume of

data (i.e., electricity/water consumption, air quality, mobility,

etc.) (Cesario and Talia, 2008; Bejan et al., 2010; Herrera

et al., 2010). Such big collections of urban data, containing rich

knowledge about a city, represent a valuable opportunity to achieve

improvements in management issues and urban policies.

Recently, several research activities have been focused to the

development of Smart City services and applications, with the

aim of making our cities more and more livable and efficient

(Potgieter et al., 2021; Yan et al., 2021; Cesario et al., 2022). In

particular, a Smart City is defined as “an urban environment where

public issues are addressed via ICT-based solutions on the basis

of municipality and multi-stakeholder based partnership” (EUP,

2017). Also, modern technological infrastructures and computer

systems can allow the implementation of efficient facilities and

smart services, thus improving the quality of citizens’ lives and

naturally enabling the transition to smarter and smarter cities.

To this purpose, data analytics and machine learning can provide

an important contribution to the development of smart cities. In

fact, such disciplines can offer useful algorithms and tools for

gathering, aggregating, associating and classifying data; such tools

can support the analysis of urban data and support the extraction

of useful knowledge for citizens and decision makers. Considering

such an abundance of data, the acquisition and analysis of urban

data is crucial to discover descriptive and predictive data-driven

models, which can support city managers in tackling the major

issues that cities face, including, e.g., air pollution, virus diffusion,

human mobility, traffic flows, crime forecasts, etc. This has

enabled the development of innovative solutions and new smart

city applications, exploiting urban data analysis techniques and

methodologies, have been implemented world-wide (Zheng et al.,

2014; Al Nuaimi et al., 2015; Potgieter et al., 2021; Yan et al., 2021;

Cesario et al., 2022).

This paper introduces how Big Data analysis can be exploited

to design and develop data-driven smart city services. Then,

it provides an overview on the most important Smart City

applications, grouped in several categories. Also, a detailed and

critical comparison among the approaches proposed in the

literature, in terms of applications and adopted methodologies, is

sketched in a table. Finally, it presents three real-case studies we

recently worked on, showing how data analysis methodologies can

provide innovative solutions to deal with smart city issues. The

first one is a methodology based on spatial analysis and auto-

regressive models for spatio-temporal crime forecasting, which

has been tested on crime events occurred in Chicago (Catlett

et al., 2019). The second one is methodology to discover mobility

hotsposts and trajectory patterns from GPS data, which has been

tested on Beijing taxi traces (Cesario et al., 2017). The third one

is an approach to discover spatio-temporal predictive epidemic

patterns from mobility and infection data, whose experimental

evaluation has been carried out on real-world COVID-19 data.

(Canino et al., 2022a). The presented real-world cases are aimed

to show three example where data analytics models can provide

effectively valuable support for city managers in tackling smart city

challenges, to improve urban applications and citizens’ lives.

The paper is structured as follows. Section 2 provides an

overview of the most important Smart City applications. Section

3 describes an approach for crime predictions. Section 4 shows

a method to discovery mobility hotspots and frequent mobility

patterns. Section 5 describes an approach to discover predictive

epidemicmodels from infections andmobility data. Finally, Section

6 concludes the paper, summarizes its contribution and depicts

further research challenges.

2. State of art of smart city applications

In the last years an increasing number of innovative services

and applications, exploiting urban data analysis, have been

implemented in our urban environment to build smart cities. We

report here a brief descriptions of the most important applications,

grouped in several categories.

2.1. Smart transportation

Several applications, aimed at improving city mobility (i.e., taxi

services, bike sharing, smart parking, human mobility, etc.) have

been proposed in literature (Bejan et al., 2010; Herrera et al., 2010;

Cesario, 2019). To develop these tasks, commuting and traffic data

are a fundamental source of data, whose joint analysis can discover

descriptive and predictive mobility models. Mobility data can also

be gathered through a network of sensors distributed in the city,

GPS on-vehicle devices, smart traffic lights, etc., whose pervasive

presence in modern cities is becoming more and more popular.

In urban environments, private and public mobility systems can

benefit from mobility knowledge models, which can be used in

particular to anticipate or resolve traffic problems. For example,

(Bejan et al., 2010) describe a research study aimed at discovering

historical traffic patterns to suggest fast driving routes at real-

time, while Herrera et al. (2010) and Castro-Neto et al. (2009)

propose specific algorithms to predict real-time traffic flows and

forecast future traffic conditions on individual road segments. Also,

some solutions for improving the efficiency and reliability of public

transportation systems are proposed in Al Nuaimi et al. (2015);

Zheng et al. (2014); in particular, such papers describe how Big

Data analysis can be profitable exploited to perform real-time

arrival time forecasting of buses, and to predict bicycle flows for

bike sharing system operators. Finally, several solutions have been

also proposed to improve taxi services. For example, Yuan et al.

(2013) describe a system (for taxi drivers) that suggests the most

likely routes (and locations) to pick up the next passengers quickly,

while Ma et al. (2013) report the description of a system that

maximizes the profit of ride-sharing trips by appropriately choosing

the pick-up passengers on the basis of capacity, time, and money

constraints. Recently, in Li et al. (2019) has been described the

design of a large-scale urban vehicular network framework for IoT

in Smart Cities, aimed at providing more reliable and predictable

wireless connections in metropolitan areas. Liao et al. (2019)

proposed a vehicle mobility-based geographical migration model,

for an efficient management of vehicular computing resources in

fog computing-enabled smart cities. Pan et al. (2019) exploit DE-BP
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(differential evolution back propagation) neural network models to

predict mobile telecommunication traffic in a smart city, to increase

upstream and downstream bandwidth, and improve reliability and

quality of wireless-connected city services. A distributed system

for collaborative gathering of traffic data is proposed in Fujihara

(2020), where special beacon devices are deployed along road

segments to collect traffic data; such a distributed beacon system is

exploited for real-time detection of anomalies, such as traffic jam

and accidents. Brisimi et al. (2016) propose a machine learning

approach, based on data collected trough smart phones, to classify

roadway obstacles into predefined categories and support quick

decisions to solve anomalies.

2.2. Smart healthcare

Several solutions to be adopted in the healthcare domain,

leveraging on data analysis to improve hospitalized patient’s lives,

have been proposed in Al Nuaimi et al. (2015); Zheng et al.

(2014). For example, real-time monitoring systems can collect real-

time data (sleeping patterns, cholesterol, blood pressure) through

smart devices, and they directly communicate with hospital ICT

systems to integrate a comprehensive patient history and to allow

timely responses to possible health issues. Muhammed et al.

(2018) describe a framework for preventive, and personalized

healthcare services, leveraging edge computing, deep learning,

big data, high-performance computing (HPC), and the Internet

of Things (IoT). In Samani and Zhu (2016), an ambulance

robot has been designed and developed, which brings along an

automated external defibrillator (AED) to facilitate manual and/or

autonomous functioning, to promptly deal with cardiac arrest

events and save people lives in smart cities.

2.3. Smart energy

Data analysis is also profitable exploited to deal with

energy consumption issues, which are becoming more and more

important due to the rapid urbanization phenomenon. In fact,

big cities are demanding for increasing requests of energy, and

scientists and engineers are continuously working to design

technological solutions for energy-efficient infrastructures, with

the aim of decreasing city-scale energy costs and reducing energy

consumptions (Zheng et al., 2014; Ullah et al., 2017; Altomare et al.,

2019). For example, Zheng et al. (2014) describe how predictive

models can forecast high-demand or low-demand energy periods,

or time windows allowing an high availability of renewable power.

Such knowledge can support a more efficient and effective usage

of energy in urban and sub-urban environments, also when there

are some constraints related to community-assigned energy usage

limits. Ullah et al. (2017) describe an energy (and congestion)-

aware routing metric for smart meter networks to be deployed

in smart cities. In particular, advanced metering infrastructures

(AMIs) can exploit this metric to minimize power consumption

and efficiently use the residual energy and queue utilization of

neighboring nodes. Altomare et al. (2019) describe an energy-

aware solution, driven by predictive data mining models, for

energy-efficient allocation of virtual machines in Cloud systems.

In particular, migrations are driven by the forecast of the future

computational needs of each virtual machine, in order to efficiently

allocate those on the available servers, thus achieving good benefits

in terms of energy saving.

2.4. Smart environment

The collection and analysis of environmental data are very

important to understand how natural phenomena (i.e., global

warming, drought, torrential rains) are influenced by other factors,

such as urban air quality, pollution, land uses, etc.Moreover, amore

efficient management of energy utilization can improve agriculture

effectiveness and crops efficiency (Al Nuaimi et al., 2015). Recently,

Liv (2017) present a research study describing the design and

development of a real-time control system based on weather and

transportation data, aimed at forecasting how weather conditions

influence taxy demand. Also, in Zheng et al. (2014) authors study

how people’s physical and mental health issues are affected by noise

and pollution densities.

2.5. Smart safety and security

Data analytics can be successfully applied on data related

to crimes, pandemics, terrorism attacks, to provide insights and

knowledge about threats to public order and security. In fact,

police departments are collecting and storing criminal events in

databases, each one described by several features (time, location,

type, etc.). The analysis of such crime data can enable the extraction

of crime knowledge models, which can be exploited to forecast

the number of criminal events that will happen in specific areas

of the city (Zheng et al., 2014). For example, the papers Cesario

et al. (2016a) and Catlett et al. (2019) describe a methodology (and

its application on real-world data) aimed at understanding crime

patterns and trends, to detect crime knowledge models that can

detect the crime hotspots and the number of crimes will happen

in each specific hotspot. These models can be profitably exploited

to anticipate criminal activity, and to optimize the distribution

of police officers over the territory, to improve patrol routes, etc.

Some projects and computing architectures for the prediction of

natural disasters are described in Cesario and Talia (2010, 2012).

In particular, some frameworks are specifically aimed at ground

shaking forecasting and earthquakes predictions. Despite such

approaches do not achieve good performance yet, an important

research effort is invested on these topics, whose results can

give an opportunity to save lives and resources. Jamshidi et al.

(2020) describe a technique to detect malicious nodes (performing

node replication attacks) in mobile Wireless Sensor Networks

deployed in smart cities. In particular, watchdog nodes collaborate

to measure sensor nodes’ speed in the environment, marking nodes

moving faster than usual (in different regions of the network) as

malicious, thus making an attempt on the network security. Ali

et al. (2020) deal with security threats related to the Internet of

Drones (IoD), whose applications are steadily increasing in many

military and civilian-based scenarios. In particular, authors propose
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TABLE 1 Comparison of several approaches proposed in literature for smart transportation.

References Domain Application use case Approaches–techniques

Bejan et al. (2010) Transportation Discovering historical traffic patterns to suggest fast driving routes

at real-time

Quantile regression, Spline function

Herrera et al. (2010) Transportation Predicting real-time traffic flows to improve urban mobility Sampling strategy, statistical learning

Castro-Neto et al.

(2009)

Transportation Forecasting future traffic conditions on individual road segments Support vector machines for Regression, Holt

exponential smoothing

Zheng et al. (2014) Transportation Predicting bicycle flows to improve bike sharing systems Knowledge fusion across heterogeneous data, urban

data visualization

Yuan et al. (2013) Transportation Recommendation system for taxi drivers, to suggest the most likely

next passenger’s pickup-up location

Density-based clustering, ensemble classification

Li et al. (2019) Transportation Large-scale urban vehicular network framework for IoT in Smart

Cities, to improve wireless connectivity

Statistical analysis, location-based urban vehicle

network

Ma et al. (2013) Transportation Decision support system to predict ride-sharing trips, aimed at

appropriately choosing the pick-up passengers on the basis of

capacity, time, and money constraints.

Scheduling algorithm, spatio-temporal index data

structure, shortest path calculation strategies

Liao et al. (2019) Transportation A vehicle mobility-based geographical migration model for an

efficient management of vehicular computing resources in fog

computing-enabled smart cities.

IoT computing, fog-enabled geographical migration

scheme for computing resources, simulated

annealing, Dijkstra algorithm

Pan et al. (2019) Transportation Predicting mobile telecommunication traffic, to improve reliability

and quality of wireless-connected city services

Differential evolution back propagation (DE-BP)

neural network

Fujihara (2020) Transportation A distributed system for collaborative management of traffic data,

for real-time detection of traffic jam and accidents.

Blockchain technology, distributed consensus

algorithms, geographical proximity analysis

Brisimi et al. (2016) Transportation Classification of roadway obstacles into predefined categories, to

support quick decisions and solve road anomalies.

Classification, clustering

TABLE 2 Comparison of several approaches proposed in literature for smart healthcare, smart energy, and smart safety and security.

References Domain Application use case Approaches–techniques

Al Nuaimi et al. (2015) Healthcare Prompt responses to possible health issues through real-time data

monitoring and analysis, performed by smart devices directly

communicating with hospitals

Smart network infrastructure and big data anlaysis

Samani and Zhu (2016) Healthcare Robotic outer defibrillator vehicle to promptly deal with cardiac

arrest events

Ambulance robot, robotic systems,

vehicle-to-vehicle communication

Muhammed et al.

(2018)

Healthcare Performing preventive, and personalized healthcare services Internet of things and deep learning techniques

Altomare et al. (2019) Energy Energy-efficient allocation of virtual machines in Cloud systems,

driven by predictive data mining models

Classification, regression

Ullah et al. (2017) Energy Energy (and congestion)-aware routing metric to minimize power

consumption and to efficiently use the residual energy in smart

cities

Nearest neighbors, RPL routing techniques

Catlett et al. (2019) Safety Spatio-temporal prediction of crime patterns and trends, to detect

crime hotspots and location-based regressive models

Density-based clustering, Regression

Jamshidi et al. (2020) Safety Detecting malicious nodes in mobile wireless sensor networks Algorithms based on watchdog nodes to improve

network security issues

Ali et al. (2020) Safety Securing sensitive data collected for smart cities surveillance

through Internet of Drones

A scheme exploiting lightweight symmetric key

natives and symmetric encryption/decryption

operations

a technique to improve the communication security of sensitive

data collected through drones, especially the surveillance data in

smart cities using the current cellular networks.

Tables 1, 2 report a more detailed and critical comparison

among several approaches proposed in the literature. The

comparison takes into account several features, as detailed in

the following:

• Domain. This feature differentiates the approaches on the

basis of the domain they are applied on. In particular,

Table 1 presents a summary of techniques aimed at smart

transportation, while Table 2 shows a summary related to

smart healthcare, smart energy and smart safety/security.

• Application use case. This feature differentiates the approaches

on the basis of the use cases they have been tested on. As it
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FIGURE 1

Spatio-temporal crime prediction steps.

is shown in the two tables, the applicative scenarios are very

heterogenous, ranging from traffic pattern detection to road

anomalies forecasting, from personalized healthcare services

to automatic defibrillator robot, from crime forecasting to

securing Internet of Drones communications.

• Methodologies and techniques. This feature differentiates the

algorithms on the basis of the methodology and/or techniques

used to address the faced task. Some approaches exploit

classification, regression and clustering models, while others

are based on deep learning and statistical learning techniques.

There are also some recent approaches, based on blockchain

and Internet of Drones technologies.

3. An approach to perform
spatio-temporal crime predictions in
smart cities

As described in Section 2, several research studies have been

devoted to propose solutions aimed at improving the security in our

cities by exploiting data analytics. Among the approaches proposed

in literature, we focus here on the study presented by Catlett et al.

(2019), aimed at extracting crime predictors to perform spatial and

temporal forecasting of criminal events. The approach is based on

spatial analysis and auto-regressive models, with the aim to first

automatically detect crime hotspots (i.e., high-risk crime regions)

in urban areas and to perform a reliable forecast of crime trends in

each hotspot. As described in the following, the algorithm builds a

set of spatio-temporal crime forecasting models, i.e., a set of crime

hotspots with associated predictive models estimating the number

of crimes likely to occur in its associated hotspot. The accuracy and

effectiveness of the approach have been tested on two real-world

scenarios, i.e., crimes occurred in Chicago and New York City (we

will show here the results on the first use case).

3.1. Approach

Let T =< t1, t2, . . . , tH > be an ordered timestamp list. Let D

be D = {D1,D2, . . . ,DN} a dataset collecting crime records, where

eachDi is a crime instance described by its xy-position (coordinates

of the place the crime occurs) and timestamp (time the crime

happens at). The goal of the approach is twofold. First, extract a set

of crime hotspots (or crime dense regions), where a crime hotspot is

a spatial area which criminal events occur in with an higher density

than other areas in the city. Second, extract a function that can

forecast the number of crimes in each detected crime hotspot. The

general idea and the main steps of the approach are sketched in

Figure 1, through a graphic representation of the whole process.

The algorithm takes in input a dataset of crimes occurred in an

urban area, and returns in output a knowledge model composed

by a set of crime-dense regions with associated crime predictors.

The workflow is composed of three main steps, as described below.

Step 1: Crime hotspots detection. Initially the algorithm performs

a spatial analysis over the input data, with the aim to detect crime

dense regions, i.e., areas (i.e., polygons, blobs) whose density of

crime events is higher than adjacent areas. The goal of this step is to

reduce the spatial granularity of the analysis, in order to conduct the

further steps considering the detected dense regions, and not the

single points occurring in the dataset. The task is modeled as a geo-

spatial clustering process, by running a density-based clustering

algorithm. A good property of this approach is that it automatically

traces the boundaries of the detected clusters, without relying on

any pre-fixed division in areas. At the end of this step, the algorithm

returns K clusters where K, depending on the specific adopted

clustering algorithm, can be automatically detected or fixed a-

priori. In this scenario each cluster represents a detected crime

dense region.

Step 2: Crime data splitting. After the detection of the crime

hotspots, the next step is a data transformation task, consisting in a

spatial data splitting of the original crime data. More specifically,

the set of all events occurring in locations belonging to the ith

crime region are transformed (considering their timestamp) in a

time series and gathered in the ith output dataset, for i = 1, . . . ,K.

The final result of this step is a set of K different time series data

sets, where each one is the time series of all events occurred in its

associated area.

Step 3: Crime predictive models discovery. This final step has

the goal to extract, for each crime dense region CDRi, a specific

crime prediction model for CDRi. In particular, predictive models

are trained on the time series crime data built during the previous

step, to detect predictive regressive models aimed at forecasting

the number of crime events that will happen in each specific

area. As regression model, ARIMA models (i.e., a composed

technique based on auto-regression, moving average and difference

modeling) (Catlett et al., 2019) have been exploited. As a result of

such a task, several crime predictors (one for each crime hotspot)

are obtained.
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FIGURE 2

Selected area of Chicago, geolocalized crime events (2001–2016) and crime dense regions. (A) Polygon of the geographic area. (B) Geo-localized

crime events. (C) Detected crime dense regions.

3.2. Experimental results

As case study to test the effectiveness and performance of the

approach described above, in Catlett et al. (2019) is presented as

case study the analysis of crimes within a large area of Chicago,

involving about two million crime events over a period of 16

years. As aforementioned, the application of the approach in a

real case scenario has two main objectives: (i) discovering the

most significant crime dense regions, and (ii) extracting effective

predictive models. The integration of these two models can be

exploited to estimate the areas where future criminal events are

likely to happen, and the estimated number of crimes to occur.

The geographic area of Chicago the tests have been performed

on is shown in Figure 2A, while the geo-localized crime events

are reported in Figure 2B. The selected area has a perimeter of

about 52 KM and its area is approximately 135 KM2. For the tests,

all crime events occurred within the bounded area and happened

from January 2001 - December 2016 have been collected, whose

total number was around 2 million instances. Crime dense regions

have been detected by applying a DBSCAN-based algorithm. in

particular, as described in Catlett et al. (2019), the algorithm assigns

a higher weight to recent crime events by exploiting a decay

factor integrated in the distance computation. Figure 2C illustrates

such regions, with each one represented by a distinct color. It

is interesting to note that this image shows how crime incidents

are grouped according to a density criterion; for instance, the

algorithm identifies eight significant crime regions that are easily

distinguishable by different colors: a large crime region (in red)

located in the area’s center, along with seven smaller areas (in green,

blue, and light-blue) on the left and right side, all corresponding to

zones characterized by an high density of crimes.

On the left side of Figure 2C, the three areas with the

highest crime rates (CDR1, CDR2, and CDR3) are zoomed-in.

Throughout the entire territory, there are numerous additional

smaller areas that reflect relatively localized high-crime zones.

The algorithm’s further steps are the geographic data splitting

of the initial crime data set (to create a time series for

each identified dense zone) and the training of local crime

predictors for each identified dense region, which have been

trained by exploiting ARIMA models. An aspect to be considered

here is that, the auto-regressive models of the three largest

crime dense regions are characterized by different parameters.

This means that each area presents specific crime trends

and patterns.

The experimental evaluation of the regressive functions

performance has been assessed on the test set (crimes occurred

from 2014 to 2016) in the available dataset. In particular, the

analysis has been performed considering the crime dense regions,

and for comparison purposes, also the whole area. Thus, ARIMA

models have been extracted for each crime dense region and

for the whole area, in order to test their forecasting accuracy

to predict the number of crimes that are likely to happen in

each region and in the whole area, week by week. Figure 3

shows observed and forecasted data (plotted in blue and red,

respectively) for the test set period, plotting the curves for the

two largest crime dense regions (CDR1 and CDR2) detected

during the analysis. Considering the whole test set period, we

notice that the forecasted curve (red) adheres very well to the

observed curve (blue). Finally, the paper Catlett et al. (2019)

reports the values of several error measures, for the whole area

and the three largest crime dense regions detected. The results are

reported by considering three different horizons, i.e., 1, 2, and 3

years; in particular, the average MAPE (Mean Absolute Percentage

Error) forecasting error is 9.62% for the first year, 11.90% for the

second year, and 18.66% for the third year. These values show

overall good prediction accuracy and very interesting predictive

performance. A comparative analysis between the forecasting

performance of ARIMAmodels vs. three state-of-the-art regression

algorithms [i.e., RandomForest (Breiman, 2001), REPTree (Witten

Ian, 2011), ZeroR (Nasa and Suman, 2012)] is reported in Table 3.

In particular, the table summarizes the results of the comparison,

showing the achieved MAE (Mean Absolute Error) and MAPE,

vs. different prediction horizons (1-, 2-, and 3-year forecasts).

By observing the values in the table, we can conclude that

the ARIMA approach generally achieves greater accuracy than

other algorithms. Also, shorter the time horizon, higher the
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FIGURE 3

Number of crimes observed and forecasted (blue and red lines) on two crime dense regions. (A) Crime Dense Region 1 (CDR1). (B) Crime Dense

Region 2 (CDR2).

forecasting accuracy. These results confirm the appropriateness of

the autoregressive model and its good performance in the crime

prediction domain. More detailed results can be found in Catlett

et al. (2019).

4. Discovery of mobility patterns from
urban mobility data

An approach for mobility data analysis, named TPM

(Trajectory Pattern Miner), aimed at the discovery of trajectory

patterns from GPS data, is proposed in Cesario et al. (2017). The

inspiring idea and motivations of the work is that the detection

of mobility (or trajectory) patterns is a basic knowledge to be

exploited for the implementation of more complex tasks. A first

example is represented by next location prediction, that is the

prediction of the possible future location of a moving object,

whose information can be used to pre-fetch or anticipate the

delivery of some service in that location. Another case is the

intelligent traffic management, that is, predicting traffic congestion

patterns, which can be exploited to adopt improvements to the

urban transportation model and reduce the vehicular traffic. A

third example is represented by travel recommendations, that

is, predicting the top interesting locations and travel sequences

among locations, and exploit such information to recommend the

best routes and itineraries that tourists can follow to visit a given

location. The approach has been evaluated on a real-world case

study, i.e. a dataset composed of GPS points tracing the mobility of

taxis in the urban area of Beijing.

4.1. Approach

Let be T =< t1, t2, . . . , tH > an ordered list of timestamps. A

trajectory dataset TD = {τ1, τ2, ..., τH} is a set of trajectories, where

each trajectory τh =< (x1h, y1h, t1), . . . , (xnh, ynh, th) > is a list of

n triples reporting the xy-position and timestamp. The goal of the

approach is twofold. First, discover a set of dense regions, where

a dense region is an area of points that is more frequently visited

by object’s trajectories with respect to other areas. In particular, R
j
t

represents the jth dense region at the time t. Second, discover a

set of trajectory patterns, where each trajectory pattern tp is in the

form: tp :R
j1
t1
,R

j2
t2
, . . . ,R

jr
tr

−→ R
js
ts
, representing frequent sequences

occurring in the dataset among the involved dense regions.

The workflow and main steps of the approach, designed

to discover mobility patterns from GPS data, is depicted in

Figure 4. The algorithm receives in input trajectory data traced by

objects (cars, buses, humans, etc.) in a city, and returns a set of

(i)mobility hotspots (areas more densely passed through ones) and

(ii)mobility patterns. The method consists of (i)discovering urban

dense regions of interest (more densely passed through ones) and

(ii) discovering mobility patterns among those regions. Figure 4

sketches the general idea of the algorithm through a graphic

representation of the whole process as a sequence of three main

steps, as described below.

Step 1: Frequent RegionsDetection. Initially the algorithm detects

a set ofmobility dense regions from the original dataset, i.e., a set of

raw mobility routes traced by drivers during their daily activities.

The goal is to detect, for each timestamp, the spatial areas (or

regions) that are more densely passed through than others. This

task has been performed by geo-spatial clustering algorithm. In

particular, H clustering instances are executed, each one taking in

input points visited at the hth timestamp. At the end of this step, H

clustering models are returned, whereas the th-model corresponds

to the dense regions detected at the th-timestamp. In figure, the jth

dense region at time th is represented by DR
j
th
.

Step 2: Trajectory Data Synthetization. This step aims at building

a structured trajectory dataset; more precisely, this step converts

the raw data (movements between points) intomovements between

dense regions (structured data). This is done by processing the

original dataset and substituting each trajectory by the dense region

it belongs to (such information is modeled in the dense region

model set). The transformation consists in replacing each point of

the original dataset by the region it belongs to.

Step 3: Trajectory Patterns Extraction. By evaluating the

trajectories of dense regions detected in the previous phase,

this step aims to extract trajectory patterns, in the form of

sequential patterns. The dense regions trajectory data is specifically

subjected to a trajectory pattern extraction technique in order to

extract trajectory patterns from it. The ultimate mining model

is composed of a collection of associative rules describing the
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TABLE 3 Comparative analysis among several approaches, evaluating the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of the

crime dense regions, vs. several time horizons.

MAE MAPE

Time ARIMA Random Forest RepTree ZeroR ARIMA Random Forest RepTree ZeroR

2014 30.51 44.20 57.47 97.15 9.62 16.68 22.86 39.90

2015 39.54 57.24 64.54 109.24 11.90 18.75 29.49 45.66

2016 46.47 68.04 71.86 117.83 18.66 21.47 34.16 53.66

FIGURE 4

Trajectory patterns detection steps.

spatio-temporal relationships between the movement of the users

under examination.

4.2. Experimental results

The experimental evaluation of TPM has been performed

on T-Drive (Yuan et al., 2011), a real-world dataset collecting

the GPS-detected trajectories of taxies driving in the city of

Beijing. Specifically, T-Drive contains 10,357 instances (i.e., taxi

trajectories), cumulatively covering a distance of almost 9 million

kilometers. The total number of GPS points collected in the data

amount to about 15 million records.

Given the mobility input dataset, it was necessary to perform

a pre-processing task to clean, select and transform instance data,

to make it suitable for the further analysis. First, a cleaning step

has been done on the collected data to remove all the points with

unreliable or evident wrong positions (due to gathering issues).

Then, geo-localization errors, i.e. points outside this area, have

been handled by selecting only data points falling in a bounded

area limiting the city. Finally, the data has been transformed by

partitioning each trajectory in a daily route, to deal with daily

patterns inside data. After the execution of such pre-processing

steps, the final dataset results a collection of about more than 61,000

daily trajectories, where each one contains the set of geo-localized

points traced by a single taxi during a day. The size of the final

dataset is about 882 MB. The results of the analysis carried out

on such a dataset are reported in the following, by showing the

detected (i)dense regions (representing mobility hotspots or the

most congested areas of the city) and (ii)mobility patterns with

respect to different timestamps.

4.2.1. Discovered dense regions
Figure 5 shows the dense regions discovered in T-Drive, for

different 3-h time windows of the day. By observing the figures,

we can observe that the traffic congestion and the taxi mobility

change over the day. For example, during the early morning (from

6 to 9 a.m.), a few dense regions localized in West and South

areas of the cityt are detected (Figures 5A, B). Then, from the late

morning to the evening, the traffic increases in several areas and

the distribution of vehicles increases its variability. In particular, we

can observe (Figures 5C–F) that, from 12:00 PM to 9:00 PM, the

concentration of taxies is high in many regions of the city. We can

recognize, from the image, the main roads and highways that are

used during these times: an highway toward the airport, a circular

highway around the city center and several highways crossing the

central area of the city. Finally, the density of driving taxies strongly

decreases during the night (Figures 5C, D); however, there are some

parts of the city where the density of cars is still high.

4.2.2. Discovered mobility patterns
Examples of the most frequent mobility patterns found in

T-Drive by the TPM algorithm are displayed in Figure 6. We focus

our attention on routes surrounding the city center and those

leading from the city center to important locations like the airport

and train stations, in order to identify the most popular itineraries.

Figure 6A illustrates the primary routes taxi drivers take to head

out of the city and toward the airport. It is clear that although the

starting points for the taxies in the city center are widely dispersed,

they all converge on two areas. In particular, twomobility behaviors

are noticeable: one while leaving the city and heading toward

the airport, and another when leaving the city and heading for a
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FIGURE 5

Dense regions discovered in T-Drive, w.r.t. several time windows of the day. (A) 6:00 a.m. (B) 9:00 a.m. (C) 12:00 p.m. (D) 3:00 p.m. (E) 6:00 p.m. (F)

9:00 p.m. (G) 12:00 a.m. (H) 3:00 a.m.

location away from the city center. One can note that the patterns

approaching the airport from North are higher than those from

South. Another mobility pattern shown in Figure 6A is represented

by a flow of people going from South-Center/sub-urban areas to the

DR3
19 : 00 region (i.e., parking lot). In fact, we can clearly recognize

a route originating from the train station in the DR12
12 : 00 region, or

the ones starting from the South-Center. This flow could refer to

people living outside the city that parked the cars in the parking lot

to go to the city center and then coming back home in the suburbs

after work. A second pattern, starting from the city center, going

through the airport and ending to a sub-urban east area of Beijing,

is shown in Figure 6B. In particular, there is a first mobility pattern

from the airport to a suburban area, probably traced by people

arriving to the airport and going back home in the residential sub-

urban area. A second pattern represents the movement of people

from the city center to the airport, e.g., going to work outside the

city. Finally, Figure 6C shows a pattern from the airport to a train

station in the city center. In particular, it is composed of three trips.

The first one goes from the city center to the train station, the

second one from a sub-urban area to the city center and the last

one from the airport to a popular venue in the sub-urban South

area of the city. More detailed results can be found in Cesario et al.

(2017).

5. COVID-19 epidemic forecasting
based on mobility patterns

An epidemic predictive approach based on spatial analysis,

mobility and regressive models has been presented in Canino

et al. (2022a). From movement and infection data, the approach

is utilized to identify spatio- temporal predicted epidemic trends.

The methodology’s motivating premise is that infectious diseases

propagate via human-to-human transmissions, making the study

of spatio-temporal mobility data crucial for epidemic forecasting.

Moreover, during an epidemic, the availability of accurate

predictions can allow decision-makers in public health to forecast

the spread of new cases and allow efficient resource planning for

hospital needs and capacities. To assess the effectiveness of the

approach in a real-world scenario, the experimental evaluation has

been performed on mobility and COVID-19 data collected in the

city of Chicago.

5.1. Approach

Let T =< t1, t2, . . . , tH > be an ordered list of timestamps.

Let ID = {id1, id2, . . . , idM} be an infection dataset, where

each infection record idh =< (xh, yh, th, nh) > is a tuple

reporting the xy-localization (i.e., health center, hospital, etc.),

timestamp and number of infection cases (i.e., number of positive

cases). A mobility dataset MD = {τ1, τ2, ..., τH} is a set of

mobility traces (trajectories), where each trajectory τh =<

(x1h, y1h, t1), . . . , (xnh, ynh, th) > is a list of triples reporting the xy-

position and timestamp. The goal of the approach is threefold. First,

discover a set of epidemic hotspots, where an epidemic hotspot is a

spatial area affected by higher density of infections than other areas,

and involved in frequent mobility patterns. Second, discover a set

of epidemic patterns, where each pattern is a couple < EHs,EHd >

(where EHs and EHd are two epidemic hotspots), meaning that the

infection trend of EHs influences the infection trend of EHd. Third,

extract a function Fspreading that can predict the number of epidemic

events (i.e., number of positive cases) in each epidemic hotspot.

Figure 7 shows the workflow of the method, which has been

designed to find predictive epidemic models from infections and

mobility data. An array of epidemic hotspots, epidemic patterns,

and epidemic regression models are produced by the algorithm
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FIGURE 6

Travel patterns discovered in T-Drive by the TPM algorithm. (A) From the city center to the airport. (B) From the city center to sub-urban east area of

the city. (C) From the airport to the train station.

after receiving infection and mobility data as input. The six steps

that make up the workflow are listed below.

Step 1 and 2: Detection of infection and mobility hotspots. The

execution of these two steps is aimed at discovering Infection

and Mobility Hotspots from the two input datasets, Infection and

Mobility datasets, respectively. In particular, a Mobility Hotspot is

an urban area where mobility routes are more frequently traced

than in other regions, whereas an Infection Hotspot is an urban

area where infection events occur more frequently than in other

places. The method uses the well-known density-based clustering

algorithm DBScan, which is able to find these hotspots whose

number and shapes are automatically detected by the algorithm.

Step 3: Extraction of frequent mobility patterns. This step has

the goal to detect frequent patterns frommobility traces among the

hotspots discovered at the previous step. Each mobility pattern is

made up in a rule form, where the source mobility hotspot is the

antecedent and the destination hotspot is the consequent of the

rule. In particular, this task is performed by executing the T-Apriori

(Cesario et al., 2017) algorithm.

Step 4: Epidemic Hotspots Detection. Epidemic hotspots are

detected during this step. Specifically, an epidemic hotspot is

defined as “an infection hotspots whose spatial overlap with a

mobility hotspot is greater than a given threshold” (Canino et al.,

2022a). The spatial overlap is calculated as the percentage of the

overlapping area between the identified infection and mobility

hotspots. Thus, an urban area that is both involved in a mobility

pattern and characterized by an high density of infection cases is

referred to as an epidemic hotspot.

Step 5: Detection of epidemc patterns. Given the epidemic

hotspots detected during the previous step, epidemic patterns are

extracted from the previously detected mobility patterns. When the

source and destination of a mobility pattern are epidemic hotspots,

the pattern is said to be epidemic.

Step 6: Epidemic Spread Forecasting. This step is aimed at

extracting a specific epidemic forecasting model for each epidemic

hotspot. In particular, for each destination epidemic hotspot in

an epidemic pattern, a prediction model is trained by taking in

consideration the infection data of such epidemic hotspot and its

sources. This step can be implemented by exploiting LSTM artificial

neural networks.

5.2. Experimental results

As test case study, the approach has been exploited to predict

epidemic patterns in some Chicago neighborhoods. The goal

of such tests comprises detecting the most significant mobility

patterns among hotspots, the epidemic hotspots and epidemic

predictive models. In particular, the final aim is to exploit the

detected epidemic predictive models to estimate the number of

epidemic events that are expected to occur in the future.

The data used to extract the knowledge models and perform

the experimental evaluation have been collected from real-world

data repositories, covering the period fromApril 2020 to December

2021. Mobility data are composed of trajectories traced by vehicles,

buses, pedestrians, while infection data are gathered from official

daily COVID-19 data (cumulative number of positive cases,

cumulative number of tested, etc.) (Canino et al., 2022a). Mobility

data have been analyzed to discover mobility patterns and epidemic

hotspots, while the infection data have been processed to discover

predictive models for epidemic spread forecasting. Figure 8 shows

the collected infection data (cumulative number of positive tested

cases), grouped by zip-code. According to the plot, the incidence

of infections is nearly stable in the Spring and Summer of 2020,

climbs significantly in the late Autumn and Winter of 2020–2021,

then stabilizes again in the Spring and Summer of 2021 before rising

again in the Autumn 2021.

Mobility patterns have been discovered by applying a pattern

mining implementation of the well-known apriori algorithm

(Cesario et al., 2017). Using infection data from the source locations

as regression variables, the approach creates a specific epidemic

forecasting model for each destination location after the detection

of epidemic movement patterns. Forecasting models have been

discovered by applying the LSTM algorithm, i.e., Long Short-Term

Memory (Schmidhuber and Hochreiter, 1997), which is an artificial

recurrent neural network used in deep learning and can process

entire sequences of data. On the basis of actual data, the approach’s

experimental effectiveness has been assessed by computing how

well the algorithm can forecast the daily occurrence of positive

cases. The curves for two zip codes, 60603 and 60661, are shown

in Figure 9. The observed and fitted data are plot in black and

red, respectively. The training set period runs from April 2020
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FIGURE 7

The approach workflow.

FIGURE 8

Cumulative number of infection cases vs. time for the evaluated Chicago ZIP codes.

to August 2021. Observed and predicted data for the test set

period, which ranges from September 2021 to December 2021, are

represented by the colors blue and red, respectively. By examining

the test set, we can see that the trends predicted by the LSTM

models closely match those shown in the actual data. Finally,

forecasting accuracy has been measured by several error indices.

In particular, for all zip codes, the MAPE results lower than 10%,

which appears to be a very interesting result. More details about

the approach and achieved results can be found in Canino et al.

(2022a,b).

6. Conclusion

This paper introduced how urban Big Data analysis can be

exploited to design and develop data-driven smart city services.

Then, it presented three real-case studies, showing how the

application of data analysis to data-rich cities can provide

innovative solutions to deal with urban issues. The first approach

is aimed at detecting crime forecasting models, based on spatial

analysis and auto-regressive models, which has been tested on

crime events occurred in Chicago. The second one is methodology
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FIGURE 9

Cumulative number of infection events observed, fitted, and forecasted, for two zip codes. (A) ZipCode 60603. (B) ZipCode 60661.

to discover mobility hotsposts and trajectory patterns from GPS

data (tested on Beijing taxi traces). The third one is an approach

to discover spatio-temporal predictive epidemic patterns from

mobility and infection data, whose experimental evaluation has

been carried out on real-world COVID-19 data. The presented real-

world cases prove that data analytics models can effectively support

city managers in tackling smart city challenges and improving

urban applications.

As further research challenges smart cities have to deal with in

the future, there are several opportunities that are promising and

relevant in the smart city domain, including the following ones:

• Improving efficiency and effectiveness of city network

communications. The transformation from an urban

metropolitan area toward a smart city is strictly dependent on

its communication network, which must be more pervasive

and efficient to make all monitoring and analysis devices

(sensors, computing nodes, smart objects) working together

in a collaborative digital ecosystem.

• More pervasive use of data. With a more connected

city, data can be more freely created and shared, to

improve services and introduce more innovation. The

increasing pervasiveness of data can be exploited by modern

machine and deep learning algorithms to proficiently solve

urban issue.

• More workable policies with legislation. An important

challenge to be addressed is finding workable policies to

regulate interactions among city managers, urban data

scientists and ICT stakeholders to collaborate in research-

and-development investments, aimed at implementing

innovative services for citizens.
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