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Advances and challenges in
regenerative therapies for
abdominal aortic aneurysm
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Abdominal aortic aneurysm (AAA) is a significant source of mortality worldwide
and carries a mortality of greater than 80% after rupture. Despite extensive
efforts to develop pharmacological treatments, there is currently no effective
agent to prevent aneurysm growth and rupture. Current treatment paradigms
only rely on the identification and surveillance of small aneurysms, prior to
ultimate open surgical or endovascular repair. Recently, regenerative therapies
have emerged as promising avenues to address the degenerative changes
observed in AAA. This review briefly outlines current clinical management
principles, characteristics, and pharmaceutical targets of AAA. Subsequently, a
thorough discussion of regenerative approaches is provided. These include
cellular approaches (vascular smooth muscle cells, endothelial cells, and
mesenchymal stem cells) as well as the delivery of therapeutic molecules,
gene therapies, and regenerative biomaterials. Lastly, additional barriers and
considerations for clinical translation are provided. In conclusion, regenerative
approaches hold significant promise for in situ reversal of tissue damages in
AAA, necessitating sustained research and innovation to achieve successful
and translatable therapies in a new era in AAA management.
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1 Introduction

Abdominal aortic aneurysm (AAA), defined as a localized dilation of the infrarenal

aorta to greater than 3.0 cm, is a progressive degenerative disease of the aorta that

culminates in aortic rupture, massive hemorrhage, and subsequent death. Globally,

nearly 170,000 deaths per year can be attributed to AAA (1). Despite this devastating

toll on human health, there are still no pharmacologic therapies to treat AAA (2, 3).

Screening studies have suggested the modern prevalence of AAA is 1%–3% and

potentially greater in high-risk populations (4, 5). Irrespective of sex, incidence of AAA

increases with advanced age (6, 7). This is a critical consideration in an aging global

population, as longer patient survival affords prolonged AAA expansion. While some

recent reports suggest a decreasing prevalence of AAA, the mortality after ruptured

AAA remains elevated at nearly 80% (4).

Considering the dearth in pharmacological approaches to treat AAA, the current

gold standard for AAA management is either open aortic surgery to replace the

diseased infrarenal aorta with a synthetic (PTFE, Dacron) graft or endovascular
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aneurysm repair (EVAR), which has become the preferred

treatment modality, to achieve sac exclusion via precise

intraluminal deployment of a covered stent-graft (8). Despite

remarkable advancements in surgical technique, particularly in

the endovascular space, no non-surgical therapy has

successfully slowed or halted AAA growth. While EVAR offers

some perioperative advantage, both modalities are still

associated with significant procedural risk, cost, and long-term

sequelae including reintervention (9). Thus, strategies to

improve long term survival in AAA patients remain lacking.

Efforts should be directed to treat AAA lesions not yet large

enough to qualify for surgical repair and prevent the need for

surgery altogether. Regenerative approaches hold promise to

treat AAA directly rather than simply removing the diseased

tissue from circulation.

Regenerative engineering is an emerging discipline that

combines tenets from cell biology, materials science, and

biomedical engineering to develop treatments to repair, replace,

and regenerate terminally damaged tissues that cannot be healed

via classical methods, making it a promising approach to combat

aortic degeneration. While pharmacological therapies may slow

AAA progression, regenerative engineering offers the possibility

of healing the aneurysmal tissue by encouraging the formation of

new tissue. This can be accomplished in situ by cell delivery,

biomaterial implantation, and local delivery of exogenous

proteins such as growth factors and antibodies or by combining

one or more of these to achieve a synergistic effect (10, 11). For

example, cells can be localized by culturing them on a scaffold or

within a hydrogel prior to implantation (12). Besides providing a

substrate for cell attachment, biomaterials also provide

biomechanical input to influence cell fate and phenotype (13).

Similarly, biomaterials enable the controlled delivery of

exogenous proteins, protecting those proteins from rapid

degradation and providing sustained release to directly target the

damaged tissue (14). The current paradigm for regenerative

engineering in AAA management is using cell delivery to blunt

the progression of aneurysms. In the following sections, we

provide a synopsis of the various regenerative engineering

approaches which have been proposed for AAA treatment

including cell therapy, cell-derived products, controlled protein

delivery, gene therapy, and regenerative biomaterials critiquing

the practical and technical aspects of each method (Figure 1).

We will conclude by describing the challenges which have

impeded clinical translation of these experimental therapies and

suggesting new frontiers to which regenerative strategies might be

incorporated into AAA management.
2 Current understanding of AAA
pathogenesis and therapeutic
development

Previous research endeavors have attempted to elucidate the

intricate mechanisms that govern the progression of AAA growth

to identify suitable targets for non-invasive therapies. This has

been the cornerstone of pharmacologic strategies with the hope of
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identifying a single putative driver of aneurysmal pathology.

However, to date no pharmaceutical intervention has proven

successful in the clinical realm, most likely due to a still

incomplete mechanistic understanding of AAA pathogenesis and

its differential genesis including genetic predisposition,

atherosclerosis, and inflammatory etiologies. Conversely, a

primary benefit of a regenerative strategy is the ability to repair

existing damage rather than address the root cause. Nevertheless,

a comprehensive understanding of the underlying molecular and

cellular mechanisms seen in AAA pathogenesis and ensuing

histopathologic changes is crucial in the design of effective

regenerative therapies. Studies examining AAA pathogenesis

through various means have collectively unveiled numerous

factors that have been extensively reviewed by Golledge et al. (3).

These encompass a spectrum of elements, including but not

limited to the following: hemodynamics and mechanical stress,

endothelial injury, extracellular matrix (ECM) remodeling,

inflammation and immune responses, vascular smooth muscle

dysfunction, and genetic mechanisms. While many of the

regenerative approaches highlighted later in this review are

purportedly etiology-agnostic by addressing these elements, there

likely remain strategies that are more suitable for one phenotype

vs. another. For instance, AAA secondary to hereditary

connective tissue orders may require direct addressment of

underlying gene polymorphisms with varying severities (16).

Similarly, mycotic aneurysms are a particularly distinct phenotype

that mandate addressment of an underlying latent infection. A

continued limitation remains the varying, but all somewhat

limited, pre-clinical models of AAA that only partially

recapitulate all features of human disease (17). Ultimately, though

an idealistic regenerative therapy may strive for a lofty one-size-

fits-all approach, integrating etiology and phenotype into therapy

design likely holds the greatest promise for clinical translation.
2.1 Characteristics of AAA and potential
targets for regeneration

The hallmark histopathological features of AAA are:

(1) degradation of the ECM, especially of the elastin fibers;

(2) apoptosis and subsequent loss of vascular smooth muscle cells

(VSMCs), which are responsible for providing vascular tone and

contractility; and (3) accumulation and activation of inflammatory

cells such as macrophages, which in aggregate, lead to degeneration

of the vascular wall and aneurysm formation (18, 19). Additionally,

AAA also often present with a multilayered intraluminal thrombus

(ILT) (18). Each of these features represents a target for therapeutic

intervention using regenerative strategies (Figure 2). Addressing

any of these facets may successfully improve other features in

parallel as AAA formation is an intricate multifactorial process. In

this section, we describe how regenerative engineering may be

applied to regenerate AAA tissue and function by targeting one or

more of these features.

The vascular ECM plays a significant role in vascular

development and homeostasis (20). It is mainly comprised of

collagen and elastin fibers, both of which impart the fundamental
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FIGURE 1

Regenerative therapies for the management of abdominal aortic aneurysm. Illustrations in top right panel adapted with permission from [Kyriacou et al.
(15)], licensed under CC BY 4.0, https://doi.org/10.1177/1750458920947352. Created with BioRender.com.
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biomechanical behavior required for vascular function (21). AAA

tissue is marked by proteolytic fragmentation of elastin fibers

which jeopardizes the integrity of vascular wall. Two primary

protease families—serine proteases and activated matrix

metalloproteinases (MMPs)—are significantly associated with

AAA progression (19). The main MMPs involved in AAA

pathogenesis are the gelatinases MMP2 and MMP9 (22). In

healthy tissues, these enzymes are responsible for maintaining

ECM homeostatic turnover by working in concert with tissue

inhibitors of metalloproteinases (TIMPs). When this delicate

balance shifts to an increase in MMPs or reduction in TIMPs,

tissue catabolism occurs. Furthermore, ECM destruction has been

shown to provoke VSMC death (18). Therefore, regenerative

strategies that target ECM degeneration might reverse the course

of AAA formation, and approaches that encourage ECM

synthesis, deposition, and crosslinking are all plausible ways to

regenerate the AAA wall. This includes transplantation of
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secretory cells to produce new ECM and delivery of growth

factors such as transforming growth factor-beta (TGF-β) that

promote ECM production. Alternatively, biomaterials can also be

used to induce a localized foreign body response to inspire ECM

accumulation at the aneurysm lesion (23). Lysyl oxidase is a key

enzyme responsible for the posttranslational crosslinking of

collagen and elastin, allowing the aortic wall to resist dilatation

and rupture (24, 25). Promoting ECM crosslinking has thus been

recommended as a strategy to combat AAA development using

interesting approaches such as lysyl oxidase overexpression or in

situ ECM crosslinking (24–26).

VSMCs are considered the functional unit of the vasculature

given their role in maintaining vascular tone, facilitating vessel

contraction, and regulating ECM synthesis (3). VSMC

hypocellularity is considered a hallmark of AAA. Although it is

unclear whether VSMC dysfunction is a result or a cause of

AAA formation, VSMC differentiation into pathological
frontiersin.org
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FIGURE 2

Schema of cellular and molecular processes involved in abdominal aortic aneurysm (AAA) pathogenesis. Extracellular matrix (ECM) degradation,
vascular smooth muscle cell (VSMC) dysfunction, and inflammation are present throughout the aortic wall. Each presents a potential target for
regenerative medicine strategies. Created with BioRender.com.
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phenotypes with altered contractile properties and secretory

profiles further exacerbate aortic wall weakening and aneurysm

expansion (3, 19). Additionally, VSMC senescence is increasingly

recognized as a contributor to AAA pathogenesis (27, 28).

Regardless, regenerative engineering can be employed to

repopulate the vascular wall either directly by cell transplantation

or indirectly by methods that prevent VSMC apoptosis and

transdifferentiation, induce VSMC proliferation, or encourage

resident stem and progenitor cells to differentiate into VSMCs.

It is postulated that this unregulated inflammation leads to the

destruction of the vascular wall. Profound immune cell infiltration

including neutrophils, macrophages, mast cells, natural killer cells,

dendritic cells, B cells, and T cells is a hallmark of aneurysmal

tissue. Specifically, polymorphonuclear leukocyte activation and

death result in the release of granule contents, including

proteases, oxidant peptides, myeloperoxidase, and pro-

inflammatory mediators such as IL-8 (19). Human studies

highlight distinct phenotypes of monocytes and macrophages in

AAA development (19). Circulating monocytes of patients with

AAA exhibit higher expression levels of lymphocyte function-

associated antigen1 (LFA1) and CD11b compared to healthy

individuals (19). Macrophages accumulate predominantly in the

adventitia and ILT, contributing significantly to the inflammatory
Frontiers in Cardiovascular Medicine 04
environment (19). In addition to immune cell infiltration,

adventitial tertiary lymphoid organs (TLOs), which are organized

lymphocytic neo-granulomas with a germinal center composed of

B cells, have also been identified in tissue (18). Regenerative

engineering approaches to combat inflammation are therefore an

intuitive approach to restore AAA tissue. While dampening

inflammation may be viewed as a way to slow AAA progression

rather than restore tissue, inflammation can be harnessed to

promote tissue regeneration. For example, macrophage

polarization toward the pro-healing M2 phenotype is a common

approach in regenerative engineering (29). Adoptive transfer of

CD4 + lymphocytes was shown to have therapeutic effects on

vascular remodeling in arteriovenous fistula models (30).

Regenerative therapies can and should be optimized to manage

AAA by modulating the immune response.
2.2 Pharmaceutical strategies to
attenuate AAA

Promising preclinical studies have led to several clinical trials

and observational studies seeking to attenuate AAA growth.

Presently, all completed placebo-controlled drug trials have
frontiersin.org
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resulted in negative findings (31). These discouraging results are

potentially explained by limitations in trial design, including

small sample size and insufficient duration of follow-up. This

lack of translation may also be due to incomplete understanding

of AAA pathogenesis, underscoring the need for novel targets

and therapies, including regenerative medicine approaches.

Nevertheless, contemporary randomized controlled trials offer

valuable insights into the challenges associated with developing

new therapeutics for the clinical management of AAA.

The initial selection of antibiotic therapies was driven by their

effects on inhibiting MMP activity involved in AAA pathogenesis

(32). To date, 3 trials have investigated doxycycline as a potential

therapy, all with no impact on AAA growth or need for repair

(33–35). Additionally, prior investigations into AAA pathogenesis

had identified Chlamydophila pneumoniae as a potential driver of

AAA expansion (36). As such, macrolide antibiotics garnered

significant interest to target Chlamydophila pneumoniae (37).

However, 1 trial investigating azithromycin has also found no

significant impact on AAA expansion and furthermore no

correlation between Chlamydophila pneumoniae antigen and

disease burden (38). Additionally, 2 small trials investigating

roxithromycin found potential reduction in AAA expansion

(39, 40). However, both trials were limited by modest patient

enrollment and a subsequent meta-analysis by Golledge et al.

found antibiotic therapies had limited efficacy in limiting AAA

growth or reducing rates of AAA repair or rupture (41).

Initial antihypertensive strategies to attenuate AAA expansion

focused on propranolol given early reports that beta blockade

may reduce AAA rupture in pre-clinical models as well as

retrospective studies of human patients (42). To date, two trials

have investigated propranolol without positive results and were

additionally marred by significant rates of dropout due to

intolerance of beta blockade (42, 43). Driven by pre-clinical

animal models and observational population studies suggesting

angiotensin converting enzyme (ACE) blockade reduced AAA,

ACE inhibition was the next pharmacologic strategy to undergo

clinical trials (31, 44). A single trial investigating perindopril

found superior reduction in blood pressure in the ACE inhibitor

arm but no significant difference in aneurysm growth rate (45).

Most recently, angiotensin II receptor blockers (ARB) have also

undergone evaluation as a potential pharmacologic strategy.

Again, a single trial investigating telmisartan found no difference

in AAA growth but again increased rates of hypotensive

symptoms (46). These negative findings were further

substantiated by the above meta-analysis by Golledge et al. (41).

Together, these findings suggest that hemodynamic factors alone

do not adequately protect against AAA expansion or rupture.

Numerous trials have demonstrated the benefit of statin therapy on

all-cause mortality and cardiovascular morbidity and mortality (47).

However, no large randomized controlled trial has demonstrated

similar efficacy in the attenuation of AAA. Nevertheless, the

pleiotropic effects of statin therapy are worth mention given robust

cohort studies. Pooled analyses suggest statin therapy not only

reduces growth rate but also reduces rupture risk and improves

survival after elective repair (48). Several mechanisms have arisen as

contributors to these observed benefits including modulation of
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endoplasmic reticulum stress and oxidative stress, inhibition of

MMPs and maintenance of ECM components, as well as anti-

inflammatory effects (49). Given the numerous cardiovascular

comorbidities endemic to the AAA patient population, statin therapy

is likely to remain a mainstay in mitigating cardiovascular risk.

Further exploration of statin-specific mechanisms and identification

of therapeutic targets for AAA is warranted.

Several other strategies to attenuate AAA expansion have

reached clinical trials, each focused on different aspects of AAA

biology. Despite the well described inflammatory changes in the

aneurysmal aortic wall, only one clinical trial has utilized an

anti-inflammatory strategy. A single trial investigating varying

doses of pemirolast, a mast cell inhibitor, revealed no differences

in AAA growth at 1 year (50). Pre-clinical models of AAA have

indicated anti-lipid therapies may potentially attenuate AAA

expansion as well as inflammatory infiltration (51). Fenofibrate, a

member of the fibrate class, was subsequently selected for

evaluation and remains the only lipid-modifying agent to

undergo a randomized clinical trial to date; no difference was

observed in AAA growth at study conclusion (52). The role of

aortic thrombus has been identified as a contributor to AAA

expansion, potentially driven by both cellular signaling and matrix

remodeling, as well as changes to mechanical forces (53, 54). The

lone trial evaluating anti-thrombotic therapies utilized the

antiplatelet agent ticagrelor and found no significant difference in

AAA diameter at 1 year (55). Notably, ticagrelor had no

significant impact on intraluminal thrombus volume and the role

of intraluminal thrombus remains to be fully elucidated.

Given the numerous negative trials to date, as detailed above,

new strategies to attenuate AAA expansion and reduce AAA

rupture are critically needed. As in the case of prior

pharmacologic trials, a regenerative approach may retain a focus

on simply slowing the underlying destructive processes and thus

delay or obviate the ultimate requirement for surgical

intervention. However, the advantage of a regenerative strategy is

also the potential to fully reverse the degenerative features of

aneurysmal disease and serve as the sole therapy for this

pathology. In the remainder of this review, we highlight

promising and emerging regenerative therapies for AAA.
3 Cell-based regenerative therapies
for AAA

Cell transplantation has been promoted as a regenerative

therapy for damaged tissues and organs for decades. Originally,

it was posited that exogenous, healthy cells could engraft in

tissues where they could replace void space and encourage

regeneration. Studies now show that delivered cells largely elicit

their benefits through paracrine effects. Cell therapy for AAA

treatment was first reported over two decades ago when Allaire

et al. overexpressed TIMP-1 in syngeneic rat VSMCs prior to

transplantation (56). Since then, an assortment of cells from

distinct lineages have been used to treat AAA including VSMCs,

endothelial cells (ECs), and stem and progenitor cells, each with

their purported benefits for AAA repair (Figure 3).
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FIGURE 3

Cellular therapy strategies to regenerate vascular tissues in AAA. Cell therapies using VSMCs, ECs, and MSCs have each demonstrated therapeutic
benefits for AAA treatment. These cells can be derived from iPSCs or collected from peripheral blood and allogenic/autologous tissue sources
such as bone marrow and adipose tissue. Route of delivery, intravascular and periadventitial, are both feasible approaches with their own
respective advantages and challenges. Cells exert regenerative effects via several mechanisms including direct engraftment, immunomodulation,
paracrine signaling, and ECM synthesis which result in restored elastin, reduced protease activity, reendothelialization, and reduced inflammation.
Created with BioRender.com.
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3.1 Vascular smooth muscle cells or
progenitors

The apoptosis of medial VSMCs and the subsequent decrease in

VSMC density in the aorta is a hallmark of AAA, making VSMC

transplantation an intuitive strategy to regenerate aneurysmal

aortas. Allaire et al. first described VSMC delivery to determine

whether the presence of VSMCs prevents AAA formation in a rat

xenograft model (57). Endoluminal seeding of VSMCs at the time

of xenograft implantation prevented aneurysm growth and

elastinolysis which could be attributed to a shift in the proteolytic

balance toward inhibition. In a follow-up study, cells were seeded

2 weeks after xenograft implantation to allow for aneurysm

formation (58). VSMC infusion preserved aortic diameter and
Frontiers in Cardiovascular Medicine 06
elastin content by reducing proteolysis and macrophage infiltration

while increasing fibrous collagen transcripts. However, the

mechanism of action of VSMCs in this model is unclear as the

cells were introduced within the lumen and risked potential loss

upon perfusion. Surely VSMCs were observed in the intima/ILT

after 1 week, suggesting a paracrine mechanism for the observed

improvements and indicating the ILT as a biological target. Nearly

a decade later, Park et al. tested what they termed “vascular

smooth muscle cell-like progenitor cells” (VSMC-PCs) as a

therapy for AAA in a rat elastase model (59). These cells were

obtained from muscle MSCs that were differentiated in vitro with

PDGF-bb before transplantation. While this report did not provide

any information regarding the effect of cell therapy on the

aneurysm morphology, there was a reduction in proteases.
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Most recently, Mulorz et al. compared the therapeutic effects of

periadventitial delivery of induced pluripotent stem cell (iPSC)

derived smooth muscle progenitors (iPSC-SMPs) and primary

human aortic SMCs in a murine elastase model using a

commercially-available collagen sponge (ViteneTM) covered with

a polycaprolactone (PCL) film in a seminal translational study

(60). Collagen sponges are biomimetic scaffolds that exhibit

features of the native ECM including a fibrillar morphology,

porosity, and integrin binding sites for cell attachment which

may be beneficial for cell delivery. Interestingly, primary SMC

treatment significantly reduced aortic diameter compared to

iPSC-SMPs and was superior in maintaining freedom from AAA

despite iPSC-SMPs persisting longer in the aneurysm wall. This

study illustrates the delicate balance researchers must deliberate

when deciding which differentiation state to use for their cell

therapy as progenitor cells may have more longevity while adult

cells may possess a more therapeutic secretome. It also

demonstrates the feasibility of using a periadventitial scaffold to

deliver cells to aneurysms.

In aggregate, these studies provide a framework for VSMC

delivery for AAA treatment. While the mechanism is still

unclear, they demonstrate the therapeutic benefits of VSMCs

in preventing AAA progression by reducing proteolysis. Future

studies will be needed for VSMC delivery to determine

the optimal number, differentiation state, route, and timing of

cell transplantation.
3.2 Endothelial cells

Reendothelialization and induction of angiogenesis via cell

transplantation of ECs and endothelial progenitor cells (EPCs)

has been proposed as a tissue engineering strategy to treat

vascular disease (61–64). EPCs are a subset of circulating

hematopoietic cells that possess the unique potential to

differentiate into ECs and contribute to neoangiogenesis.

Interestingly, both increased and decreased numbers of EPCs

have been reported in patients with AAA (65). Transplantation

of ECs and EPCs has been effective in treating arteriovenous

fistula stenosis (66), vascular injury (67, 68), and hindlimb

ischemia (62). These therapeutic benefits derive from their

paracrine action rather than assembly into new vasculature as

they secrete molecules which regulate vascular function and

promote angiogenesis such as nitric oxide, vascular endothelial

growth factor (VEGF), basic fibroblast growth factor (bFGF), and

heparin (67–70). Recent evidence has identified a role of hypoxic

signaling and reduced vasa vasorum density as a key factor in

AAA progression (71, 72). In a recent case study, a patient was

noted to have an entire avascular region of AAA tissue upon

gross examination which lacked vasa vasorum and presented

severe disruption of the elastic fibers, histologically (73). As such,

EC delivery is an intuitive treatment paradigm for AAA.

There has only been one report on EC delivery for AAA to date.

Franck et al. measured the impact of endovascular EC delivery on

AAA prevention and stabilization in a rat xenograft model (74).

ECs were either seeded at the time of xenograft implantation
Frontiers in Cardiovascular Medicine 07
(prevention) or 14 days after (stabilization). EC delivery before and

after AAA formation was effective in reducing diameter increase,

demonstrating their potential as regenerative therapy to prevent

further AAA dilation. Further analysis showed that EC therapy led

to the establishment of a functional endothelium and a robust

vascular wall with preserved elastin and collagen matrix. To

determine the contribution of exogenous ECs to the observed

neointimal regeneration, the authors conducted an elaborate

experiment showing that ECs recruit tissue resident cells to

facilitate remodeling, ruling out circulating EPCs as contributors to

the newly formed intima. These findings reinforce the idea that

the therapeutic benefits of cell delivery arise from paracrine effects

rather than tissue engraftment. Noting the translational barriers of

using adult ECs as a cell therapy, the authors conducted a similar

study using “outgrowth endothelial cells” (OECs), a form of EPCs,

and obtained similar results. While this work shows the promise

of ECs as a cell therapy for AAA treatment and signifies the

importance of a functional endothelium in AAA repair, future

studies are still needed to explore alternative delivery routes,

especially considering the difficulty of seeding cells endovascularly

in the presence of an ILT. Surely, periadventitial EC delivery has

been shown to be effective despite its distance from the

endothelium (75). Additionally, periadventitial delivery may be

advantageous in regenerating the vasa vasorum thereby reducing

medial hypoxia and preventing further degeneration. Alternatively,

another avenue are strategies to direct endogenous ECs and EPCs

to regenerate aneurysmal tissue in situ rather than transplanting cells.
3.3 Mesenchymal stem cells

Mesenchymal stem cells (MSCs) are adult multipotent stem

cells that reside in different tissues throughout the body

including bone marrow, muscle, adipose tissue, placenta, and

umbilical cord and maintain the potential to differentiate into

osteogenic, chondrogenic, adipogenic, and neuronal lineages.

Compared to embryonic stem cells, MSCs are safer as they

reduce the risk of teratoma formation and pose less ethical

concerns regarding sourcing (76). MSCs have thus been at the

forefront of regenerative cell therapies due to their widespread

availability, differentiation potential, and inherent healing

properties as undifferentiated cells. MSCs have shown curative

effects for a plethora of inflammatory diseases and as cellular

agents in vascular regenerative medicine (77–81). Their

immunomodulatory effects and differentiation potential have

positioned MSCs as frontrunners in regenerative therapies for

AAA, with the majority of reports describing the effects of MSC

transplantation in slowing aneurysm progression. In the

following sections, we will critique MSC therapies that have been

applied to experimental AAA models stratified by the tissue

source, bone marrow or adipose tissue, and provide insight into

the efficacy and ultimate translatability of these approaches.

3.3.1 Bone marrow derived MSCs
Bone marrow derived MSCs (Bm-MSCs) account for ∼0.01%

of bone marrow mononuclear cells. As such, Bm-MSCs must be
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expanded in vitro to obtain adequate cell numbers for regenerative

therapies (82). Still the properties of Bm-MSCs such as ease of

isolation, rapid expansion, amenability to cryopreservation, and

immune-privilege for allogeneic therapies make them worthy for

clinical translation. Countless clinical trials have demonstrated

the safety of Bm-MSCs in other applications (81). Bm-MSC

therapy as a treatment for AAA has only recently reached the

clinical realm (83); however, there have been a number of

experimental and preclinical studies that indicate their promise

as a potential AAA treatment.

Hashizume et al. first reported the use of Bm-MSC therapy

for AAA in an angiotensin II (AngII) model using ApoE−/− mice

(84). Allogenic Bm-MSCs were first isolated from femurs and

expanded in vitro using temperature-responsive well plates which

enabled the cells to be transplanted as continuous sheets that

could be applied directly to the adventitial surface. This method

is advantageous as it preserves cell-cell and cell-ECM contacts

which are essential to cell viability and optimal function and

enables periadventitial delivery without laborious biomaterial

fabrication. Transplantation of Bm-MSC sheets reduced the

diameter of the infrarenal aorta and inflammation. Cell tracking

located BM-MSCs in the aorta 28 days after transplantation,

which raises the question of whether engraftment is a true

phenomenon. Turnbull et al. also reported engraftment of Bm-

MSCs after 1 week following injection and endovascular seeding

in a porcine model (85). However, the biological insights of this

study are limited as it did not include a control group in which

an aneurysm was created without cell treatment. Schneider et al.

evaluated the efficacy of Bm-MSC therapy in a rat xenograft

model (86). Endovascular seeding of Bm-MSCs into the lumen

of xenograft aneurysms 2 weeks after surgery significantly

blunted the diameter increase and enhanced ECM content

compared to vehicle controls. Interestingly, there was a dramatic

reduction in monocyte/macrophage infiltration, highlighting the

immunomodulatory effects of Bm-MSCs. Cell tracing revealed

that delivered Bm-MSCs survived for a week after delivery but

were not observable at 1 month. The transplanted cells were

localized to the ILT, indicating it as an obstacle for endovascular

delivery to the wall but also supporting the ILT as a viable target.

Using a dose-relationship experiment, the authors showed that a

single dose of one million Bm-MSCs was sufficient to stabilize

the aneurysm whereas multiple doses of VSMCs were necessary

to achieve the same effect, indicating that MSCs possess

enhanced regenerative potential compared to adult cells.

Hosoyama et al. utilized a specialized subset of MSCs known as

multilineage-differentiating stress enduring (MUSE) cells which

express the embryonic surface marker stage specific embryonic

antigen (SSEA)-3 in an elastase/CaCl2 model in severe

immunocompromised mice (87). Despite their embryonic origin,

these cells are purported to be non-tumorigenic and have rapid

doubling time which makes them ideal for clinical translation.

Multiple injections of MUSE cells most effectively prevented

aneurysm growth and increased medial elastin compared to non-

MUSE (SSEA-3−) cells and normal Bm-MSCs. A single injection

of MUSE cells at day 0 was also superior to the other groups.

Interestingly, MUSE cells were shown to colocalize with both
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SMA and CD31, showing their multipotency and capability for

direct regeneration (Figure 4A). MUSE cells were shown to home

to the aneurysm site from the adventitial side, suggesting they

transport through the vasa vasorum. These findings emphasize

the importance of cell sorting when designing future Bm-MSC

therapies for AAA as Bm-MSCs contain a heterogenous

population of cells with differential therapeutic properties. They

also provide support for intravenous injection as a feasible

delivery method for MSCs due to their ability to home to

injury sites.

3.3.2 Adipose derived MSCs
Adipose tissue is another reliable source for MSCs. Compared

to Bm-MSCs, Adipose-derived MSCs (Ad-MSCs) can be isolated

in higher abundance with less morbidity in a minimally-

invasive procedure. Like Bm-MSCs, Ad-MSCs are profoundly

immunomodulatory and anti-inflammatory and have been

subject to numerous clinical trials (89). Despite still lacking

clinical approval, several studies have demonstrated the promise

of Ad-MSCs as a regenerative therapy for AAA over the

last 10 years.

Tian et al. evaluated the effects of Ad-MSC therapy on AAA in

a rat CaCl2 model after performing a series of in vitro and ex vivo

experiments, showing that they improve elastin content and reduce

MMP activity (90). In this study, cells were introduced to the aorta

via the carotid artery. In contrast, recognizing the ILT as an

impediment for intravascular delivery, Blose et al. utilized a

periadventitial approach to deliver Ad-MSCs in an elastase model

by connecting a sponge to the infusion catheter, effectively

reducing aneurysm progression and preserving the elastic

lamellae (91). Xie et al. delivered human Ad-MSCs via the tail

vein in a mouse elastase model, beginning therapy at the time of

elastase treatment (92). Intravenous Ad-MSC therapy had a

profound anti-inflammatory effect reducing macrophage

infiltration, polarizing macrophages toward the M2 phenotype,

and increasing the proportion of regulatory T cells. These

reductions in inflammation were associated with blunted

aneurysm dilation over 2 weeks compared to controls.

Transplanted cells were observed solely in the lung 1 day after

injection and were no longer present after 4 days, suggesting that

Ad-MSCs exhibit a systemic anti-inflammatory effect.

Employing a classical tissue engineering approach, Parvizi et al.

developed perivascular scaffolds from a recombinant collagen

peptide to deliver rat Ad-MSCs to the adventitia in a rat elastase/

CaCl2 model (88). The recombinant collagen peptide consists of

a repeat of human type 1 collagen along with an RGD sequence,

thereby recapitulating features of the vascular ECM and

facilitating cell adhesion, respectively. Ad-MSCs were seeded on

the scaffolds for one day prior to transplantation and were

transplanted at the time of elastase treatment. The scaffolds were

fully intact after 2 weeks in vivo and labeled Ad-MSCs

were shown to migrate from the adventitia into the media

(Figure 4B). Only seeded scaffolds prevented dilation while there

was a significant reduction in elastin and SMA expression and

increase in macrophage infiltration with the scaffold alone while

there was no difference in the Ad-MSC scaffold group compared
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FIGURE 4

Fate of MSCs after periadventitial delivery. (A) Engraftment and differentiation of MUSE (GFP+) cells into SMCs (αSMA+, top) and endothelial cells (CD31
+, bottom) 3 weeks after periadventitial delivery. Reprinted from (87) with permission from Elsevier, © 2018 by The American Association for Thoracic
Surgery, https://doi.org/10.1016/j.jtcvs.2018.01.098. (B) Periadventitial delivery of ADSCs using recombinant collagen peptide patches (top right).
Labeled ADSCs (red, arrows) could be visualized throughout the aortic wall after 14 days (bottom right) but not bare control patches (bottom left)
(* = autofluorescence of the elastic laminae). Reprinted from (88) with permission from Elsevier, © 2018 Wiley Periodicals, Inc., https://doi.org/10.
1002/jbm.a.36445.

Chao et al. 10.3389/fcvm.2024.1369785
to the sham. In all, this study highlights the utility in using

engineered scaffolds to enhance the effects of Ad-MSC as a

translatable local therapy, however a direct comparison between

cells alone and cells seeded within scaffolds would be insightful.
4 Cell-free regenerative approaches

While cell therapy is well suited for the biology of AAA, cell-

free approaches offer an alternative path to AAA regeneration,

circumventing the barriers to translation that often hinder cell

therapies. Cell-derived products, gene therapies, controlled

protein delivery, and regenerative biomaterials are all options to

promote AAA repair without the use of living cells (Figure 5).

Instead, these approaches elicit therapeutic responses in the

resident cells to accomplish regeneration. Compared to cell

therapies, these approaches are often more specific, focusing on a
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particular target to accomplish healing and offering more precise

control of the healing process. In the following section, we will

review the alternative regenerative approaches to cell therapy that

have been prescribed for or may be well suited to AAA

treatment, offering critiques on previous studies and providing

recommendations for the design of these treatments.
4.1 Cell-derived extracellular vesicles

Instead of live cell transplantation, cells can be used as in vitro

factories to produce cell-derived therapeutics such as extracellular

vesicles (EVs) (93–95). Exosomes, a subset of EVs, transport

intracellular cargo outside the cell thereby playing an important

role in intercellular communication (96). Specifically, exosomes

carry an assortment of proteins and miRNA, which can promote

AAA regeneration (97, 98). MSCs are often used as the cell
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FIGURE 5

Cell-free regenerative approaches to attenuate AAA. Products derived from cells, including extracellular vesicles or mitochondria, offer the therapeutic
paracrine effects of cells while avoiding some of the translational barriers of cell therapies. Gene therapy offers precise control of molecular
mechanisms. Controlled delivery of proteins and drugs provides targeted and sustained therapeutic effects, while protecting payloads from rapid
degradation in the inflammatory environment. Biomaterials are typically paired with a molecular or cellular payload but can also offer regenerative
potential alone. Created with BioRender.com.

Chao et al. 10.3389/fcvm.2024.1369785
sources for production of EVs. Chen et al. isolated EVs from MSCs

to treat AngII-infused AAA mouse models thereby inhibiting AAA

formation and improving survival (99). While MSC-EV-treatment

helped inhibit neutrophil extracelluar trap (NET) mediated

ferroptosis in SMCs in vivo, MSC-EVs were unable to inhibit

NET-induced ferroptosis in vitro. Thus, the findings suggested

that EV-treatment may not directly inhibit ferroptosis but help

prevent NET formation and AAA development, though the exact

mechanism requires further investigation. In addition to

Bm-MSCs, Hu et al. isolated exosomes secreted by Ad-MSCs

(ADSC-exos) and evaluated their effects in Ang II AAA (100).

ADSC-exos were shown to reduce elastin degradation via

exosomal miR-17-5p. Spinosa et al. demonstrated that EV

treatment showed a decrease of inflammation and cytokine levels
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equivalent to MSC treatment (101). Further investigation of the

specific mechanism of EV action demonstrated that this

protective effect occurs through miR-147-mediated

downregulation of IL-17 and HMGB-1. Surface modification of

EVs can increase their tissue specificity and improve therapeutic

effect. Sajeesh et al. modified EVs with cathepsin K (CatK)

binding peptides (CKBP), noting CatK is highly expressed on the

surface of ECs and SMCs in AAA (102). Modification with

CKBP increased uptake and elicited a pro-regenerative effect on

cytokine-activated SMCs isolated from an elastase-induced AAA

rat model, however no in vivo study was performed.

In summary, EV-based therapies propose a new potential

avenue for AAA regeneration through inflammation

downregulation, reduction of elastin degradation, and inhibition
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of SMC activation. Such therapy might also be superior to cell-

based therapies through the opportunity for targeted tissue-

specific modification and low immunogenicity. However, the

mechanism of action of such therapies and further investigation

of specific cargoes that EVs carry are essential for further

development of EV-based therapies for AAA regeneration.
4.2 Gene therapy

Another nascent field, gene therapy, has the potential to

significantly improve clinical outcomes for AAA therapy. By

using the power of gene manipulation such as overexpression or

gene silencing through miRNA, siRNA, and viral vectors, gene

therapy offers a novel approach to encourage AAA regeneration.

Yan et al. studied the effect of the amphipathic protein-mediated

nanoparticle delivery of siRNA targeting NF-κB (103).

Hyaluronic acid (HA)-coated p5RHH nanoparticles were used to

knock down either the p50 or p65 subunit of NF-κB in an

elastase-induced model and a TGF-β blockade model.

Interestingly, the delivery of nanoparticle-encapsulated siRNA

targeting the p65 subunit was only effective at the early stage of

post-elastase perfusion, while the p50 subunit silencing was

beneficial even at 5 days post-perfusion. Overall, the silencing

of different NF-κB subunits helped reduce AAA progression

and rupture.

Zhao et al. demonstrated that knockdown of miR-33-5p led to

increased expression of ABCA1 and activation of PI3K/Akt

pathway, while transfection with siRNA targeting ABCA1

decreased phosphorylation of PI3K and Akt (104). Although the

relation between the PI3K/Akt pathway and AAA is unclear, the

authors hypothesized it modulates AAA formation by regulating

cholesterol efflux. Tao et al. studied the cellular senescence of

VSMC in human AAA specimens, revealing AngII induces

VSMC senescence by downregulation of Sirt1 (105). The authors

also demonstrated that miR-199a-5p mediates Sirt1 expression

and thus identified it as a potential target for AAA gene

therapies, along with miR-34, miR-455-3p, and miR-125b-5p

which are also upregulated in AAA patients. Nevertheless, the

role of such miRNAs and their molecular mechanisms require

further investigation before they may be used for AAA

regenerative gene therapies.

In addition to siRNAs, viral vectors open another avenue for

gene therapy. Adeno-associated virus (AAV) is commonly used

in gene therapy due to its efficiency in gene delivery, low risk of

triggering an immune response, and long-term expression of a

therapeutic gene (106). Li et al. presented evidence for lysyl

hydroxylase 1 (LH1) being a potential gene target for AAA as

human specimens and Ang II mice experience reduced LH1

expression, leading to the activation of proinflammatory process,

increased MMP activity, and VSMC apoptosis (25). AAV-LH1

treated mice exhibited decreased AAA formation and rupture.

Even though the findings presented evidence for AAA alleviation,

gene therapy alone was not sufficient to completely regenerate

dissecting AAA, suggesting gene therapies may need to be

combined with other interventions to increase therapeutic
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efficacy. Zhao et al. demonstrated that BAF60c (a subunit of the

SWItch/sucrose nonfermentable chromatin remodeling complex

(SWI/SNF) is reduced in human AAA samples and murine Ang

II and elastase AAA models and upregulation preserved healthy

VSMC phenotype and suppressed VSMC inflammation (107).

Overexpression of BAF60c in mice using an AAV did not

improve the survival rate but significantly reduced the maximum

aortic diameters and AAA development.

Long noncoding RNAs (lncRNA) represent an additional gene

product with potential as a therapeutic target. Encouraging pre-

clinical studies have utilized knockdown or knockout of lncRNAs

with great effect. Zhang et al. previously identified upregulation

of the lncRNA plasmacytoma variant translocation 1 (PVT1) in

human AAA tissue and AngII induced murine AAA; lentiviral

knockdown of PVT1 in an AngII murine model attenuated

aortic expansion and suppressed VSMC apoptosis, matrix

degradation, and inflammatory cytokine profile (108). Similarly,

Li et al. identified the lncRNA H19 as one the most upregulated

transcripts in the AngII and elastase murine models of AAA, a

Yucatan mini-pig aneurysm model, as well as end-stage human

disease (109). Subsequent knockdown in AngII and elastase

murine models reduced AAA growth rate with reduced VSMC

apoptosis mediated by interactions with hypoxia-induced factor

1α. This role of lncRNAs on VSMC behavior may hold

particular promise in AAA biology. Ahmed et al. identified the

lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) as a

critical regulator of VSMC phenotype; in vivo knockout of

NEAT1 significantly reduced VSMC proliferative phenotype,

albeit in a non-aneurysmal model (110). These lncRNAs are

merely a fraction of a rapidly growing database of lncRNAs and

we anticipate continued identification of transcripts suitable for

therapeutic targeting in AAA (111).

The unique setting of the vascular system presents some

limitations for the use of novel and efficient gene editing systems

like Clustered Regulatory Interspaced Short Palindromic Repeats

(CRISPR) and the CRISPR-associated Proteins (Cas) proteins.

The need for targeted therapy and delivery to vascular cells is

challenged by the constant blood flow and changing environment

of the vasculature. Another concern is off-target effects that are

often difficult to predict. Nevertheless, a recent study done by

Zhang et al. presented a lipid-based and hydroxyl-rich gene

vector system with high transfection efficiency and stability (112).

They developed CHO-PGEA/ pCas9-sgFbn1 nanoparticles

targeting Fibrillin-1 and analyzed their efficiency in vitro and in

vivo. In vivo studies demonstrated that AngII infusion

significantly increased the uptake of nanoparticles by aortic

tissues. Moreover, the delivery system did not demonstrate any

toxic effects on organs, thus revealing a new potential avenue for

gene therapy of vascular diseases.

In summary, gene therapy approaches are a promising route

for AAA regeneration. However, current reports are typically

mechanistic, investigating the role of a certain gene and pathway

in AAA formation and progression, rather than focusing on

clinical translation of these therapies. While such studies greatly

contribute to our understanding of AAA formation and

development mechanisms and identify novel targets for AAA
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regeneration, more translational studies will be useful to advance

the field of regenerative therapies for AAA. In the future, more

efforts should be directed to developing local delivery methods to

enhance the therapeutic relevance of gene therapy approaches.
4.3 Targeted protein and drug delivery

Soluble signals are a main component of the tissue engineering

triumvirate. Protein and growth factor delivery have been proposed

to direct cell fate and ultimately exact tissue regeneration (14, 61,

113). However, growth factor therapeutics do not come without

their own risks. Besides potential for immunogenicity, dosing

and pharmacokinetics must be precisely controlled to reduce off-

target effects and avoid tumor formation. Exogenous protein

delivery is also hampered by their inherent lability and

instability, as they are rapidly denatured in the physiological

environment, losing their activity. To combat this, proteins are

often combined with a biomaterial vehicle to provide controlled

delivery, to preserve their activity and localize their effects

(11, 114–116). Bai et al. evaluated the regenerative impact of an

injectable hyaluronic acid/sodium alginate hydrogel loaded with

TGF-β in a murine CaCl2 and rat vein patch model (117). TGF-

β promotes AAA regeneration by inducing ECM production and

dampening inflammation (118–121). This treatment effectively

improved wall thickness and elastin integrity in the mouse model

which was associated with increased transforming growth factor

activated kinase (TAK1) and pSMAD2 positivity, indicating a

TGF-β dependent mechanism. The hydrogel remained visible in

histology at day 14, but there were no signs of cell infiltration

and tissue integration. Also, the feasibility of intramural injection

in a human aneurysm is unlikely due to the potential for

rupture. Still, this study presents an interesting alternative

approach which paves a new direction for regenerative therapies

based on growth factor and cytokine signaling. More soluble

factors can be screened for AAA regeneration as well as develop

biomaterial delivery methods to control their presentation.

Although systemic pharmacological treatments have not been

proven effective in the clinical management of AAA, local

delivery of these agents using biomaterials can improve tissue

regeneration by reducing the activity of proteins detrimental to

tissue repair in the pathological microenvironment. In the

context of regenerative engineering, these drugs are combined

with a biomaterial delivery vehicle to improve the

pharmacokinetics, and subsequently their safety and efficacy. For

instance, as evidenced by multiple clinical investigations,

doxycycline garnered significant interest as a synthetic MMP

inhibitor. However, systemic administration is associated with

off-target effects. To overcome this, Yamawaki-Ogata et al.

developed electrospun nanofibers which released doxycycline

slowly over 2 months without any toxic effects to measure the

effects of local MMP inhibition in an angiotensin mouse model

(122). Nosoudi et al. described the use of anti-elastin

nanoparticles loaded with batimastat, a hydroamate-based MMP

inhibitor, to determine its feasibility as an intravascular therapy

that would traffic to the aneurysm site by targeting elastin in a
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rat CaCl2 model (123). Nanoparticles are advantageous as they

protect their payloads from degradation in the physiologic

environment and confer sustained release behavior; however,

these particles emptied their loads by 1 week and, thus, had to

be delivered weekly. These particles were shown to accumulate in

the aorta while immunoglobulin-tethered controls did not. Long

term, they improved histological features and prevented aortic

dilation compared to nanoparticles without drug. Overall, these

reports suggest local MMP inhibition is an effective strategy for

AAA repair and regeneration by preventing ECM degradation

and reducing inflammation. Future studies can combine local

delivery of MMP-inhibitors with other regenerative strategies to

improve AAA regeneration.

Controlled endovascular delivery technologies have

demonstrated promise in large animal models and are perhaps

the most advanced along the clinical translation pathway.

Simionescu et al. delivered 1–3, 4, 6-pentagalloylglucose (PGG)

via a weeping endovascular balloon to stabilize elastin and

collagen in a swine AAA model (elastase/collagenase and CaCl2)

with not only attenuation of AAA but also reduction in aortic

diameter (124). This has since been delivered to human patients

without obvious toxicity, though impact on aneurysm growth

remains to be seen (125).
4.4 Regenerative biomaterials

Biomaterials are often combined with cells or other

therapeutics before implantation; however, biomaterials alone

often possess their own therapeutic effect due their inherent

bioactivity and can be used to direct the behavior of endogenous

cells. While this is especially true for natural biomaterials which

contain domains which promote cell attachment and integrin

signaling, such as ECM-derived polymers (i.e., collagen, gelatin,

decellularized tissues), synthetic polymers can also be

functionalized to control cell behavior (23). Natural and synthetic

polymers are often combined to exploit the properties of each.

These polymers can be fabricated into a slew of formats

including sponges, foams, hydrogels, fibers, and films, all of

which are amenable for periadventitial interventions that can

be easily applied to the aneurysm lesion. Unlike current

surgical options, these materials degrade over time, leaving

by newly formed tissue, making them exciting alternatives

to regenerating AAA.

The primary features of AAA pathogenesis are thinning of the

vascular wall, persistent inflammation, and VSMC loss.

Appropriate biomaterial selection would encourage wall ECM

production and VSMC proliferation while attenuating

inflammation to regenerate the vascular wall. Polyethylene

glycol (PEG) hydrogels have attracted increasing interest due to

their tunability and amenability to functionalization (126–128).

PEG hydrogels are “blank slates” and can be functionalized

with peptides and growth factors and designed with protease-

sensitive crosslinks which enables cell-mediated degradation.

Protease sensitivity might be an attractive feature in the context

of AAA in which MMP activity is upregulated. PEG is also
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non-immunogenic, which is pertinent to AAA as any additional

inflammation might worsen the disease state. In contrast,

natural polymers are readily degraded by cells and do not

require any complex chemistries but can still be modified if

desired. While these polymers are often immunogenic, the

foreign body response may be advantageous in AAA as it

promotes local ECM production. Citrate-based biomaterials

possess potent antioxidant properties which might be

advantageous in combating AAA inflammation (129). Another

interesting biologic-free approach is to design these biomaterials

to sequester endogenous proteins and cells instead of delivering

them which would be helpful in clinical translation (130). To

date, there are no reports of using a biomaterial alone as a

therapy for AAA regeneration besides vehicle controls in cell

studies, but acellular biomaterials might be more effective,

cheaper, and easier to translate.
5 Perspectives for clinical translation

Despite countless innovations and experimental therapies to

promote AAA repair, few regenerative approaches have reached

clinical trials and none have received final clinical approval (83).

Before advancing to the clinic, it is imperative to demonstrate the

safety, efficacy, and mechanism of action of these treatments in

animal models. As such, clinical translation has been limited by

variability among preclinical experimental studies, especially

among animal models and treatment administration paradigms.

Studies utilizing clinically-relevant large animal models have also

been scant. Other challenges include the practical and technical

considerations that accompany regenerative therapies such as

scalable manufacturing. Lastly, there is a need for consistent

collaboration among scientists, engineers, and physicians to

determine a suitable treatment approach (i.e., administration

route and timing) that aligns with clinical practice along with

continued experimentation to unravel the underlying biology

of AAA pathogenesis. In the following sections, we will

elaborate on these obstacles to translation and prescribe some

recommendations for future work to ultimately see a regenerative

therapy clinically-approved for AAA.
5.1 Preclinical evaluation

Regardless of the approach, the ultimate success of any

regenerative therapy for AAA relies on a standardized route to

translation. Variability among experimental models, species, and

study designs make it difficult to compare the efficacy of new

treatments. Animal models of AAA remain imperfect, and no

single model captures both the anatomic specificity and all

histopathologic changes observed in human AAA. Models can

broadly be categorized as dissecting or non-dissecting aneurysms.

Dissecting models, such as the popular angiotensin II model, rely

on generation of intimal tears and can importantly recapitulate

aneurysmal rupture and subsequent death but often manifest

outside of the infrarenal segment and may better reflect residual
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dissection after type B aortic dissection in human patients (17).

Resultantly, this remains a significant limitation as the etiology

and clinical management of post-dissection aneurysms is

certainly distinct from degenerative AAA. Alternatively, non-

dissecting models, such as the elastase or CaCl2 models, can

induce progressive transmural dilation with anatomic specificity

but lack the important clinical endpoint of rupture (17).

Additional considerations include presence of an ILT,

concomitant atherosclerosis, and inflammatory infiltration. The

previously described rat xenograft model is another non-

dissecting model that promotes both ILT and early immune cell

infiltration with a similar limited capacity for rupture (131). The

implantation of a decellularized guinea pig aorta reliably

generates AAA and the associated void of VSMCs has made this

model an attractive testbed for cellular therapies (74). Models

also require some ongoing trigger for progression of pathology

with consequent stabilization or healing after cessation, though

some groups have demonstrated continuous progression of AAA

by prolonging the initial trigger or new stimulus (132, 133). Each

model should be considered complementary in fully capturing

the human disease state and recognizing their limitations is

paramount in evaluating any regenerative therapy.

Current approaches evaluate whether a potential therapy can

stop aneurysm formation or slow progression rather than

regenerating damaged tissue. The timing of intervention will

govern the indication of any individual regenerative engineering

approach. As such, it is necessary to develop strategies that align

with the current clinical paradigm. Delivery of any therapy for

AAA must integrate the existing framework for patient

identification, repair strategies, and surveillance. While certain

therapies may be more suited for early intervention, more drastic

approaches may be needed once the aneurysm has dilated past a

certain threshold. Similarly, assessment of regenerative therapies

must be guided by clinically relevant endpoints as cellular or

molecular markers alone may be insufficient given the limited

translational success thus far. Aortic remodeling after EVAR

offers some insight to favorable endpoints. Though EVAR is not

inherently a regenerative therapy, the diseased aorta remains in

place, and sac regression alone may predict long-term

success (134, 135). Continued integration of advanced imaging

modalities and other clinical parameters will remain imperative

in assessing both surgical and regenerative therapies.
5.2 Source of regenerative materials

Cell therapies using cells of different phenotypes and lineages

have shown promise as therapeutics in aneurysm treatment in

numerous preclinical studies (Table 1) but have mostly not

advanced to clinical development. A major consideration for the

translation of cell-based therapies is the ability to source cells

ethically and frugally manufacture adequate quantities to support

market demand. MSCs are the most intuitive option as they can

be sourced from a range of tissues and theoretically can be

expanded indefinitely. However, MSCs have been shown to lose

potency upon passaging, which further hampers their
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TABLE 1 Summary of cell therapies by cell type.

Cell type Animal
model

Delivery method Key findings Reference

VSMCs or
progenitors

Rat xenograft
model

Endoluminal seeding Preserved aorta diameter and elastinolysis (8 weeks); decreased MMP
translation, except for MMP2 (1 and 2 weeks); increased TIMP/TIMP3
expressions (1 and 2 weeks)

Allaire et al. (57)

Rat xenograft
model

Catheter infusion No increase in aorta diameter and preserved elastin content (8 weeks);
increase in fibrous collagen transcripts (1 week)

Allaire et al. (58)

Rat elastase
model

Perfusion No reports on cell therapy impact on AAA morphology; reduction in
MMP9 activity and MMP2 and MMP9 gene expression (6 weeks)

Park et al. (59)

Mouse elastase
model

Periadventitial delivery (commercially-
available collagen sponge, ViteneTM)

Decrease in aorta diameter; increased medial contractile markers;
reduced medial macrophages (4 weeks)

Mulorz et al. (60)

ECs Rat xenograft
model

Endovascular delivery Reduced aorta diameter; reduction in inflammation and MMP-12
activity; establishment of a functional endothelium (4 weeks)

Franck et al. (74)

BM-MSCs Mouse AngII
model

Transplantation of BM-MSC sheets Reduced aorta diameter; increase in elastin content; IGF-1 and TIMP-1
upregulation; downregulation of IL-6, MCP-1, and TNF-α (4 weeks)

Hashizume et al. (84)

Rat xenograft
model

Endovascular seeding Reduced aorta diameter; decrease in MMP-9, increase in TIMP-1 (1
week); Increase in collagen and elastin content; reduction in monocyte
and macrophage infiltration (4 weeks)

Schneider et al. (86)

Mouse CaCl2/
elastase model

Intravenous delivery Cells were found to be localized in the aneurysm from the adventitial
side; aneurysm attenuation; elastic fibers preservation; more detailed
understanding of the mechanism of intravenous delivery (8 weeks)

Hosoyama et al. (87)

AD-MSCs Rat CaCl2 model Intravascular delivery Improvement in elastin content; reduced MMP activity (4 weeks) Tian et al. (90)

Mouse elastase
model

Periadventitial delivery (sponge
connected to a catheter)

Reduced aneurysm progression; preserved elastic lamellae (2 weeks) Blose et al. (91)

Mouse elastase
model

Intravenous delivery Reduced inflammation and macrophage infiltration; inhibition of
aneurysm progression (2 weeks)

Xie et al. (92)

Rat CaCl2/
elastase model

Periadventitial delivery (engineered
scaffolds)

Prevented increase in aorta diameter; decrease in macrophage
infiltration; increase in elastin and SMA (2 weeks)

Parvizi et al. (88)
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implementation (76, 136). Also, MSCs are heterogenous and

precise classification of MSCs has been controversial (137). It is

possible that certain MSC subpopulations have differential effects

on healing, and advanced sorting may be required. The donor

characteristics such as age and health status also have a profound

impact on MSC properties, making autologous therapies unlikely.

In any case, allogenic MSCs have been shown to have low-

immunogenicity and acceptable safety profiles (81). It is

pertinent to establish inclusion criteria including passage

number, surface antigens, donor age, and donor health status if

cells are being gathered from a bank. Alternatively, iPSC

technology presents an interesting avenue that might circumvent

some of these obstacles. iPSCs can be used to generate MSCs and

adult cells which might be suited for AAA treatment such as

vascular progenitors, ECs, and VSMCs. Regardless, the feasibility

of using any cell as a reliable clinical therapy is governed by the

ability to develop a scalable process from harvesting and

expansion, to cryopreservation and thawing, and ultimately

therapeutic delivery.

Alternatively, cell-free treatment paradigms are more amenable

to clinical translation (Table 2), but also have considerations that

must be addressed. EVs provide many of the benefits of MSC

therapies and can ideally be used an off-the shelf therapy yet are

still accompanied by quality control issues such as purity and

donor source. The feasibility of gene therapies to be

manufactured on a global scale has already been demonstrated.

Acellular biomaterials pose little concern when it comes to

sourcing and clinical translation, however xeno-derived materials

must be vetted for immunogenicity and batch variability. Overall,
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researchers must be mindful of the practical concerns and

logistics associated with each treatment paradigm and develop

methods that are suited for large scale clinical implementation.
5.3 Route of delivery

In addition to the numerous practical considerations in

regenerative therapy design, route of delivery is perhaps the most

critical for successful integration with existing clinical paradigms.

Systemic infusion of cells or cell-free products provides the least

invasive approach yet is limited by possible off target effects and

poor target specificity. While direct intraluminal delivery affords

easy integration into the clinical framework, any intraluminal

approach must be engineered to prevent the payload from

entering the circulation. Although ILT is often viewed as a

barrier to intraluminal delivery, it plays a significant role in AAA

biology and therefore might be a target to which therapies can be

delivered to alter the course of aneurysm progression. Still,

periadventitial approaches may be best suited for AAA pathology

as the pathologic changes primarily occur in the wall, but these

strategies must be tempered by the significant invasiveness of an

aortic exposure for perivascular delivery. While a patient may be

hypothetically spared the hemodynamic insult of an aortic cross

clamp, as is required in open surgical repair, the impact of a

regenerative therapy on hampering a future reoperation or

surveillance imaging cannot be understated. Delivery strategies

may also draw inspiration from the armamentarium of vascular

surgeons in treating endoleaks after EVAR. Transarterial,
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TABLE 2 Summary of cell-free therapies.

Cell-free approach Product Key findings Reference
EVs MSCs- EVs Inhibited NET-mediated ferroptosis in SMCs in vivo; inhibited AAA formation through NET

formation prevention
Chen et al. (99)

ADSC-Exos Reduced elastin degradation via exosomal miR-17-5p Hu et al. (100)

MSC-EVs Decreased inflammation and cytokine levels through miR-147-mediated downregulation of IL-
17 and HMGB-1

Spinosa et al. (101)

EVs-CKBP conjugate Increased uptake of EVs; triggered pro-regenerative effect on cytokine activated SMCs in vitro Sajeesh et al. (102)

Gene therapy NPs with NF-κB siRNA Reduced nitric oxide (NO) production, immune cell recruitment and cytokine release, and cell
death; Reduction in AAA progression and rupture

Yan et al. (103)

miR-199a-5p Demonstrated that miR-199a-5p mediates Sirt1 expression, which induces VSMC senescence;
identified several miRNA targets for downregulation in AAA patients

Tao et al. (105)

LH1 AAV vector Decreased AAA formation, progression, and rupture Li et al. (25)

BAF60c AVV vector Reduced maximum aortic diameters and AAA development; no improvement in survival rates Zhao et al. (107)

lncRNA PVT1 Knocked down PVT1; attenuated aortic expansion, reduced VSMC apoptosis, matrix
degradation, and inflammatory cytokine profile

Zhang et al. (108)

lncRNA H19 Knocked down lncRNA H19; reduced AAA growth rate and VSMC apoptosis Li et al. (109)

lncRNA NEAT1 Knocked out NEAT1; reduced VSMC proliferative phenotype Ahmed et al. (110)

CRISPR Developed CHO-PGEA/pCas9-sgFbn1 nanoparticles targeting Fibrillin-1; observed better
uptake of NPs in aorta with AngII administration

Zhang et al. (112)

Targeted protein and
drug delivery

TGF-β-hydrogel Improved wall thickness and elastin integrity; increased transforming growth factor activated
kinase (TAK1) and pSMAD2

Bai et al. (117)

Doxycycline nanofibers Reduced MMP2 and MMP9 activity; Reduced inflammatory cytokines; Improved elastin
quality

Yamawaki-Ogata
et al. (122)

Batimastat anti-elastin
NPs

Reduced MMP activity; improved histological features; prevented aortic dilation Nosoudi et al. (123)

PGG weeping
endovascular balloon

Stabilized vascular matrix; attenuated expansion of AAA; reduced aortic diameter Simionescu et al. (124)
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translumbar, and transcaval approaches are all currently employed

for delivery of coils or polymers with minimal morbidity. Adapting

these techniques for intravascular or perivascular therapies could

hold promise.

Regenerative therapies may also be directly paired with open

surgical repair in designing vascular grafts. The goal of this

strategy is not to regenerate the AAA but rather to improve the

performance of grafts after surgical replacement. While the

patency of aortoiliac synthetic grafts is acceptable, thrombotic

complications and resistance to infection remain significant

challenges, particularly in infected fields or mycotic aneurysm

cases. Novel acellular vascular grafts that address these

limitations have been employed for peripheral reconstruction and

may offer similar advantages in aortic reconstruction for AAA

(138, 139). There is also likely significant opportunity to pair

biologically active therapies with endovascular therapies, as in the

treatment of coronary or peripheral artery disease (140, 141).

Though not yet employed in the clinical realm, modification of

aortic stent-graft technologies presents one such strategy

(142, 143). Pre-clinical efforts have largely focused on improving

the performance of endografts (i.e., reducing endoleak) rather

than regenerating the aneurysm itself. Given the existing clinical

workflow and rise of an “endo first” approach, pairing

regenerative and surgical therapies may hold significant promise.

Modulating post-EVAR sac behavior is one intuitive goal as

positive or negative remodeling already predicts late aortic

rupture and long-term survival (134, 135). In the future, utilizing

regenerative engineering principles to develop biologically active

stent-grafts that incite AAA repair simultaneously present an

exciting opportunity.
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5.4 Mechanisms of action

Current regenerative approaches to treating AAA are premised

on the therapeutic properties of exogenous cells. Unlike traditional

pharmacological paradigms, the therapeutic effects of cells are not

based on a single target or mechanism. Instead, cells offer a robust,

multifactorial secretome that consists of growth factors, cytokines,

ECM components, extracellular vesicles, and organelles, each with

their own respective benefits to AAA healing. Current studies

report reduced inflammation, oxidative stress, MMP activity and

ECM fragmentation with increased cellularity, however it

remains unclear how these effects are achieved. Carefully

designed experiments must be conducted to determine the causal

relationships between therapies and their respective outcomes.

In vitro and ex vivo studies will help unravel some of these

unknowns. Scientists should also take advantage of genetic

knock-out, gene overexpression, and CRISPR-cas9 technologies.

The advent of bulk and single-cell sequencing provides

indispensable tools that can be employed to gain mechanistic

insight and further deconvolute how regeneration is accomplished.

The most exciting healing mechanism is the potential for cell

engraftment, replacing the cellular void left behind by

degenerative changes. Currently, the fate of transplanted cells is

unknown with conflicting reports of viability, survival, and

differentiation. Prior studies have utilized clever experimental

designs to distinguish whether tissue regeneration results from

activation of endogenous cells, for example migration of

neighboring cells into the anastomotic regions of xenografts, or

from engraftment of transplanted cells. It is pertinent to conduct

lineage tracing studies and incorporate live-cell in vivo tracking
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so that cell fate can be reliably predicted (144). The utilization of

cells expressing reporter genes provides valuable insights into cell

fate, albeit with challenges that warrant careful consideration.

One potential limitation arises from false positives generated in

the short term, attributed to macrophage phagocytosis.

Additionally, genetic modifications intended for cell tracking may

heighten immunogenicity, impacting cell potency and

differentiation potential. Despite these challenges, genetically-

labeled cells offer the advantage of combining with

immunostaining techniques, enabling the identification of cell

phenotype and spatial relationships. Advanced imaging

techniques using contrast agents provide another avenue for cell

tracking, offering compatibility with clinical imaging modalities

and high sensitivity. However, they pose limitations for long-

term tracking, as contrast agents persist post-cell death and are

diluted with mitosis. The choice of imaging method should be a

deliberate consideration based on the specific study objectives,

with researchers exercising discretion in result interpretation,

particularly in preclinical studies. In clinical studies, both genetic

modification and contrast agent-based tracking encounter

difficulties. Genetically modified cells face regulatory hurdles,

while contrast agent-based tracking raises concerns about

radiation exposure. Consequently, cell tracking is infrequently

implemented in clinical trials. However, a robust understanding

gained from preclinical studies can potentially mitigate the

necessity for tracking cells in human subjects. Navigating these

challenges requires a judicious approach, emphasizing the

importance of choosing the most suitable method for a given

study’s objectives and exercising caution in result interpretation,

particularly in the context of human applications.
5.5 Conclusion

In summary, AAA is a devastating progressive degenerative

disease with confounding biological mechanisms that have

made it challenging to develop new therapeutics using

conventional strategies. Regenerative engineering is a

burgeoning field well suited to AAA pathology as it aims to

reverse tissue damage in situ. To date, current regenerative

engineering approaches for AAA have been limited to cell

therapies. Future studies are still critically necessary to further

identify the mechanistic underpinnings of cell therapies.

Alternatively, cell-free strategies are a promising new frontier

with their own set of advantages and challenges. The substantial

number of considerations in regenerative therapy design

underscores the need for interdisciplinary collaboration.

Determination of the therapeutic payload, route of delivery,

mechanism of action, and desired positive outcome must each

consider practical limitations for successful translation.
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Scientists, engineers, and vascular surgeons must each bring

their individual expertise. We encourage continued research in

this field and support imaginative regenerative engineering

approaches that will ultimately result in translatable therapies

that can be merged with standard practice.
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