
TYPE Original Research
PUBLISHED 04 November 2022
DOI 10.3389/fdata.2022.1016606

OPEN ACCESS

EDITED BY

Prashanti Manda,
University of North Carolina at
Greensboro, United States

REVIEWED BY

Emre Sefer,
Özyegin University, Turkey
Zhi-Ping Liu,
Shandong University, China

*CORRESPONDENCE

Jake Y. Chen
jakechen@uab.edu

SPECIALTY SECTION

This article was submitted to
Medicine and Public Health,
a section of the journal
Frontiers in Big Data

RECEIVED 11 August 2022
ACCEPTED 14 October 2022
PUBLISHED 04 November 2022

CITATION

Nguyen T, Yue Z, Slominski R,
Welner R, Zhang J and Chen JY (2022)
WINNER: A network biology tool for
biomolecular characterization and
prioritization.
Front. Big Data 5:1016606.
doi: 10.3389/fdata.2022.1016606

COPYRIGHT

© 2022 Nguyen, Yue, Slominski,
Welner, Zhang and Chen. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

WINNER: A network biology tool
for biomolecular
characterization and
prioritization

Thanh Nguyen1,2, Zongliang Yue1, Radomir Slominski1,

Robert Welner3, Jianyi Zhang2 and Jake Y. Chen1*

1Informatics Institute in School of Medicine, The University of Alabama at Birmingham, Birmingham,
AL, United States, 2Department of Biomedical Engineering, The University of Alabama at
Birmingham, Birmingham, AL, United States, 3Comprehensive Arthritis, Musculoskeletal, Bone and
Autoimmunity Center (CAMBAC), School of Medicine, The University of Alabama at Birmingham,
Birmingham, AL, United States

Background and contribution: In network biology, molecular functions can

be characterized by network-based inference, or “guilt-by-associations.”

PageRank-like tools have been applied in the study of biomolecular interaction

networks to obtain further the relative significance of all molecules in the

network. However, there is a great deal of inherent noise in widely accessible

data sets for gene-to-gene associations or protein-protein interactions. How

to develop robust tests to expand, filter, and rank molecular entities in disease-

specific networks remains an ad hoc data analysis process.

Results: We describe a new biomolecular characterization and prioritization

tool called Weighted In-Network Node Expansion and Ranking (WINNER).

It takes the input of any molecular interaction network data and generates

an optionally expanded network with all the nodes ranked according to

their relevance to one another in the network. To help users assess the

robustness of results, WINNER provides two di�erent types of statistics. The

first type is a node-expansion p-value, which helps evaluate the statistical

significance of adding “non-seed” molecules to the original biomolecular

interaction network consisting of “seed”molecules andmolecular interactions.

The second type is a node-ranking p-value, which helps evaluate the

relative statistical significance of the contribution of each node to the

overall network architecture. We validated the robustness of WINNER in

ranking top molecules by spiking noises in several network permutation

experiments. We have found that node degree–preservation randomization

of the gene network produced normally distributed ranking scores, which

outperform those made with other gene network randomization techniques.

Furthermore, we validated that a more significant proportion of the WINNER-

ranked genes was associated with disease biology than existing methods

such as PageRank. We demonstrated the performance of WINNER with a

few case studies, including Alzheimer’s disease, breast cancer, myocardial

infarctions, and Triple negative breast cancer (TNBC). In all these case studies,

the expanded and top-ranked genes identified by WINNER reveal disease

biology more significantly than those identified by other gene prioritizing

software tools, including Ingenuity Pathway Analysis (IPA) and DiAMOND.
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Conclusion: WINNER ranking strongly correlates to other ranking methods

when the network covers su�cient node and edge information, indicating

a high network quality. WINNER users can use this new tool to robustly

evaluate a list of candidate genes, proteins, or metabolites produced

from high-throughput biology experiments, as long as there is available

gene/protein/metabolic network information.

KEYWORDS

gene prioritization, network expansion, network statistical analysis, pathway analysis,

network biology

Introduction

Gene prioritization from large-scale omics projects is a

central topic in disease biology (Huang H. et al., 2009). Manual

searches of the literature and publicly annotated databases (Gene

Ontology et al., 2013; Kanehisa et al., 2017; Tyner et al., 2017)

for genes associated with a particular disease or biological

process can be biased, because they are limited to existing

knowledge. Sifting hundreds and thousands of gene or genetic

variations associated with genes from genomic studies can also

be daunting (Moreau and Tranchevent, 2012), e.g., even for

a user to search for genes associated with cardiac arrhythmia

(Rajab et al., 2010) within a 2-Mb region of chromosome 17

may return 77 candidate genes. For many biologists, the lack of

ranking of genes based on biological relevance of disease context

is an experience analogous to the pre-Google days of Internet

search of web content. With influx of data from large-scale

sequencing projects (Schlotterer et al., 2014), bioinformatics

users increasingly count on good gene prioritization to help

them generate biological hypotheses (Chen et al., 2006a; Hale

et al., 2012), find potential disease biomarkers (Saha et al.,

2008; Zhang and Chen, 2010, 2013), and identify candidate drug

targets (Chen et al., 2006b, 2013; Li et al., 2009; Muhammad

et al., 2017). However, as datasets continue to become larger and

more heterogeneous, statistical (Subramanian et al., 2005; Aerts

et al., 2006; Cantor et al., 2010) and text-mining (Krallinger

et al., 2008; Liu et al., 2015; ElShal et al., 2016) approaches

to gene prioritization lack sufficient precision in the biological

knowledge context. For example, surveys of PAGER (Yue et al.,

2018) for genes associated with the response of breast cancer to

doxorubicin treatment may retrieve more than 2,000 statistically

significant genes with MSigDB (Liberzon et al., 2015), or

234 candidate genes with the online text-mining platform

Beegle (ElShal et al., 2016). The use of statistical p-values to

prioritize retrieved genes can mislead biology users who assume

statistical significance in samples equate the gene’s true biological

significance against one another in the experiment (Kim and

Bang, 2016).

To overcome the limitations gene prioritization in practice,

bioinformatics researchers have developed gene network models

with which they perform knowledge-based gene prioritization

and novel candidate genes identification (Chen et al., 2006a;

Cowen et al., 2017). A molecular network consists of nodes (e.g.,

proteins) linked by edges that represent the pairwise interactions

between nodes, forming a convenient computational model

that is easy to interpret and has been widely used to discover

(and rediscover) disease-specific genes and potential targets for

treatment (Chen et al., 2009; Wu et al., 2009; Erten et al.,

2011; Gottlieb et al., 2011; Guney and Oliva, 2012; Singh-Blom

et al., 2013; Smedley et al., 2014; Peters et al., 2017; do Valle

et al., 2018). Network-based methods also enable researchers to

integrate data from a wide variety of sources, including analyses

of gene-gene similarity (Alvarez-Ponce et al., 2013), proteomic

interactions (Rolland et al., 2014), and regulatory pathways

(Li and Campos, 2015); however, the results of prioritization

strongly depend on the input gene list (Antanaviciute et al.,

2015), and the list is often derived from existing databases that

may lack important genes because of statistical errors or human

errors during annotation. For example, acetylcholinesterase

(ACHE), which is commonly associated with β-amyloid plaques

and neurofibrillary tangles in the brains of patients with

Alzheimer’s Disease (AD; Talesa, 2001), is not among the

annotated genes for AD in the KEGG database (Kanehisa et al.,

2017). Input lists may also be compromised by redundancy,

which can be generated from at least two sources: (1) the

inclusion of genes that were falsely identified during the

statistical analysis of an experiment (Yu et al., 2017), and (2)

when, in an attempt to increase comprehensiveness, the list is

expanded to include the gene for a “hub” protein that interacts

with dozens, or even hundreds, of other proteins [e.g., ubiquitin

C binds to 4,658 other molecules (Chen et al., 2017)] and,

consequently is unlikely to be specific for the phenotype of

interest. Furthermore, the statistical significance of a ranking

is typically calculated via comparison to the rankings from

a randomized version of the original network, but since the

randomized network is often created by adding or deleting a

small number of gene-gene interactions (i.e., increasing noise),

or via total network permutation (Xie et al., 2015; Guala and

Sonnhammer, 2017), much of the topology of the original

network may be lost.
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Related works

According to Bromberg (2013), molecular-interaction-based

disease gene prioritization started in the early 2000’s by

pioneering techniques such as G2D (Perez-Iratxeta et al., 2002).

In principle, statistical analysis of the patients’ genetic data yields

100’s of disease-associated genes. These genes often belong to

an interaction network (Sun and Zhao, 2010), which is also

called a “disease pathway.” Assume that the disease phenotypes

occur due to a disturbance at any point of the pathway, then

disturbing the “most influential” genes is the most likely reason

leading to the disease. Then, having a good disease pathway,

network ranking algorithms, especially the eigenvector-based

[RandomWalk (Smedley et al., 2014) and PageRank (Page et al.,

1999)] and centric-based [betweenness centrality (Newman,

2005)] can be used to prioritize the genes. Also, this idea

can be applied to analyze key regulators in non-disease-

specific biological processes. However, the pathways are usually

incompleted: new disease regulators are still not discovered or

some interaction among disease-associated genes are not yet

shown (Bromberg, 2013). Therefore, the ranking techniques are

required to extend the interaction network beyond the known

disease-associated genes. Recent gene prioritization techniques

have this ability. For example, DIAMOnD (Ghiassian et al.,

2015) built a large network comprising genes related to 70

diseases, clustered the large network into multiple network

modules, then assigned the network module to a disease; here,

in the same module, genes not related to the disease module are

added (extended) into the disease-specific network-module for

prioritization. Ingenuity Pathway Analysis (Kramer et al., 2014)

extended the disease-specific pathway by statistically estimating

the likelihood of how a new gene interacts with the known

disease-related gene. In Node2Vec (Grover and Leskovec, 2016;

Peng et al., 2019), a “global gene network,” which includes

the known disease-specific genes, their direct interacting genes,

and indirect interacting ones (optionally) was constructed; then,

each gene is represented by a numerical vector having a fixed-

length dimension to allow computing the cosine similarity

between a known disease-specific gene and another gene; so,

the extension can be made by choosing the genes having high

cosine similarity to any of the disease-specific ones. Or, in

GenePANDA (Yin et al., 2017), given a “global gene network”

(similar to Node2Vec), for a specific gene, the average distance

between itself and any other gene in the “global” network was

subtracted by the average distance between itself and the known

disease-specific genes; then, this difference was used to rank

the genes.

Besides the network-based approach, gene prioritization

could be performed using text mining and similarity profiling

approaches (Yin et al., 2017). In the text mining approach,

it is hypothesized that important genes are more likely to be

mentioned in an article than non-important ones. Therefore,

text mining tools, such as aBandApart (Van Vooren et al.,

2007) and Gene Prospector (Yu et al., 2008), emphasize

efficient queries in MEDLINE and other large literature

collections to find important disease-specific genes. However,

these approaches may not find important genes when the disease

is not yet well-researched or when a new disease model (i.e., a

new cell line or new organoid) is built to represent the disease.

On the other hand, similarity profiling defines the similarity

among the genes according to the disease-related information;

then, if a novel gene shares a high similarity with genes that

are known to be important, the novel gene will be ranked

highly. For example, Endeavor (Aerts et al., 2006) and ToppGene

(Chen et al., 2009) integrated multiple disease-omic databases

by a machine-learning model; the model was trained to classify

between the known-important genes and non-important genes;

the model will produce a ranking score reflecting how important

a novel gene is, respecting the already known ones. Meanwhile,

the disease-specific gene expression and correlation matrix can

be clustered or latent-based represented, such as in Pinta (Nitsch

et al., 2011), Maxlink (Guala et al., 2014), and Genefriends

(van Dam et al., 2012), where the well-known disease-specific

genes are expected to concentrate in one or a few clusters/latent

modules, and the novel genes in these clusters or modules would

be ranked highly.

Here, we introduce a new ranking method, Weighted

In-Network Node Expansion and Ranking (WINNER), that

addresses many of the current limitations of network-based

gene prioritization methods. As with PageRank (Winter et al.,

2012) and many other gene prioritization techniques, the

ranking engine of WINNER uses random-walk principles (Zhao

et al., 2015). However, WINNER was designed to address the

following three specific network biology tasks: (1) perform gene

prioritization in a weighted biomolecular association network,

(2) identify upstream regulators and targeted genes (i.e.,

“upstream” ranking), or (3) identifying downstream effector

molecules that are specific for a particular disease or phenotype

(“downstream” ranking).WINNER can generate a ranking score

for each input gene, derive optional genes that are “expanded”

from the original seed gene lists, and provide two different

statistic for users (1) the gene expansion p-value (pe) for adding a

gene to the network, which addresses both incomprehensiveness

and redundancy; and (2) the gene ranking p-value (pr), which

represents the significance of the ranking when compared to

the randomized network. Furthermore, we found that compared

to total network permutation (Xie et al., 2015; Guala and

Sonnhammer, 2017), preserving the modularity randomization

(Cowen et al., 2017) produces a randomized network that

is topologically similar to the original network and yields a

more normal distribution of ranks (Espinoza, 2012). We further

demonstrated the benefit of WINNER in omics study result

interpretations with the following case studies: (1) ranking genes

that are genetically associated with Alzheimer’s disease (AD);

(2) ranking breast-cancer survival-related genes (Lanczky et al.,

2016); (3) ranking differentially expressed genes involved in
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myocardial injury in pigs for their potential roles in myocardial

regeneration (Eschenhagen et al., 2017). In all these studies, we

discuss how our prioritization score and statistic associated with

high-ranked genes enable biology users to derive new insights

and hypotheses worth further experimental investigations.

Methods

For this work, we postulated (1) that the seeded (i.e.,

input) genes consist of (but are not limited to) differentially

expressed genes identified in a wet-lab experiment, genes in a

well-curated pathway, and phenotype-associated genes mined

from the literature; and (2) that genes added to the expanded

network (i.e., “expansion genes”) would have significantly more

interactions with seeded genes (i.e., “seeded interactions”) than

with non-seeded genes. WINNER begins with the set of seeded

genes and a collection of gene-gene interactions, iteratively

applies network ranking for gene prioritization, and expands the

ranked list of genes one gene at a time (Supplementary Figure 1).

Each gene-gene interaction has a confidence score (scaled

between 0 and 1), which is commonly included in interactome

databases (Chatr-Aryamontri et al., 2013; Szklarczyk et al.,

2015); however, if a confidence score is not available, then the

confidence score is set to 1 for all interactions. Network ranking

is first applied to the seeded genes and the interactions among

them (S0 metric, Equation 1); then, genes adjacent to the seeded

genes are filtered for significant interactions with the seeded

genes (pe) to identify candidates for the expanded network. The

identified candidate is added to the ranked list, and network

ranking is re-applied to initiate the next iteration of the cycle.

A more detailed description of each step is provided below.

Ranking genes in the network by WINNER

Undirected networks

Given a gene-gene association network, the genes are ranked

as in Supplementary Video 1. First, WINNER assigns an initial

score (S0) to the genes, according to Yue et al. (2017):

S0 (i) = e2 ln(w(i))−ln(I(i)) (1)

where i represents the gene index, w(i) is the sum of the

confidence scores (normalized to between 0 and 1) for all gene-

gene interactions associated with i, and I(i) is the number of

gene-gene interactions associated with i. Here, larger confidence

scores imply stronger associations. Second, WINNER iteratively

updates the gene score by applying the RandomWalk technique

(Page et al., 1999):

St (i) = (1− σ) × S0 (i) + σ ×
∑

∀j

c(j, i)×St−1
(

j
)

w
(

j
) (2)

where s is the random walk damping parameter [set to s

= 0.85 as described (Page et al., 1999)], c(j, i) represents the

confidence score of the interaction between gene i and gene j,

and t is the index of iteration (starting at 1); S= 0 for genes that

are outside the network but appear in the collection of gene-gene

interactions. PageRank theory (Page et al., 1999) demonstrates

that St converges (|St − St−1|
R©
0) if t is large enough, so the

iterative cycle was continued until |St − St−1| < 0.001.

Directed networks

Directed networks, such as networks of regulatory pathways,

include more annotation than undirected networks. Thus, we

adapted the definitions of terms in Equations 1, 2 so that

WINNER could be used to (for example) infer upstream

regulatory and downstream effector genes (Kramer et al., 2014).

For “upstream” ranking, i is the regulatory gene and j is the gene

regulated by i; thus, w (i) is the sum of the confidence scores for

all gene-gene relationships that i regulates, I(i) is the number

of gene-gene relationships regulated by i, and c(j, i) is the

confidence score for the regulation of j by i. For “downstream”

ranking, i is the regulated gene and j is the gene that regulates

i; thus, w (i) is the sum of the confidence scores for all gene-

gene relationships in which i is regulated, I(i) is the number of

gene-gene relationships in which i is regulated, and c(j, i) is the

confidence score for the regulation of i by j.

Statistical significance of gene ranking

To evaluate the statistical significance (p-value) of the gene

ranking, we determined how likely the converging result of S

(by default, S200) in Equations 1, 2 is higher than in random

networks. Randomization was performed inMatlab with degree-

preservation (Espinoza, 2012; Tiong and Yeang, 2019) to

maintain the topological characteristics of the original gene-gene

network; however, the technique only generates unweighted

relationships, so weights were randomly assigned from the

distribution of relationship weights in the original network. One

thousand random networks were generated, and the ranking

scores (S200) of the genes in the random networks were normally

distributed (as validated via the Chi-square goodness-of-fit test).

Thus, the ranking p-value (pr) for each gene i was calculated by

using the normal distribution [m(i), s(i)] parameter estimation

(Bowman and Azzalini, 1997):

pr (i) =















∫ S200(i)
−∞

1
σ (i)

√
2π

e
− (x−µ(i))2

2σ2 dx if S200 (i) < µ(i)

∫∞
S200(i)

1
σ (i)

√
2π

e
− (x−µ(i))2

2σ2 dx if S200 (i) > µ(i)

(3)

which is equivalent to computing the two-tailed p-value for

a normal distribution.
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Filtering candidates for expansion

We chose two hypergeometric tests that are common

practice in annotation (Huang et al., 2009). First, we tested

the likelihood of the candidate expansion gene having a seeded

interaction relative to its total number of interactions. Second,

we tested the likelihood of the candidate expansion gene

having seeded interactions relative to the seeded interactions

of its most similar seeded gene, with similarity determined

by node degree. Thus, we calculated two p-values for

each expansion gene j from the “overrepresented” point

of view (Beissbarth and Speed, 2004; terms are defined in

Supplementary Figure 2):

Test 1:

p1e
(

j
)

=
min(n,K)
∑

l=k(j)

(

K

l

)(

N − K

n− l

)

(

N

K

) (4)

Test 2:


























































p2e
(

j
)

=
min(n,K)
∑

l=k(j)

(

K

l

)(

N − K

n− l

)

(

N

K

) if N > K

p2e
(

j
)

= 1−
min(n,K)
∑

l=0

(

N

l

)(

K − N

k− l

)

(

K

N

) if N < K

(5)

in which the double-line bracket operator represents the

combination operator:

(

N

K

)

=
N (N − 1) (N − 2) . . . (N − K + 1)

K (K − 1) (K − 2) . . . 1
(6)

Genes for which both p1e(j) < 0.05 and p2e(j) < 0.05 were

chosen as candidates for expansion. Thus, the expansion p-value

(pe) for each gene j is defined by the equation pe(j) = max

[p1e(j), p2e(j)].

Selecting one candidate for expanded
ranking

Since there will likely be more than one candidate expansion

gene remaining after filtration, WINNER estimates which of the

candidates should be added to the network by calculating an

expansion score (e) from the confidence score of the interaction

between the candidate gene and the ranked genes, and the

ranking score (S) of the ranked genes:

e (i) =
∑ c

(

i, j
)

S
(

j
)

W
(

j
) (7)

Where i is the candidate expansion gene, j represents all

seeded genes that interact with the candidate expansion gene,

andW(j) is the sum of the confidence scores for all interactions

involving all seeded genes. Note that W(j) differs from w(j)

in Equation 2, because w(j) is restricted to interactions among

ranked genes.

Informatics databases and benchmarking
metrics

Correlations among WINNER, PageRank (Winter et al.,

2012), dual node-edge ranking (Wang et al., 2015), eigenvector

centrality, betweenness centrality, node degree, and clustering

coefficient (Newman, 2008) were evaluated by computing

the linear correlation coefficients and p-values with Matlab

(Neupane and Kiser, 2018).

For analyses of upstream and downstream genes (directed

network), genes were distributed into layers via the breadth-

first-search approach, and groups of genes that formed a self-

contained cycle were treated as a single node. Results were

visualized with boxplots. In each pathway, the gene rank

numbers were converted into percentile format: the first rank

(number 1) was converted to 100% percentile, while the last rank

was converted to 0% percentile. The percentile format allowed

boxplot aggregation frommultiple pathways, where the different

pathways had different number of genes.

Experiments demonstrating the general topological and

biological significance of the WINNER ranking were conducted

with the small gene set associated with AD from KEGG release

50 (2009) (Kanehisa et al., 2010) and with undirected gene-gene

interactions from HAPPI version 1.0 (Chen J. Y. et al., 2009).

Rankings of upstream regulators and downstream effectors were

conducted with all cancer disease pathways in KEGG release

85 (Kanehisa et al., 2017; Tessier et al., 2018) and gene-gene

regulatory relationships from STRING v.10.5 (Szklarczyk et al.,

2017).

The effectiveness of WINNER for identifying network-

expansion genes was evaluated by using KEGG release 50 [stored

in PAGER 1.0 (Yue et al., 2015)] as the input with interactions

of all types (without directionality) from HAPPI v.2.0 whose

confidence scores exceeded 0.75 (Chen et al., 2017), and then

determining how closely the expanded network matched the

updated KEGG release 85 (Kanehisa et al., 2017). An analogous

experiment was conducted with Ingenuity Pathway Analysis

(IPA), which (in theory) can be used for both upstream and

downstream expansion and HAPPI v.2.0 (Kramer et al., 2014)

for comparison. Precision, recall, and F1 scores were calculated

via the following equations:

precision =
|E ∩ U|
|E|

(8)

recall =
|E ∩ U|
|E|

(9)
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F1 =
2× precision× recall

precision+ recall
(10)

where E is the set of expansion genes determined by Winner

or IPA and U is the set of genes present in KEGG release 85 but

not in KEGG release 50.

The biological relevance of our rankings was evaluated by

(1) determining whether the top-ranked genes from WINNER

ranking of the KEGG breast cancer pathway (Kanehisa

et al., 2017; https://www.genome.jp/kegg-bin/show_pathway?

hsa05224) were included among the genes correlated with

survival in 3951 Breast Cancer patients (Gyorffy et al., 2010);

and (2) by ranking the set of differentially expressed genes from

a study of myocardial regeneration in neonatal pigs (Zhu et al.,

2018) with WINNER and determining whether the top-ranked

genes could contribute to cardiac repair and cardiomyocyte

proliferation. For the analysis of breast-cancer survival genes,

we calculated the ratio of the number of genes that were both

significant (survival p-value < 0.05) in the breast cancer study

(Gyorffy et al., 2010) and highly ranked by WINNER (i.e.,

scored above a defined threshold) to the number of highly-

ranked genes.

Network randomization and testing for
ranking normal distribution in random
networks

In WINNER, given a network (also called the original

network), we examined the following network randomization

approaches to evaluate which network randomization approach

was the most suitable for computing the ranking p-value for

each gene:

• Total rewiring (also called total network permutation;

Waksman, 1968). To implement this approach, for each

interaction (edge) in the original network, we randomly

changed the two genes (node) connecting through this

edge. Therefore, this approach preserves the number

of interactions, yet it totally changes the network and

gene topology.

• Randomly drawing a new network such that each gene’s

degree is the same to what it is in the original network (also

called preserving degree; Rao et al., 1996). A gene degree, in

simple description, is the number of other genes connecting

to the gene in the network.

• Randomly drawing a new network with the same

modularity to the original network (also called preserving

modularity). We implemented this strategy according to

the network modularity definition in Newman (2006).

Modularity measures likely the network can be partitioned

into clusters of interacting genes.

• Randomly adding 5% new interactions into

the original network. These interactions were

not reported in the gene-gene interaction

databases.

• Randomly removing 5% of the interactions from the

original network.

For each network randomization approach, starting from

the same original network, we repeated 10,000 times, yielding

10,000 different random networks. Then, applying WINNER

(and other ranking algorithms) yielded 10,000 random ranking

results for each gene. We tested whether these random rankings

followed a normal distribution using chi-square goodness of fit

test (chi2gof)1 in Matlab. In this test, the smaller chi-square

(chi2) indicates that the rankings are more naturally distributed.

Literature validation using co-citations
from PubMed

Important disease-specific genes are often co-mentioned in

a research article. Therefore, to demonstrate the significance of

the genes related to a disease, we applied a co-citations from the

NCBI e-utils application programming interface (API; Sayers,

2008) that implements semantic searches of PubMed abstracts

to report biomedical literature citations (https://eutils.ncbi.nlm.

nih.gov/entrez/eutils/esearch.fcgi?). We applied “pubmed” as

input of database and the concatenated string of the candidate

gene and the disease name as input of terms. To identify the

co-citation support for the winner scores, we separated the

genes into two categories, with literature co-citation (k = 0)

or without literature co-citation (k > 0) to find the differences

between the winner scores. We applied the Kruskal-Wallis test

to report p-values.

Biomedical case studies, data, and
preprocessing

Cardiac regeneration dataset

For the cardiac regeneration case study, the bulk-RNA

expression dataset was obtained from Zhang et al. (2020).

Briefly, two groups of pig hearts were sent for sequencing when

they reached postnatal days (P) 7, 14, and 28. In the first group,

the pigs underwent myocardial infarction (a heart attack model)

on the postnatal day 1, then their heart fully recovered to normal

cardiac functionality with no scar. In the second group, the pig

did not undergo injury (sham control). For each group at each

day (P7, P14, or P28), three pigs were sequenced. The bulk-RNA

data were processed by applying trim-galore (Krueger, 2015) for

trimming the fastQ read, then STAR package v2.5.2 for mapping

to Pig genome (Dobin et al., 2013), then the RNA transcripts

1 chi2gof: Chi-square goodness-of-fit test [https://www.mathworks.

com/help/stats/chi2gof.html].
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were counted using HtSeq version 0.6.1 (Anders et al., 2015).

The gene expression was normalized, and fold-change was

calculated using Deseq2 software (Love et al., 2014). Due to

the small sample size (n = 3), the p-values for differentially

expressed genes, compared between two groups at P7, P14, and

P21, were calculated using the approach in Bian et al. (2021).

After calculating and comparing two groups at these three

different postnatal time points, this process yielded 276 seed

genes as input for WINNER. Then, these genes were queried in

HAPPI v2 database (Chen et al., 2017) to build their interacting

network. These gene lists, their interaction, and WINNER

results were summarized in Supplementary Tables 1, 2.

Data processing of triple negative breast
cancer (TNBC)

Triple negative breast cancer (TNBC) has been found in 15%

of breast cancer cases and is characterized by the tumor cells

lacking the expression of the following: epidermal growth factor

2 (HER2), estrogen receptor (ER), and progesterone receptor

(PR; Liu et al., 2014; Ueda et al., 2019). Unfortunately, because

of its nature, TNBC has a poorer prognosis than other types of

breast cancers and treatment options are limited (Xia et al., 2014;

Eltohamy et al., 2018; Lu et al., 2020). While TNBC markers

are already well-studied, finding the key disease regulators and

promising targeted genes is still challenging (Nedeljkovic and

Damjanovic, 2019). Therefore, we applied WINNER to explore

novel answers for this question.

We took the triple negative breast cancer candidate genes

from the University of Alabama at Birmingham Cancer data

analysis Portal (UALCAN) database (Chandrashekar et al.,

2022). In the comparison between the 116 triple negative breast

cancer samples and 114 normal samples, UALCAN provided

the top 250 up-regulated genes and 250 down-regulated genes

selected by the t-test p-value. Next, we retrieved the Protein-

Protein Interaction (PPI) using the medium confidence (score

≥ 0.4) and extended 100 genes using the STRING database.

We performed WINNER and generated the gene ranking and

p-values (Supplementary Tables 3, 4).

PubMed co-citation analysis of the WINNER
ranked genes

We hypothesize that important disease-specific genes are

often co-mentioned in a research article (Olsen et al., 2014);

if so, WINNER high-ranking genes tend to be more co-cited

in the literature than the low-ranking ones. Therefore, to

demonstrate the significance of the genes related to a disease,

we applied co-citations from the NCBI e-utils application

programming interface (API; Sayers, 2008) that implements

semantic searches of PubMed abstracts to report biomedical

literature citations (https://eutils.ncbi.nlm.nih.gov/entrez/eutils/

esearch.fcgi?). We applied “pubmed” as an input of the database

and the concatenated string of the candidate gene and the

disease name as input of terms. To identify the co-citation

support for the winner scores, we separated the genes into two

categories, the WINNER significant ranked genes (p-value ≤
0.05) orWINNER non-significant ranked genes (p-value> 0.05)

to find the differences between the co-citations. We applied

the Kruskal-Wallis test to report p-values to test differences of

co-citations between significant and non-significant genes.

Pathway level assignment

We retrieved significantly enriched pathways from PAGER

2.0 database (Yue et al., 2018) using WINNER highly ranked

genes with p-values ≤ 0.05. We applied the parameter set as

follows. The data sources were KEGG, WikiPathway, BioCarta,

NCI-Nature Curated, Reactome, Protein Lounge, and Spike, the

similarity was set to be 0.05, and FDR was set to be 0.01. We

constructed the regulatory (r-type) PAG-to-PAG network using

the default r-type relationship score cutoff (=1). We performed

a 5-step procedure in the pathway level assignment. Firstly,

we calculated shortest paths among the pairwise r-type PAG-

PAG relationships. Secondly, we extracted the longest shortest

path and assigned levels of pathway from the upstream to the

downstream pathway using 1 to n. Thirdly, we expanded the

level assignment to the using shortest distances, such as the

current pathway is level m, the shortest distance between the

expanded pathway in the upstream to the current pathway is 2,

the expanded pathway level will be assigned by m-2. Fourthly,

we took the average of the levels assigned to pathways. Fifthly,

we repeated the steps three and four until all the pathways had

been assigned.

The correlation analysis of WINNER ranking
and the enriched pathways using the
exponential scale of top gene bins

Firstly, we segregated the WINNER significant genes into 2x

bins. Secondly, we took the top 2x bins (x is [1, X]) andmerge the

genes to perform the enrichment analysis. Thirdly, we had the

pathways enriched in the top 2x gene bins minus the pathways

enriched in 21, . . . ,2x−1 to seek the add-on pathways enriched in

the top 2x gene bins. Fourthly, we mapped the levels from the r-

type pathway-to-pathway relationships to the add-on enriched

pathways in each top 2x gene bins, and plotted the curve of

pathway levels vs. the gene bins. Meanwhile, we performed the

Pearson correlation analysis to report the correlation coefficient

between the pathways’ levels and gene bins.

Results

Characteristics of WINNER ranking

WINNER ranking of undirected networks

When genes in the KEGG [release 50, stored in the

PAGER 1.0 database (Yue et al., 2015)] AD pathway
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FIGURE 1

WINNER gene prioritization is well-correlated with other ranking
techniques and most network topological metrics. Genes in the
KEGG AD pathway were ranked via WINNER (WN), PageRank
(PG), Dual Node-edge Rank (DR), Betweenness Centrality (BC),
clustering coe�cient (CC), eigenvector centrality (EV), and node
degree (ND); then, the correlation coe�cients for all pairwise
comparisons between ranking methods were calculated via

Pearson’s correlation.

(Supplementary Figure 3) were ranked via WINNER gene

prioritization, our results were strongly correlated with those

obtained via analyses of both eigenvector (Newman, 2008;

p = 1.45 × 10−39) and node-betweenness (Newman, 2008;

p = 1.67 × 10−11) centrality, but not with the clustering

coefficient (Newman, 2008; p = 0.22). Similar patterns of

correlation were obtained with two other state-of-the-art

network-based ranking techniques, PageRank (Winter et al.,

2012), eigenvector (Newman, 2008), betweenness centrality

(Newman, 2005), and dual node-edge ranking (dual rank; Wang

et al., 2015) (Figure 1), and all three ranking techniques were

strongly correlated with node degree. Notably, the clustering

coefficient, but no other metric or technique, failed to identify

some of the most important markers for Alzheimer’s, including

Amyloid Beta Precursor Protein (A4 or APP; Jonsson et al.,

2012), Caspase 8 (CASP8; Wei et al., 2002), Caspase 3 (CASP3;

D’Amelio et al., 2011), and Presenilin 1 (PSN1; La Bella

et al., 2004). Thus, WINNER was at least equivalent to other

network topological metrics and well-established prioritization

techniques for ranking genes in undirected biological networks.

The strong correlation between the WINNER and node-

degree rankings prompted us to preserve the node degree

and modularity during randomization. Examining the AD-

associated genes network, the pairwise rank differences between

the original network and the total-permutation random

network were significantly large (Figure 2A). When the

difference between the random ranking and the original

ranking is too large, the random network topology would

be too different from the original network topology; thus,

the random ranking may not be suitable to test statistical

significance of the original ranking. Besides, when compared

to other randomization techniques (total network permutation,

preserving modularity, or adding/removing 5% of edges),

the distribution of rankings of AD-associated genes in

the degree-preserved randomized network was significantly

more normally-distributed (Figure 2B). Furthermore, when

examining the ranking distributions of two important AD-

associated genes A4 and Presenilin 1 (PSN1; Figures 2C,D), it

was clear that their distributions had the bell-shape. Thus, rather

than relying on the empirical p-value (Cornish et al., 2018) for

gene rankings, we generated 1,000 node-preserved randomized

networks and calculated a ranking p-value (pr) for all genes in

all KEGG pathways. Notably, the rankings were much less likely

to change in response to the addition of noise for genes with pr

< 0.05 than for genes with pr ≥ 0.05, especially as the amount

of noise increased (Figure 3). These observations suggest that

when randomized networks are generated with node-degree

preservation, fewer randomizations may be required to achieve

adequate precision, and fewer noise simulationmay be necessary

to evaluate the robustness of the rankings.

The accuracy of WINNER gene prioritization was evaluated

by ranking genes in the KEGG breast cancer pathway (https://

www.genome.jp/kegg-bin/show_pathway?hsa05224) and then

determining whether the top-ranked genes correlated with the

genes’ effect on survival for patients with breast cancer, as

estimated with an online Kaplan-Meier (Bland and Altman,

1998) tool that calculates the breast-cancer survival rates

associated with more than 6,000 genes (Gyorffy et al., 2010).

The KEGG breast cancer pathway contains 146 genes [annotated

by UniProt Consortium (2018)], 62% of which significantly

influenced patient survival, and a greater proportion of the most

highly ranked genes were significantly associated with breast-

cancer survival when prioritized with WINNER than with other

gene prioritization techniques (PageRank and dual node-edge

ranking; Figure 4). Furthermore, the precision of WINNER for

retrieving survival-related genes (i.e., the proportion of retrieved

genes that were significantly related to breast cancer survival)

was even greater when restricted to genes with a ranking p-value

of pr < 0.05.

WINNER ranking of directed networks

WINNER ranking of directed networks was evaluated

via WINNER upstream prioritization with all cancer disease

pathways in KEGG release 85 (Kanehisa et al., 2017; KEGG,

2022) and the gene-gene regulatory relationships in STRING

v.10.5 (Szklarczyk et al., 2017). Genes were distributed into layers

using the breadth-first search approach (Wang et al., 2012) with

genes coding for proteins that function further upstream in the

pathways assigned to the lower-numbered layers. Thus, genes in

the lowest-numbered layers tend to encode master regulatory

molecules/receptors and first/second messengers, which are
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FIGURE 2

With WINNER, Node-degree–preservation and modularity preservation yields more normally distributed randomized networks. Genes in the
KEGG AD pathway were ranked via WINNER; then, the ranked networks were randomized via: preserving node degree (Pre-Degree), preserving
modularity (Pre-Modularity), adding 5% interactions [Add (5%)], removing 5% of the interactions [Remove (5%)], and total network permutation.
(A) The (pairwise) di�erence between the original network ranking score and the random network ranking score; smaller di�erence implies the
random network approach is more likely to preserve the original network topology. (B) Chi-square (chi2coef) coe�cient in chi2gof test (https://
www.mathworks.com/help/stats/chi2gof.html). Smaller chi2coef implies that the random ranking is more normally distributed. The (+) signs in
the boxplots imply outliners (outside 2 and 98% percentiles). Under random network by preserving node degree, WINNER ranking distributions
are in bell-shape for two important AD-related genes: A4 (C) and PSN1 (D).

located where the signaling cascade originates (e.g., near the

cell membrane; Koschmann et al., 2015), while genes with the

highest layer numbers tend to encode downstream effector

molecules that are closely associated with a specific disease

phenotype, such as drug resistance in breast cancer (Johnston,

2006). Our results indicated that using WINNER, layer 1–3

genes, which were the upstream layers in the pathways, were

consistently ranked at higher percentiles than genes at other

layers (more downstream; Figure 5). But this consistency was

not observed when the genes were prioritized via equivalent

(directed-network ranking) analyses with PageRank (Winter

et al., 2012) and dual node-edge ranking (Wang et al., 2015).

WINNER upstream overestimated the ranking of genes in layer

8, but this can likely be attributed to noise, because the layer

contained only 12 ranked genes.

WINNER network expansion and ranking
upstream regulators

We demonstrated how WINNER could identify upstream

regulators of two cancer pathways, Chronic Myeloid Leukemia

(CML; https://www.genome.jp/kegg-bin/show_pathway?

hsa05220) and hepatocellular carcinoma (https://www.genome.

jp/pathway/hsa05225), that were missing from the existing

pathways in KEGG but were present in the KEGG database

itself. WINNER upstream prioritization distributed genes into

five different layers for each pathway, and WINNER expansion

added several highly ranked genes to both networks. Additions

to the CML network (Figure 6) included JAK1/2/3 and proteins

that participate in IL-2 (IL2, IL2RA, and IL2RB), IL-3 (IL-3,

IL-3RA, and IL-3RB), and GM-CSF (CSF2) signaling, which is

consistent with the JAK2/STAT5 pathway’s status as one of the
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FIGURE 3

The WINNER ranking p-value (pr) is robust to the addition of
noise (STATS?). Genes in all KEGG pathways were ranked via

WINNER, and WINNER ranking p-values (pr) were calculated,
after varying degrees of noise were added to the network; then,
noise robustness was compared for genes with pr < 0.05 and pr

≥ 0.05 by determining the likelihood that the gene’s ranking
changed by 10 or more upon the addition of noise.

primary targets for treatment of CML (Valent, 2014), as well

as evidence that STAT5 is phosphorylated by IL-2 (Kobayashi

et al., 2014; Valent, 2014) and IL-3 (Jiang et al., 1999) signaling,

and that GM-CSF is a crucial growth factor for myeloid

cells; notably, several of these molecules are currently being

investigated as therapeutic targets for CML treatment (Hercus

et al., 2012; Broughton et al., 2014; Kobayashi et al., 2014). For

the hepatocellular carcinoma pathway (Figure 7), WINNER

expansion added KC1G2, a serine-threonine kinase that can

activate TGF-β1/Smad signaling (Guo et al., 2008); TMED4,

WLS, and PRCN, which mediate Wnt/β-catenin signaling (Guo

et al., 2008; Martin-Orozco et al., 2019; Bland et al., 2021); and

several genes for proteins in the FGF signaling pathway (FRS2,

FRS3, KLB, and PLCG1; Gotoh, 2008; Gyanchandani et al.,

2013; Wang et al., 2020), of which KLB is particularly important,

because it functions as a co-receptor for the binding of FGF-

19/21 to FGFR-1/4 (Yang et al., 2012). Thus, the genes added

to the KEGG CML and hepatocellular carcinoma pathways

by WINNER expansion have strong, well-established links to

multiple binding partners that participate in the mechanisms

associated these diseases.

Besides, WINNER ranking correlation with other ranking

techniques, including Ingenuity Pathway Analysis (IPA; Kramer

et al., 2014), DIAMOnD (Ghiassian et al., 2015), Random

Walk (Smedley et al., 2014), Node2Vec (Grover and Leskovec,

2016; Peng et al., 2019), and GenePANDA (Yin et al., 2017),

vary from −0.83 (negatively correlated) to −0.05 (insignificant

correlation), then to 0.74 (moderate-positively correlated;

Figure 6C). This result suggests that the major difference

between WINNER and other techniques’ ranking appears when

FIGURE 4

WINNER gene prioritization more accurately identifies the
relationship between breast-cancer genes and patient survival.
Genes in the KEGG breast-cancer pathway were ranked via

WINNER, PageRank, and Dual Rank, and the significance of each
gene’s relationship to patient survival was determined with an
online Kaplan-Meier plotting tool. (A) The proportion of genes
that were significantly (p < 0.05) related to breast-cancer
survival was determined for the top 0-50% of ranked genes. (B)
The precision of the WINNER ranking of genes for breast-cancer
survival (Bland and Altman, 1998) was compared for the top
0–30% of ranked genes with pr < 0.05 and pr ≥ 0.05.

the network expands beyond the seed genes. Thus, a good

benchmark among WINNER and other techniques can be

performed by a network-expansion scenario.

Benchmarking WINNER ranking by
retrieving newly updated genes in KEGG
pathways

Gene prioritization algorithms are benchmarked by

information retrieval experiments, such as in Guala and

Sonnhammer (2017) and Zhang et al. (2021), where some
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important regulators are labeled “unknown,” and the algorithms

are executed to rank these “unknown-labeled” gene such

that these regulators are top-ranked. Thus, to benchmark

WINNER, we setup the KEGG Pathway retrieval experiment.

Here, WINNER took a KEGG pathway release 50 (2009

version; Kanehisa et al., 2010) as the seed genes and gene-gene

interactions (expanded network) in HAPPI database (Chen

et al., 2017) as the input; the WINNER expansion p-value

(pe) and WINNER score were calculated for candidate genes

to include in the KEGG release 50 pathway networks; then,

the highly-ranked non-seed (expanded genes) was compared

to the same updated pathway network in KEGG release 85

(Ogata et al., 1999; Kanehisa et al., 2017; 2017 version) as the

ground-truth. In this experiment, WINNER performance,

quantified by precision, recall, and the F1 score, was compared

with Ingenuity Pathway Analysis (IPA; Kramer et al., 2014),

DIAMOnD (Ghiassian et al., 2015), Random Walk (Smedley

et al., 2014), Node2Vec (Grover and Leskovec, 2016; Peng et al.,

2019), and GenePANDA (Yin et al., 2017); these techniques were

chosen according to Zhang et al. (2021). The same experiment

was executed with each KEGG pathway, and the results were

aggregated into error bars.

Our results indicated that the WINNER predictions had

greater precision but less recall (i.e., the proportion of newly

incorporated genes that were retrieved by the prediction)

than the predictions generated via other comparing methods

(Figure 8). The WINNER predictions were also associated with

a higher F1 score, which incorporates both precision and recall

into a global measure of accuracy, when more than 60% of the

extension candidates were examined. Besides, Figure 8 shows

that the retrieval recall rate is low (usually <0.2) in all of the

algorithms. Precision should be prioritized in comparing the

performance among these expansion algorithms.

WINNER ranking of di�erentially
expressed genes in biological
case-studies

WINNER ranking of genes involved in apoptosis
and cell-cycle activity

The use of WINNER for prioritizing genes involved in

cellular processes was evaluated with the KEGG apoptosis

and cell-cycle pathways and node-degree–preserved network

randomization. WINNER ranking p-values were highly

significant for genes that participate in some of the most

essential mechanisms of apoptosis, such as Phosphatidylinositol

4,5-bisphosphate 3-kinase catalytic subunit alpha isoform

(PIK3CA) (pr = 5.01×10−13); the Phosphatidylinositol 3-

kinase regulatory subunit alpha (P85A; pr = 1.34 × 10−12) and

Cytokine receptor common subunit beta (IL3RB; pr = 4.60 ×
10−12); and genes for several proteins of the cytoskeleton (actin,

pr = 1.94×10−104; Tubulin, pr = 1.94×10−104; B4DZT3, pr

= 8.71×10−87; Lamin A/C, pr = 8.17×10−87; Lamin B1, pr =
8.17×10−87; actin-G, pr = 5.15×10−63), which is substantially

reorganized to produce the characteristic shrunken morphology

of apoptotic cells; notably, actin and actin-binding proteins also

initiate and regulate apoptosis (Desouza et al., 2012). However,

the KEGG apoptosis pathway also includes genes for a number

of proteins that participate IL-3– and NGF-signaling (IL-3,

IL-3R, and NGF), which are nonessential (or even irrelevant)

for apoptosis, and the ranking p-values calculated for these

genes were not significant (pr = 0.18). Similarly, genes in the

KEGG cell-cycle pathway that encode proteins directly involved

in DNA replication and cell division had highly significant

ranking p-values (Cell Division Cycle 14B, pr = 9.5×10−297

and 14A, pr = 2.28×10−22) whereas the ranking p-values for

genes that participate in TGF-β signaling were nonsignificant

(TGF-β, pr = 0.29; SMAD2, pr = 0.29; SMAD3, pr = 0.29;

SMAD4, pr = 0.29), which is consistent with the role of TGF-β

in cell-proliferation: it interacts with many components of the

cell cycle pathway but generally inhibits proliferation in non-

mesenchymal cells. Collectively, these observations demonstrate

that the WINNER ranking p-value can be a useful guide for

distinguishing between genes that are essential or nonessential

participants in a particular cellular process.

WINNER ranks important signaling pathway
markers in mammalian pig heart regeneration

The hearts of adult mammals cannot regenerate myocardial

tissues that are lost to injury; however, when myocardial

infarction (MI) was induced in the hearts of one-day-old

piglets, the animals recovered with no significant loss of

cardiac function and little evidence of myocardial scarring

(Zhu et al., 2018). Thus, to identify genes that may contribute

to mammalian cardiac regeneration, we used WINNER to

rank the list of differentially expressed genes from piglets

that had or had not undergone surgically induced MI on

postnatal day 1 for a previous report (Zhang et al., 2020;

Figure 9, Supplementary Table 1). Here, we used HAPPI version

2 database (Chen et al., 2017) to build the network connecting

these genes. The two top-ranked genes (FN1 and JAK3)

encoded fibronectin, which is required for cardiac regeneration

in zebrafish (Wang et al., 2013), and Janus kinase 3 (JAK3),

which has been shown to protect against ischemia-reperfusion

injury (Kubin et al., 2011); notably, JAK3 also interacts

with oncostatin-M, which is encoded by the tenth-highest

WINNER-ranked gene (OSM) and is a primary factor in

cardiomyocyte dedifferentiation and remodeling (Singh et al.,

2016; Doll et al., 2017). Also among the top 10 were genes

encoding subunits of the essential matrix proteins integrin

alpha (ITGA8) and beta (ITGB4), which are differentially

expressed in adult and fetal cardiac fibroblasts and involved

in chamber specification of zebrafish hearts (Singh et al.,

2016; Doll et al., 2017), while the 11th-ranked gene, THBS3,

encodes another extracellular matrix protein, thrombospontin
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FIGURE 5

WINNER upstream prioritization more accurately identifies the relative position of genes in a pathway. Gene-gene regulatory relationships from
STRING v.10.5 were used to distribute genes from all KEGG cancer pathways into 7 layers via WINNER (customized for upstream ranking),
PageRank, and Dual Rank; genes coding for proteins that function further upstream in the pathways were assigned to the lower-numbered
layers. Layers 1–3 are the most upstream layers, usually correspond to the kineases, grow factors, and receptors. Layers 4–7 are downstream,
usually correspond to signaling hubs, phospholization, transcription factors, and inside-nucleus genes. The y axis indicates the ranking scores,
which were converted into percentile so that the rankings across di�erent pathways could be combined into one boxplot. The red cross implies
boxplot outliners (beyond 2 and 98% percentiles). (A) WINNER upstream rank. (B) PageRank. (C) Dual node-edge rank.

3, which is a critical [and clinically relevant (Mustonen

et al., 2013)] regulator of cell-cell and cell-matrix signaling

that appears to impede integrin function and contribute to

injury-induced cardiomyopathy in mice (Costa et al., 2014;

Porrello and Olson, 2014; Puente et al., 2014). Other genes

ranked among the top 20 by WINNER included the nitrous-

oxide–related genes NCF2 and NCF4, and the gene for

vasopressin 2 (AVPR2), which collectively modulate the cellular

environment to promote cardiac regeneration (Costa et al.,

2014; Porrello and Olson, 2014; Puente et al., 2014); ERBB3,

which encodes a tyrosine kinase that appears to be crucial

for embryonic development (Erickson et al., 1997); and genes

for a dynamin protein (DNM1) and a Rho GTPase (RND2),

which suggests that at least some of the mechanisms of

mammalian myocardial regeneration are mediated by vesicle-

based signaling.

WINNER ranking reflects the important genes
supported by co-citations and reveals the
upstream events in the r-type
pathway-to-pathway network in triple negative
breast cancer (TNBC) study

We found 72 significant genes ranked by WINNER using

p-value ≤ 0.05 with the WINNER score ranging from 7.4 to

92.5, and the left nonsignificant genes’ WINER score ranges

from 0 to 68.7. The co-citations analysis shows that the “triple

negative breast cancer” co-citations between the significant
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FIGURE 6

WINNER upstream ranking and expansion can identify genes that are missing from established chronic myeloid leukemia (CML) networks.
Genes in the KEGG CML pathways were distributed into layers via WINNER upstream, and genes that were missing from the networks were
identified via WINNER expansion. Genes in the same layer are displayed in the same color, and the size of the node represents the WINNER
score. (A) WINNER ranking without expansion. (B) WINNER ranking with expanded genes. (C) Correlation among WINNER (WN), Igenunity
Pathway Analysis (IPA), DIAMOnD (DM), Node2Vec (ND), Random Walk (RW), and GenePANDA (GP) ranking.

ranked genes and the nonsignificant ranked genes have

significant difference with Kruskal Wallis test’s p-value = 0.027

(Figure 10). The result suggests that WINNER’s high-rank genes

are more likely lead to biological insights than the WINNER’s

low-rank genes.

To explore new insights among the high-ranking genes, we

performed pathway analysis and built the pathway-to-pathway

regulatory networks from these genes using PAGER tool (Yue

et al., 2018). The WINNER significantly ranked genes regulated

many implicated pathways and processes for TNBC. Thus, we
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FIGURE 7

WINNER upstream ranking and expansion can identify genes that are missing from established hepatocellular carcinoma networks. Genes in the
KEGG hepatocellular carcinoma pathways were distributed into layers via WINNER upstream, and genes that were missing from the networks
were identified via WINNER expansion. Genes in the same layer are displayed in the same color, and the size of the node represents the WINNER
score. (A) WINNER ranking without expansion. (B) WINNER ranking with expanded genes.

observed the higher ranked gene enriched pathways are more

likely to be at upstream side of the regulatory (r-type) enriched

pathway-to-pathway network. In general, the add-on pathway

levels were positive correlated to the ranked gene bins with

Pearson correlation coefficient equal to 0.74 (Figure 11).

We found that the top ranked genes, TOP2A, CDK1,

PLK1, and UBE2C, were enriched in the cell cycle related

pathways, such as “Phosphorylation of Cyclin B1 in the

CRS domain,” “Regulation of mitotic cell cycle,” “Mitotic

Metaphase and Anaphase,” and “Free APC/C phosphorylated

by Plk1.”

Topoisomerase II a (TOP2A) can be a useful gene in

determining whether TNBC patients would have a good

response to anthracycline therapy, which is the mainstay

treatment in TNBC cancer (Brase et al., 2010; Di Leo et al., 2011;

Eltohamy et al., 2018). Both Eltohamy et al. and Di Leo et al.

found that patients with aberrant expression of TOP2A have

better response to anthracycline treatment (Di Leo et al., 2011;

Eltohamy et al., 2018).

Cyclin dependent kinase 1 (CDK1) play a critical role how

the cell cycle is regulated, specifically during mitosis. Liu et al.

used nanoparticles with siRNA to target CDK1, and it has been

found to successfully inhibit the TNBC cell line that has been

injected in mice (Liu et al., 2014). Xia et al. has found that the

CDK1 inhibitor can inhibit the growth of the TNBC cells by

arresting them in the G2/M cell phase (Xia et al., 2014).

Polo like kinase-1 (PLK1) has been found to be one of the key

regulators in the cell cycle. Targeting and knocking out of PLK1

has been found to cause the TNBC tumor cells to be arrested in

the G2-M cell cycle (Ueda et al., 2019; Zhao et al., 2021; Patel

et al., 2022). Morray et al. found that a nanoparticle with siRNA

targeting PLK1 can inhibit growth in the TNBC tumor cell line

(Morry et al., 2017). Patel et al. used the allosteric inhibitor RK-

10 to target the PLK1 in TNBC cell lines, and it has inhibited

growth through the S phase and G2/M (Patel et al., 2022).

Overexpression of Ubiquitin-conjugated enzyme (UBE2C)

can play a role in the pathogenesis of TNBC (Chou et al., 2014;

Kim et al., 2019). Chou et al had found that UBE2C has been

highly expressed in cancer tissue cells, and that when UBE2C

has been targeted with siRNA, the tumor cells have stopped

proliferating (Chou et al., 2014).

Discussion and conclusion

In this paper, we introduce WINNER, a new network-based

ranking tool that addresses several of the limitations

associated with other gene prioritization techniques. Our
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FIGURE 8

Benchmark: WINNER expansion more accurately identifies the addition of new genes to established networks. The pathway networks in KEGG
(https://www.genome.jp/kegg/network.html) release 50 was expanded via WINNER (i.e., calculation of the WINNER expansion p-value),
Ingenuity Pathway Analysis (IPA), DIAMoND, Random Walk, Node2Vec, and GenePANDA. Then, the expanded networks were compared to the
updated network in KEGG release 85 to determine the precision, recall, and F1 scores for each expansion technique.

novel use of node-degree–preserved and modularity-

preserved randomization produced randomized networks

that retained some of the original network topology and were

more normally distributed, which increased the precision

and robustness of our ranking p-value (pr) calculations,

while the expansion p-value (pe) better accommodated the

incomprehensiveness and redundancy of the input gene list.

However, WINNER rankings were not well-correlated with the

clustering coefficient, which represents the presence of network

cliques (Newman, 2008; i.e., semi-isolated groups of genes

that collectively function like a single node), which suggests

that WINNER ranking may be somewhat compromised

in dense networks, such as those containing families of

proteins, where the scale-free property (Timar et al., 2016)

does not apply. Nevertheless, many biological networks

are scale-free (Khanin and Wit, 2006), and since degree-

preserved randomization tends to produce near-normal ranking

distributions, the WINNER pr value is likely more accurate

than the empirical p-value, even for networks that are not

perfectly scale-free.

WINNER network ranking belongs to the “eigenvector

ranking” (Newman, 2008) class of algorithm. Therefore, it has

the same “big-O” computational cost to PageRank [O(N3),

where N is the number of network genes] if implemented using

iterative matrix multiplication. However, this class of algorithm

can be implemented in parallel, which significantly reduced the

computational time in practice.

The performance of gene network prioritization significantly

depends on the disease (Zhang et al., 2021), or the biological

case-study. Therefore, we demonstrate WINNER’s performance

in various disease and biological study scenarios. The

comprehensive KEGG pathway results reflect the case

when lacking biological samples and expression data. Then,

prioritization needs to be performed only using the domain-

knowledge available network to generate hypotheses. Cardiac

regeneration, which focuses on cardiomyocyte proliferation,

case-study is an example when a significant biological process,

not a disease, that does not naturally happen in matured

mammals (Porrello et al., 2011; Lam and Sadek, 2018; Ye

et al., 2018; Zhu et al., 2018; Zhao et al., 2020; Nakada et al.,

2021; Nguyen et al., 2022). In this case, the focus is finding

the regulating mechanism to create new cells and to apply this

knowledge in biomedical engineering research. Cancer and

other disease case studies (leukemia, TNBC, and Vitamin D)

are directly related to the disease, and targeted therapies to kill

cells are available or proposed. In this case, the focus is to find

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2022.1016606
https://www.genome.jp/kegg/network.html
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Nguyen et al. 10.3389/fdata.2022.1016606

FIGURE 9

WINNER can identify genes that contribute to cardiac
regeneration from a list of di�erentially expressed genes.
RNA-sequencing analyses of gene expression in the hearts of
piglets that had or had not undergone surgically induced
myocardial infarction on the 1st day after birth for a previous
report (Zhu et al., 2018) were compared to generate a list of
di�erentially expressed genes; then their gene-gene interactions
were queried from HAPPI v2 database; then, the list was ranked
via WINNER gene prioritization to determine which genes likely
contributed to myocardial regeneration. The 20 top-ranked
genes are displayed with their corresponding WINNER scores.

markers, especially the “cell-killer ones” associated with the

disease outcomes, and there is less emphasis rather than the

regulating growing mechanism. WINNER results are insightful

in all of these cases, whereas whether other techniques have

insightful results is yet to be examined in multiple studies.

In conclusion, WINNER gene prioritization is generally

more accurate and robust than other network-based

prioritization techniques, such as PageRank and node-degree

ranking, and can be effective for identifying genes that may be

missing from established gene networks, for determining the

relative position (i.e., upstream or downstream) of genes within

a pathway, and for ranking a list of differentially expressed

genes. The superior performance is linked to better retrieval

precision when expanding the network among the seed genes.

The important case studies presented in this work are in a

scenario where new disease-specific gene-expression data were

generated, and novel genes associated with the disease and

phenotype are expected. Then, network expansion is required.

In this expansion, WINNER emphasizes precision, where only

FIGURE 10

The literature validation of triple negative breast cancer genes
using co-citations from PubMed. The co-citations of gene and
TNBC are grouped by the WINNER reported p-values. The
non-significant gene p-values are larger than 0.05 in WINNER,
and the significant gene p-values are ≤0.05 in WINNER. The
Kruskal Wallis test p-value is 0.027.

FIGURE 11

The correlation between the add-on pathways enriched in the
top 2x bins and the bin size. The violin plot shows the pathway
level distribution. The red points connected by solid red lines are
the means of pathway levels.

a small expanded but highly relevant candidates are explored,

over recall, where more comprehensive candidate genes were

explored but may involve many irrelevant ones. Other methods

tend to emphasize recall; therefore, they may computationally

retrieve more candidates; however, at the same time, make it

much more difficult for the user to choose the rightly relevant

ones. Also, having too many irrelevant genes in the network

significantly affects the ranks of the well-known disease-specific

genes. This scenario explains the advantage of WINNER

over other methods. Future investigations are warranted to

determine what additional biological insights can be obtained by

using WINNER to rank genes that participate in other cellular

processes, in metabolic regulatory pathways (Berkhout et al.,

2013), and in co-expression networks (Radulescu et al., 2018).
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SUPPLEMENTARY FIGURE 1

Schematic diagrams of WINNER gene prioritization and network
expansion. (a) Seeded genes (green) and candidate expansion genes
(yellow) are assembled into a network as indicated by their pairwise
interactions. (b) The expansion p-value (pe) are calculated among the
expansion-candidate genes, then genes with pe < 0.05 will be further
evaluate and added into and expand the network, one gene at a time.
Then (c) the expansion score (e) are calculated for the candidate
expansion genes; then, the highest-scored gene is added to the
network; this process is repeated until all candidates are added or being
halted (not adding all candidates). And (d), after completing the
expansion, the statistical significance of the rankings are recalculated for
the expanded network.

SUPPLEMENTARY FIGURE 2

WINNER filtering of candidate genes for network expansion. Red nodes
represent seeded genes, open nodes represent candidate expansion
genes, black lines represent interactions between two seeded genes,
and gray lines represent interactions between one seeded gene and one
expansion gene or between two expansion genes. Candidate genes for
network expansion were filtered via two tests: (1) the likelihood of the
candidate expansion gene (E.Gene) having a seeded interaction relative
to its total number of interactions (bottom left table), and (2) the
likelihood of the candidate expansion gene having seeded interactions
relative to the seeded interactions of its most similar seeded gene
(S.Gene), with similarity determined by node degree (bottom right table).

SUPPLEMENTARY FIGURE 3

WINNER ranking of the network of Alzheimer’s disease pathways in
KEGG release 50. The network graph was constructed with Cytoscape
(Shannon et al., 2003) version 3.6.0 and the force-directed layout; the
size of the node represents the WINNER score.

SUPPLEMENTARY TABLE 1

WINNER ranking for genes in cardiac regeneration dataset. The table
includes gene symbol, the indication of whether a gene is a seeded (S)
or expanded (E) gene, and WINNER score.

SUPPLEMENTARY TABLE 2

Gene-gene interaction network in the cardiac regeneration dataset.

SUPPLEMENTARY TABLE 3

WINNER ranking for genes in triple negative breast cancer (TNBC)
dataset. The table includes gene symbol, the indication of whether a
gene is a seeded (S) or expanded (E) gene, WINNER score, and p-value.

SUPPLEMENTARY TABLE 4

Gene-gene interaction network in triple negative breast cancer (TNBC)
dataset.

SUPPLEMENTARY VIDEO 1

The .cys (cytoscape) file of the regulatory (r-type) pathway-to-pathway
network in the triple negative breast cancer study.
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