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The role of lymphatic endothelial
cell metabolism in
lymphangiogenesis and disease
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Lymphatic endothelial cells (LECs) line lymphatic vessels, which play an important
role in the transport of lymph fluid throughout the human body. An organized
lymphatic network develops via a process termed “lymphangiogenesis.” During
development, LECs respond to growth factor signaling to initiate the formation
of a primary lymphatic vascular network. These LECs display a unique metabolic
profile, preferring to undergo glycolysis even in the presence of oxygen.
In addition to their reliance on glycolysis, LECs utilize other metabolic
pathways such as fatty acid β-oxidation, ketone body oxidation, mitochondrial
respiration, and lipid droplet autophagy to support lymphangiogenesis. This
review summarizes the current understanding of metabolic regulation of
lymphangiogenesis. Moreover, it highlights how LEC metabolism is implicated in
various pathological conditions.
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1 Introduction

Lymphatic vessels (LVs) absorb interstitial fluid from the surrounding tissues and

transport it as lymph fluid, which contains immune cells, proteins, and dietary fats,

back to the venous circulation. If LVs are impaired or dysfunctional, excessive

interstitial fluid cannot be properly drained, causing accumulation in tissues leading to

painful swelling, a disease termed lymphedema. Additionally, LVs are also involved in

inflammation, graft rejection, myocardial infarction, and many other disease conditions

(1–6). Therefore, elucidating how LVs are formed will further the understanding of

physiological and pathological processes regulated by lymphatics. Moreover, it will

facilitate the development of new treatments for lymphatics-associated diseases.

The primary constituents of the lymphatic vasculature are lymphatic endothelial cells

(LECs), which line lymphatic capillaries and collecting LVs (7). Absorption of initial fluid

from surrounding tissue is achieved by lymphatic capillaries, which are blunt-ended

vessels composed of a single layer of LECs (8). These LECs are interconnected by

button-like junctions with a discontinuous basement membrane, thus allowing

anchoring filaments to facilitate fluid uptake into lymphatic capillaries via interaction

with the extracellular matrix (8, 9). Upon entering the lymphatic vasculature, the fluid

absorbed from surrounding tissues is termed “lymph” (10). Lymph carries immune cells

and pathogens and is involved in adaptive immune response in the lymph node (11).

Moreover, dietary lipids, cholesterol, and macromolecules are taken up by lymphatic

capillaries and transported as part of lymph in LVs (12). Therefore, in addition to
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immune response, LVs are involved in several important

physiological and pathological processes (12) (Figure 1). For

example, in the intestine, lymphatic capillaries (lacteals) absorb

dietary fats incorporated into chylomicrons for transport to the

bloodstream (13). Thus, lymphatic dysfunction is associated

with obesity and insulin resistance (14). LVs also play a role in

reverse cholesterol transport, a process that can ameliorate

atherosclerosis (15). In the lung, lymphatic drainage is required

during neonatal development of the lung allowing for proper

inflation (16). Additionally, meningeal LVs assist in clearing

macromolecules in cerebrospinal fluid (17, 18).

After the interstitial fluid enters lymphatic capillaries via button

junctions, it flows towards collecting LVs (Figure 1), which possess

zipper junctions in contrast to button junctions (8). These unique

zipper junctions form a tighter, more continuous structure with a

complete basement membrane to limit the improper entry or exit

of lymph fluid (8). Collecting LVs serve a special purpose within

the context of fluid transport. Specialized smooth muscle cell

coverage and lymphatic valves allow collecting LVs to act as the

motor unit of the lymphatic system, propelling lymph fluid

unidirectionally towards the lymph nodes where it will eventually
FIGURE 1

Structure and general functions of lymphatic vessels. (A) The lymphatic system
lymph. (B) Initial fluid uptake is achieved through lymphatic capillaries through
passed to the precollecting and collecting lymphatic vessels, which have
unidirectional transport. (C) Lymphatic vessels are present in multiple tis
example, lymphatic vessels facilitate immune response via immune cell tra
fats via lacteals in the intestine, and assist with cerebrospinal fluid drainage
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converge in the thoracic duct before returning to the circulatory

system via the subclavian vein (19).

During early development, blood vascular endothelial cells

differentiate in situ from a population of endothelial cell

progenitors known as angioblasts and form the primitive vascular

plexus, a process termed vasculogenesis (20). This primary vessel

network further expands through angiogenesis, during which new

blood vessels sprout from existing vessels (20). Under the direction

of signaling pathways such as Notch and vascular endothelial

growth factor (VEGF) signaling, blood vascular endothelial cells

differentiate into arterial and venous endothelial cells, which

respectively form arteries and veins that function together to

support oxygen exchange and transportation of nutrients and

waste (21). In parallel with blood vascular development, lymphatic

vascular formation begins with LEC differentiation (22). The first

lymphatic structures, the primary lymph sacs, develop from the

embryonic cardinal veins (23). After the development of the

primary lymph sacs, new LVs continue sprouting, branching, and

maturing to form a more extensive LV network (24). LEC

differentiation and subsequent LV expansion are controlled by two

critical drivers—PROX1 and VEGF receptor 3 (VEGFR3) (23, 25).
absorbs interstitial fluid from the surrounding tissue bed for transport as
button like junctions that separate to allow fluid entry. The lymph is then
smooth muscle cell coverage and lymphatic valves, thus facilitating

sues and play important roles in several physiological processes. For
fficking in the lymph nodes, aid in inflation of the lung, absorb dietary
in the meninges.
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The transcription factor PROX1 is a master driver of LEC

differentiation, and its expression is regulated by COUP-TFII and

SOX18 signaling (26, 27). PROX1 promotes the expression of

VEGFR3 in LECs, which mediates the effect of VEGF-C in

stimulating LEC sprouting, migration, and proliferation during LV

development (28, 29).

In addition toPROX1–VEGFR3 signaling, several othermolecules,

particularly cellular metabolism regulators, have recently been

identified as crucial drivers of LV formation. In this review, we will

summarize our understanding of LV formation from the perspective

of cellular metabolism and explore how this understanding may offer

new therapeutic strategies for human pathological conditions.
2 Cellular metabolic pathways in
lymphangiogenesis

2.1 Glycolysis

LECs generate nearly 70% of ATP via glycolysis instead of

other metabolic processes such as oxidative phosphorylation, a

unique characteristic differentiating LECs from many other cell

types (30, 31). In addition to energy generation, glycolysis can

also be exploited as a means of biomass production, which

supports cell proliferation and growth (32). The distinctive

reliance of LECs on glycolysis even in the presence of oxygen is

mirrored by the Warburg Effect in cancer cells (32).

The rate-limiting steps in glycolysis are under the control of

specific enzymes that aid in the regulation of metabolism, such

as hexokinases (HKs) which convert glucose to glucose-6-

phosphate in the first step of glycolysis (33, 34). In mammals,

there are four HK isozymes: HK1, HK2, HK3, and HK4 (30).

These HK isozymes differ in their regulatory properties,

localizations, and enzymatic activities. More specifically, the

activity of HK1, HK2, and HK3 is generally feedback inhibited

by the presence of high glucose-6-phosphate levels whereas HK4

activity does not commonly exhibit this limitation under similar

conditions (33). Furthermore, HK1 and HK2 are physically

linked to the mitochondria in contrast to HK3 and HK4 (33).

The association with the mitochondria is necessary for HK2-

mediated proliferation of hepatocellular carcinoma cells, as

disruption of this binding inhibits tumor growth and induces

apoptosis (35). Moreover, the binding of HK2 to the

mitochondria aids in the protection against oxidative stress and

cell death (36, 37). Despite these studies, it remains unclear

whether the physical association between HK2 and the

mitochondria is important for LEC proliferation and survival.

Functional roles of HK2 in LV development have been recently

implicated using genetic mouse models. Genetic deletion of Hk2 in

mice results in impaired formation of the primitive lymphatic

vascular plexus during early embryonic development (38). More

specifically, embryos that underwent LEC-specific Hk2 knockout

displayed attenuated LV sprouting and migration towards the

midline in the dorsal skin as early as embryonic day (E) 15.5 (38).

Consistently, Hk2 knockout in LECs suppresses fibroblast growth

factor 2 (FGF2)-induced lymphangiogenesis in the adult mouse
Frontiers in Cardiovascular Medicine 03
cornea (38). Moreover, pan-endothelial deletion of Hk2 produced

embryos with impeded arterial development and angiogenesis in the

embryonic skin, supporting that HK2 contributes to both

angiogenesis and lymphangiogenesis (38). Another regulator of

endothelial cell metabolism and angiogenesis is 6-Phosphofructo-2-

kinase/fructose-2, 6-bisphosphatase, isoform 3 (PFKFB3) which acts

to synthesize fructose-2,6-bisphospate (F2,6P2), an important

allosteric activator of 6-phosphofructo-1-kinase (PFK-1) (31).

During glycolysis, PFK-1 controls the rate-limiting conversion step

of fructose-6-phosphate (F6P) to fructose-1,6-bisphosphate (F1,6P2)

(31). When PFKFB3 is ablated in murine models, developmental

angiogenesis in the retina and the hindbrain as well as pathological

retinal neovascularization are all impaired, demonstrating the

importance of glycolysis in endothelial cell growth and vessel

formation (31, 39). In addition to PFKFB3 and HK2, recent findings

have also demonstrated the importance of pyruvate kinase type M2

(PKM2) for lymphangiogenesis (40). PKM2 converts phosphoenol

pyruvate to pyruvate, generating ATP at the end of the glycolytic

pathway (41). Thus, as a main driver of glycolytic ATP production,

PKM2 has been linked to lymphangiogenic processes of LECs, and

treatment with shikonin, which non-specifically inhibits PKM2 and

several other molecules, alleviates lymphatic lesions induced by

lipopolysaccharides in rats (40).

Furthermore, glycolysis has been shown to play a functional

role in pathologies relating to abnormal pericyte function (42).

Pericytes, also defined as mural cells, are a specialized cell type

that envelops the endothelial cells that make up the capillary

system (43, 44). Pericytes embed themselves within the basement

membrane of endothelial cells, facilitating a close interaction

between the microvasculature and mural cells (43). Pericytes are

recruited to the microvasculature during development via cell

signaling pathways, notably utilizing factors such as platelet-

derived growth factor B (PDGF-B) and its receptor, PDGF

receptor β (PDGFRβ) (45–48). Specifically, PDGF-B is secreted

by endothelial tip cells along the angiogenic front during vessel

formation, which then attracts pericytes expressing PDGFRβ,

aiding in vasculature maturation (43). Functionally, the

recruitment of pericytes is important in mediating blood flow as

they contribute to regulating both vasoconstriction and

vasodilation (49). Pericytes have recently become a topic of

interest in the study of pathological tumor growth as vasculature

within tumors has demonstrated dysregulation in pericyte-

endothelial cell interactions leading to abnormal blood vessel

sprouting (42, 50). Additionally, abnormal pericyte death

contributes to diabetic retinopathy, as altered blood flow in the

retina contributes to vascular leakage resulting in decreased

vision acuity (51–56). Interestingly, HK2 has proven to be critical

for pericyte contractility during tumor angiogenesis (42). HK2 is

a main driver of tumor pericyte glycolysis, which (via the

ROCK2-MLC2 pathway) increases pericyte contractility, resulting

in impaired blood flow in tumors (42). Thus, inhibition of HK2

activity using a non-specific inhibitor remodels tumor vasculature

and enhances the delivery and efficacy of a chemotherapy drug

(42). However, it is still unknown what instigates aberrant

pericyte glycolysis in tumors and whether genetic ablation of

HK2 in pericytes can impact tumor vasculature.
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HK2 is regulated byMYCexpression,which in turn is regulated by

FGF signaling in LECs (38). Therefore, FGF signaling activation

elevates, while its inhibition suppresses, glycolysis in LECs (38).

Moreover, genetic ablation of FGF receptor 1/3 or MYC attenuates

retinal angiogenesis and the formation of the primitive LV network

in the embryonic skin, similar to the effect of Hk2 knockout in LECs

(38, 57). Interestingly, although MYC regulates the expression of

multiple glycolytic enzymes in cancer cells (58), FGF-MYC signaling

preferentially controls the expression of HK2, not HK1 or other

rate-limiting glycolytic enzymes in LECs (38). Based on these

results, it can be concluded that the decrease in FGF signaling results

in a reduction of MYC, which markedly reduces HK2-driven

glycolysis, causing subsequent defects in lymphangiogenesis (38).

Despite this progress, many important questions remain to be

addressed. For example, how FGF signaling activation upregulates

MYC expression in LECs is unknown. Moreover, it is also unclear

how FGF-MYC signaling selectively controls HK2 over the other

rate-limiting glycolytic enzymes in LECs.
2.2 Fatty acid β-oxidation (FAO)

FAO is a biochemical process in which fatty acids are

converted to acetyl-CoA, which is then oxidized via the tricarboxylic

acid (TCA) cycle and the electron transport chain (ETC) (59). First,

fatty acids enter the cell via cell surface transport molecules (59).

Fatty acid translocase (FAT/CD36), membrane-bound fatty acid

binding proteins (FABP), and fatty acid transport proteins (FATP)

that are specific to the tissue are cell surface proteins that allow fatty

acids to enter (59). Once inside the cell, fatty acyl-CoA synthase

(FACS) adds a CoA group to the fatty acid, thus forming long-chain

acyl-CoA (60). Carnitine palmitoyltransferase (CPT)1, which resides

on the outer mitochondrial membrane, then converts long-chain

acyl-CoA to long-chain acylcarnitine (60). This step is followed by

transportation of long-chain acylcarnitine into the mitochondrial

matrix, which is mediated by the action of carnitine-acylcarnitine

translocase (60). CPT2, located on the inner mitochondrial

membrane, then converts long-chain acylcarnitine back to long-

chain acyl-CoA, which goes through β-oxidation to generate

acetyl-CoA (60).

The importance of FAO for LV development has been revealed

using mice deficient in CPT1A, which is the most abundant CPT1

isoform in LECs, and the CPT1 inhibitor etomoxir (61). Cpt1a

deletion in LECs results in impaired and disorganized lymphatic

growth towards the dorsal midline and a reduction in filopodia

number, coupled with edema and blood-filled lymphatics in

mouse embryos (61). Pharmacological inhibition of CPT1 via

etomoxir inhibited FAO during early-stage development, which

decreased the number of PROX1-expressing cells in the cardinal

vein during early LEC differentiation, leading to defective dermal

LV formation, reduced filopodia formation at the lymphangiogenic

front, and a reduction in LEC proliferation (61). However, it is

important to note that the activity of etomoxir may be

independent of CPT1 activity under certain biological contexts, as

displayed in cancer cell proliferation and T cell formation (62, 63).

Additionally, fatty acid transporter CD36 has been shown to be
Frontiers in Cardiovascular Medicine 04
expressed in the lacteals of intestinal lymphatics, which act to

transport dietary lipids through the lymphatic system for

subsequent entry to the subclavian vein (64, 65). Deletion of Cd36

in a murine model caused discontinuous VE-cadherin junctions in

lacteals (65), a process that has been shown to play a key role in

chylomicron transport and diet-induced obesity (66). Thus, Cd36

deficiency leads to LV leakage, late-onset obesity, and an increased

risk of developing type 2 diabetes (65). Metabolically, silencing

CD36 in LECs causes a reduction in FAO corresponding to an

increase in glycolysis (65).

FAO exerts epigenetic control through histone acetylation (67).

Histone acetylation occurs via the acetylation of lysine residues

present on histones, during which acetyl groups act on the charged

lysine residues to reduce the interaction between the histones and

DNA, thus resulting in an open conformation that allows for the

recruitment of various effectors that influence gene expression (68).

Acetyl-CoA produced during FAO can be utilized as a substrate for

histone acetylation (69). Histone acetyltransferases rely on acetyl-

CoA levels produced via FAO and glycolysis to exert transcriptional

control, and in glucose-limited environments, FAO is the main

contributor of acetyl-CoA (67). First reported in 2009, ATP citrate

lyase (ACL) converts glucose-derived citrate to acetyl-CoA when the

appropriate nutrients are available, and deletion of ACL has been

shown to decrease the expression of several glycolytic genes,

providing further evidence that acetyl-CoA aids in transcriptional

control (70). In this manner, acetyl-CoA has been shown to be an

important regulator of target gene epigenetic modification by

manner of histone acetylation (67). P300, a member of the histone

acetyltransferase family, aids in epigenetic control via acetylation of

histones, modifying core histones within the nucleosome allowing

for transcriptional activation (71). FAO-derived acetyl-CoA fuels the

activity of P300, which is recruited to the VEGFR3 promoter region

together with PROX1 (61, 72). Thus, acetyl-CoA is utilized by P300

to exert transcriptional control by interacting with the PROX1-P300

complex, promoting acetylation of PROX1 target genes to control

their transcription (61). Additionally, acetyl-CoA/CoA ratios

determined by histone acetylation via P300 increased when PROX1

was overexpressed (61). Therefore, acetyl-CoA derived from

FAO promotes PROX1-P300 expression which drives VEGFR3

transcription during lymphatic vascular development (61). In

addition to supporting epigenetic regulation, acetyl-CoA generated

from FAO contributes to the synthesis of deoxyribonucleotide

triphosphate (dNTP) in endothelial cells (73). Isotopic labeling

demonstrates that fatty acid carbons fuel the TCA cycle,

contributing to the building of biomass, including dNTP (73).

Therefore, genetic ablation of CPT1A suppresses endothelial

proliferation in vitro and during vascular development in mice (73).

As previously mentioned, LECs utilize glycolysis to generate

most of their ATP, and it is known that this process is further

promoted via FGFR signaling during lymphangiogenesis (38).

However, cells can shift their preferred metabolic pathway in

response to stimuli that cause changes in energy demands—a term

coined “metabolic flexibility” (74). Recently it has been found that

inhibition of FGFR signaling-driven glycolysis in LECs upregulates

CPT1A expression and FAO (74). As such, FAO, which makes

little contribution to LEC ATP production under normal
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conditions, plays an important role in energy production and

compensates for the deficit in energy when glycolysis is deficient

(74). This process is mediated by peroxisome proliferator-activated

receptor alpha (PPARα), which is upregulated upon FGFR

inhibition and in turn, activates CPT1A transcription (74).
2.3 Ketone body oxidation (KBO)

KBO is critical in maintaining metabolic homeostasis in

organisms, supporting the TCA cycle and thus mitochondrial

respiration, especially under nutrient-poor conditions (75). KBO

has been identified as a potential therapeutic target for several

neurodegenerative diseases such as Alzheimer’s and Parkinson’s

(76). 3-oxoacid CoA-transferase 1 (OXCT1) acts as one of the

key regulators of KBO by catalyzing a rate-limiting step. KBO

eventually leads to the production of two molecules of acetyl-

CoA, which can subsequently enter into the TCA cycle (77).

Other key enzymes include BDH1 (3-hydroxybutyrate

dehydrogenase 1), mThiolase, and citrate synthase (78). In KBO,

ketone body β-hydroxybutyrate (β-OHB) can be converted to

acetoacetate via BDH1 (78). Acetoacetate can then be catalyzed

to form acetoacetyl-CoA via OXCT1, which will go on to

produce acetyl-CoA following mThiolase catalytic cleavage (77,

78). This cleavage event produces two acetyl-CoA molecules for

entry into the TCA cycle controlled by citrate synthase (77, 78).

Among ketone bodies, β-OHB is the most commonly found in

the circulating bloodstream, which LECs can readily access (78).

Inhibition of KBO via depletion of OXCT1 or BDH1 suppresses

proliferation, migration, and spouting of LECs in vitro (78).

Moreover, genetic deletion of Oxct1 in LECs impedes LV

development in the dorsal skin of mouse embryos (78). These

data suggest that KBO is an important mechanism regulating LV

growth (78). Furthermore, OXCT1 knockdown lowers the acetyl-

CoA/CoA ratio and the amount of TCA cycle intermediates

produced (78), therefore revealing the metabolic mechanisms by

which KBO impacts LV development.
2.4 Mitochondrial respiration

The mitochondrial respiratory chain is made up of various

complexes that shuttle electrons across the mitochondrial

membrane to produce a proton energy gradient as hydrogen

atoms are pumped into the intermembrane space, eventually

fueling the phosphorylation of ATP from ADP by complex V, also

known as ATPase (79). Among these complexes is complex III,

which shuttles electrons to the inner mitochondrial-associated

protein cytochrome c, which then delivers the electrons to

complex IV (79). Complex III is made up of various subunits that

assist in this trafficking process (80). One such subunit is

ubiquinol-cytochrome c reductase complex III subunit IV (QPC)

encoded by the Uqcrq gene (80). Mutant QPC mice display a

downregulation of lymphatic markers leading to an attenuation in

LV development (81). Chemical inhibition of complex III also

causes reduced methylation at the genetic loci of Vegfr3 and Prox1
Frontiers in Cardiovascular Medicine 05
(81). The resulting downregulation of PROX1 in LECs causes a

reduction in LEC fate specification, which is further exacerbated

by the reduction of VEGFR3 that is mediated via PROX1 in the

feedback-loop system necessary to retain LEC fate identity (81).

Mitochondrial respiration also plays a role in regulating the NAD+

(oxidized nicotinamide adenine dinucleotide)/NADH (reduced

nicotinamide adenine dinucleotide) ratio, nucleotide synthesis, and

levels of several TCA cycle intermediates, such as citrate, fumarate,

and malate (81). Moreover, inhibition of complex III changes

H3K4 methylation and H3K27 acetylation at the VEGFR3 locus

(81), offering evidence that epigenetic modifications of Vegfr3 are

critically mediated by complex III of the mitochondria (81).
2.5 Autophagy of lipid droplets (LDs)

Autophagy, a conserved lysosomal degradation and cellular

recycling pathway, has been implicated as playing an important role

in the blood vasculature and the maintenance of cellular metabolic

homeostasis (82–84). Specifically, autophagy allows the cell to

recycle metabolites to use as fuel for metabolism or to support

biosynthesis (82, 83). Similarly, autophagy has recently been

identified as an active mechanism in supporting lymphangiogenesis

(85). This is accomplished via the autophagy of LDs, a process

known as lipophagy (85). LDs are unique organelles found in most

cell types that store neutral lipids surrounded by a phospholipid

monolayer which can interact and associate with various organelles

including the mitochondria to influence cellular metabolism (86).

Furthermore, LDs sequester fatty acids in the form of triacylglycerol

to be used as metabolic fuel during cell growth or when nutrient

levels are depleted (87). In LECs, lipophagy supports the trafficking

and release of lipids to the mitochondria to maintain FAO (85). Not

only does lipophagy influence LEC metabolism, but it also promotes

the expression of lymphangiogenic markers such as PROX1 and

VEGFR3 (85). Furthermore, lipophagy has also been identified as

playing a role in pathological lymphangiogenesis, as genetic

depletion of essential autophagy gene Atg5 in mice LECs caused

reduced lymphangiogenesis in a corneal wound healing model (85).

Thus, autophagy of LDs in LECs represents a critical molecular

mechanism supporting metabolic homeostasis, lymphangiogenesis,

and its related gene expression (85).
3 Role of LEC metabolism in
pathological lymphangiogenesis and
its implication for human diseases

3.1 Lymphedema

Lymphedema is characterized by the accumulation of interstitial

fluid resulting in impaired movement and often painful swelling in

patients and can occur in various locations in the human body,

most notably the limbs (88). It is often characterized as a chronic

disease and is classified as either primary lymphedema or

secondary lymphedema (88). Primary lymphedema is an inherited

condition often caused by a genetic mutation that causes
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1392816
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Simeroth and Yu 10.3389/fcvm.2024.1392816
lymphatic formation defects, affecting 1 in every 100,000 people

(88). More commonly, lymphedema arises as a result of damage,

infection, or injury to the lymphatic system (88, 89). This is

known as secondary lymphedema and affects 1 in 1,000 people in

the United States alone (88). Notably, individuals who have

undergone treatment for breast cancer or other gynecological

cancers have an increased risk of developing secondary

lymphedema, as 1 in 5 breast cancer survivors have been reported

to develop this disease due to lymph node dissection and other

cancer therapeutic techniques (90, 91). Although lymphedema is

prevalent in the population, progressive, and often persists

throughout the patient’s life, therapeutic measures primarily
FIGURE 2

Metabolic pathways in LECs. Major metabolic pathways utilized by LECs as de
(mitochondrial respiration/the TCA cycle), purple (fatty acid β-oxidation), b
fructose 1,6-bisphosphate; PEP, phosphoenolpyruvate carboxylase; α-KG,
palmitoyltransferase 1; OA, oxaloacetate.
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consist of lymph massage, compression, exercise, and various

microsurgical techniques with limited success (88, 92, 93). Thus,

the need for drug therapies that target lymphedema is critical.

A tail injury mouse model of lymphedema that recapitulates

human secondary lymphedema can be used as a method to

explore what may influence the pathology of the disease (94).

This is achieved by surgically removing LVs within the tail and

then examining edema post-injury (94–96). As aforementioned,

KBO has been found to promote lymphangiogenesis as LVs can

readily access circulating β-OHB (78). Accordingly, it was found

that mice that were fed the high-fat low-carb ketogenic diet

(HFLC-KD) displayed less swelling in a tail injury model, and
scribed in detail in the main text are depicted in orange (glycolysis), green
lue (ketone body oxidation), and red (autophagy of lipid droplets). FBP,
α-ketoglutarate; OXCT1, 3-oxoacid CoA-transferase 1; CPT1, carnitine
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that ketone bodies aid in anti-inflammatory mechanisms by

affecting leukocytes directly via β-OHB supplementation (78).

Furthermore, mice fed the HFLC-KD also displayed reduced

dermal thickening, decreased lymphatic dilation, and improved

transport of lymph to the lymph node (78). Thus, targeting KBO

shows promise in ameliorating lymphedema and promoting

lymphangiogenesis as a potential future therapeutic measure.
3.2 Corneal graft rejection

The cornea, the outer clear layer of the eye that serves to refract

light, is largely avascular (97). The absence of blood and lymphatic

vasculature from the cornea maintains transparency, which is crucial

for proper vision functionality (98, 99). The maintenance of

this avascularity is established early in life, and under normal

conditions is maintained throughout adulthood (100). However, in

pathological conditions inflammation can cause the expansion of

LVs and blood vessels into the avascular cornea (101). This aberrant

lymphangiogenesis and angiogenesis can cause a decrease in the

transparency of the cornea and loss of visual acuity (101).

Furthermore, lymphangiogenesis into the cornea increases the risk of

corneal graft rejection, a process that is mediated by VEGF-C/

VEGFR3 signaling (4, 102–107). As many as ∼20% of patients who

receive a corneal graft will face symptoms associated with rejection,

with endothelial rejection being the most common cause (108).

Because of the close relationship between lymphangiogenesis

and corneal graft rejection, corneal models of injury-induced

lymphangiogenesis have become a valuable way of investigating the

role of lymphatic metabolism in pathological conditions (109). As

such, FAO has emerged as one contributing metabolic pathway (61).

It has been found that in a corneal injury mouse model the

inhibition of the key FAO enzyme CPT1 via etomoxir reduced

lymphangiogenesis (61). Likewise, glycolysis has also been implicated

in the control of corneal lymphangiogenesis (38). When pellets that

released FGF2 were implanted into the cornea, mice that underwent

LEC-specific deletion of the key glycolytic enzyme HK2 displayed

decreased lymphangiogenesis in the cornea (38). Additionally,

galectin-8, a carbohydrate-binding protein that promotes adhesion

and cell motility of LECs, has been found to promote pathological

lymphangiogenesis in the cornea (110). Specifically, galectin-8 is

upregulated in both mouse and human corneas following corneal

inflammation, and increased galectin-8 escalates the rate of graft

rejection in a mouse model of corneal transplantation (110).

Consequently, inhibition or knockout of galectin-8 has shown

promise in ameliorating lymphangiogenesis in the cornea in vivo

(110). These results point towards potential therapeutic targets that

may be investigated further for their role in inflammation-induced

lymphangiogenesis contributing to graft rejection.
4 Discussion

Recent discoveries in LEC metabolism have expanded current

scientific knowledge on the lymphatic vasculature and

lymphangiogenesis. Glycolysis, FAO, KBO, mitochondrial
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respiration, and LD autophagy are all utilized by LECs to support

necessary processes underlying lymphatic development (Figure 2).

Specifically, glycolysis is the main metabolic pathway utilized by

LECs to generate ATP, driving lymphatic development. FAO has

also been shown to support energy production when glycolysis is

diminished, indicating the role of metabolic flexibility in

maintaining energy homeostasis in LECs. Furthermore, FAO

supports the generation of acetyl-CoA, which can be utilized as a

substrate for epigenetic modification of VEGFR3 in LECs via histone

acetylation, thus driving lymphatic development. Additionally, KBO

supports lymphatic development and is of particular interest as a

potential therapeutic strategy to address lymphedema.

Mitochondrial respiration plays a role in regulating LEC fate identity

via epigenetic modification, and aids in the production of TCA cycle

intermediates. Lastly, LD autophagy can be utilized to support FAO

in LECs during lymphangiogenesis. Although it is established that

LECs utilize the aforementioned metabolic pathways to support

lymphatic development, several knowledge gaps remain to be

addressed. For example, how are these metabolic processes regulated

by different growth factors or cytokines during development and

pathological conditions? How do different metabolic pathways

interact and coordinate to enable LV growth? Under which

physiological and/or pathological conditions do LECs shift their

energy sources? Is there any metabolic crosstalk between LECs and

their surrounding environment? Although much remains to be

discovered mechanistically and clinically, enzymes involved in LEC

metabolism are promising targets in the development of new

treatments for human pathological conditions related to the

lymphatic system.
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