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The 2017 World Health Organization Fact Sheet highlights that coronary artery
disease is the leading cause of death globally, responsible for approximately
30% of all deaths. In this context, machine learning (ML) technology is crucial
in identifying coronary artery disease, thereby saving lives. ML algorithms can
potentially analyze complex patterns and correlations within medical data,
enabling early detection and accurate diagnosis of CAD. By leveraging ML
technology, healthcare professionals can make informed decisions and
implement timely interventions, ultimately leading to improved outcomes and
potentially reducing the mortality rate associated with coronary artery disease.
Machine learning algorithms create non-invasive, quick, accurate, and
economical diagnoses. As a result, machine learning algorithms can be
employed to supplement existing approaches or as a forerunner to them. This
study shows how to use the CNN classifier and RNN based on the LSTM
classifier in deep learning to attain targeted “risk” CAD categorization utilizing
an evolving set of 450 cytokine biomarkers that could be used as suggestive
solid predictive variables for treatment. The two used classifiers are based on
these “45” different cytokine prediction characteristics. The best Area Under
the Receiver Operating Characteristic curve (AUROC) score achieved is (0.98)
for a confidence interval (CI) of 95; the classifier RNN-LSTM used “450”
cytokine biomarkers had a great (AUROC) score of 0.99 with a confidence
interval of 0.95 the percentage 95, the CNN model containing cytokines
received the second best AUROC score (0.92). The RNN-LSTM classifier
considerably beats the CNN classifier regarding AUROC scores, as evidenced
by a p-value smaller than 7.48 obtained via an independent t-test. As large-
scale initiatives to achieve early, rapid, reliable, inexpensive, and accessible
individual identification of CAD risk gain traction, robust machine learning
algorithms can now augment older methods such as angiography.
Incorporating 65 new sensitive cytokine biomarkers can increase early
detection even more. Investigating the novel involvement of cytokines in CAD
could lead to better risk detection, disease mechanism discovery, and new
therapy options.
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1 Introduction

The crucial role inflammation plays in the beginning and

development of coronary heart disease is well-known (CHD) (1).

However, the precise mechanism through which inflammation

contributes to the pathophysiology of CHD remains unclear (2,

3). Several inflammatory indicators have been evaluated for their

capacity to predict CHD risk, with C-reactive protein (CRP)

receiving the most attention. On the other hand, CRP does not

appear to be a risk factor for coronary heart disease. Cytokines

are chemical messengers produced by immune and nonimmune

cells that influence cell activity. The liver also produces C-

reactive protein (CRP), an inflammation marker and

cardiovascular disease risk factor (4). Cytokines are chemical

messengers produced by the immune system and other cells in

order to regulate numerous biological processes. Activated

macrophages, T cells, B cells, and other immune and

nonimmune cells generate them. They are crucial in immune

response modulation, tissue repair, and homeostasis

maintenance. Understanding their biology is essential for

developing new treatments for chronic inflammatory diseases

such as autoimmune disorders and cancer. Apart from their role

in the development of well-known CHD risk factors such as

tobacco use and high cholesterol, hypertension (blood pressure),

and diabetes, these factors also initiate a cascade reaction in

which the release of very low-concentration cytokines recruits

inflammatory cells, which then produces additional cytokines,

amplifying the local inflammatory response. (TNF-α) and

interferon-γ (IFN-γ) are proinflammatory cytokines that play an

essential role in developing chronic inflammatory illnesses such

as coronary artery disease (CAD) (5). These cytokines are

present in the circulation and drive monocytes and macrophages

to create interleukin-1 (IL-1) and interleukin-6 (IL-6),

influencing the endothelial cells lining the artery wall.

Interleukin-6 (IL-6) is an important proinflammatory cytokine

genetically linked to coronary artery disease. It has been established

that elevated levels of IL-6 are related to an increased risk of

coronary heart disease, and it is believed to play a crucial role in

the onset and progression of the inflammatory process that leads

to coronary plaque formation (6). It is well-recognized that IL-6

stimulates the production of other cytokines, chemokines, and

proinflammatory chemicals. It also encourages the development

of smooth muscle cells in the artery wall, contributing to plaque

formation. In addition, IL-6 is known to play a role in

developing other inflammatory diseases, such as rheumatoid

arthritis and some kinds of cancer, emphasizing the necessity of

knowing its involvement in the pathogenesis of chronic

inflammatory disorders (7). CANTOS provides crucial insight

into the link between inflammation and coronary artery disease.

Chronic inflammation is connected with an increased risk of

coronary heart disease (CHD). The findings indicate that

targeting IL-1 with anti-IL-1 medications such as canakinumab

can considerably lower the risk of severe adverse cardiovascular

events in those with elevated levels of the inflammatory

biomarker C-reactive protein (CRP) (8, 9). Participants had a
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prior myocardial infarction (MI) and CRP levels greater than

2 g/L. As part of the study, they were given canakinumab, which

decreases interleukin-6 levels in the bloodstream. Scientists are

now investigating the effects of other cytokines on the risk of

coronary heart disease, considering the findings of Mendelian

randomization studies (MR studies) and the CANTOS trial.

In Europe and North America, cardiovascular disease is the

leading cause of mortality (10), emphasizing the importance of

incorporating developing risk variables to enhance risk

prediction, enable early diagnosis, and customize care. The ability

of machine learning like CNN (11) and LSTM is used to achieve

patterns that can be used to inform healthcare decisions (12). By

adjusting various tuning settings and combining k-fold cross-

validation, we demonstrate the juxtaposition of algorithm CNN

and LSTM in this study. This effective resampling strategy

eliminates the problem of overfitting and improves model

generalization (13). Due to data availability constraints, the

Random Oversampling Example (ROSE) Technique improves

and balances the data before model construction and final

prediction. ROSE, accessible via the Integrated R Archive

‘Network = (https://cran.r.project.org/web/Packages/ROSE/index.

html), uses a smooth bootstrap strategy to simulate balanced

synthetic data.

To improve the classification of individuals with or without

clinical coronary artery disease, we have used 450 plasma

cytokines as novel biomarkers (CAD). This method has the

potential to uncover disease pathways involving previously

unknown cytokine targets and enhance early detection of people

at risk. In response to cellular signals, the immune system

produces cytokines, which are proteins. By targeting active

receptors and generating downstream signals, they operate as

messengers to other cells. Lymphokines, chemokines, interferons,

and interleukins are examples of cytokines responding to

environmental signals that initiate an anti-inflammatory or pro-

cascade response (14, 15). Cytokines have been linked to the

progression and development of coronary artery disease (9).

The study included 1,040 people to create a dataset with

various biomarker levels. Every one of the 450 cytokine

indicators was put to the test. Based on the final target attributes,

people were assigned to the CAD (421 individuals) or control

groups (619 individuals). The 36 cytokine biomarkers were

merged in the model’s feature space to quantify similarity. Deep

machine learning techniques such as CNN and LSTM are

used to create patterns that can be used to guide healthcare

decisions. The CNN and RNN-LSTM are commonly used when

developing a computer-aided diagnosis system. The primary

contribution of this research work is the creation of standard

data labeled by specialists in the relevant field. Using the deep

neural network designer application found in MATLAB, a

custom CNN, and LSTM network architecture is developed for

the detection of coronary artery disease. Both the architecture

and the parameters of the networks were designed following

the dataset’s characteristics.

This research study makes significant contributions in several

key areas that are discussed as follows:
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• The study introduces an innovative approach to the detection of

CAD by leveraging deep learning techniques, specifically CNN

and RNN-LSTM, for the analysis of plasma cytokine data.

• The integration of deep learning algorithms, CNN and RNN-

LSTM, with a comprehensive set of 450 plasma cytokine

biomarkers represents a novel and advanced methodology.

This approach provides a more nuanced understanding of the

complex interplay between cytokines and CAD, surpassing

traditional methods.

• The study achieves high diagnostic accuracy, as evidenced by

Area Under the Receiver Operating Characteristic curve

(AUROC) scores. The RNN-LSTM classifier, in particular,

outperforms the CNN classifier, showcasing the potential of

deep learning in improving the accuracy of CAD detection

using plasma cytokine data.

• By employing deep learning techniques, the study identifies key

cytokine biomarkers associated with CAD risk. This not only

contributes to the understanding of the disease mechanisms but

also provides potential targets for future therapeutic interventions.

• The study highlights the application of machine learning,

specifically CNN and RNN-LSTM, in enhancing cardiovascular

risk prediction. The models developed showcase the potential of

these algorithms as valuable tools for healthcare professionals in

making informed decisions regarding CAD diagnosis.

• The study conducts a comprehensive comparison with state-of-

the-art (SOTA) approaches, demonstrating the superior

accuracy of the proposed deep learning model. This emphasizes

the effectiveness of the novel approach in outperforming

existing methods commonly employed in CAD detection.

• The identification of specific cytokine biomarkers associated

with CAD risk holds the potential for personalized medicine.

Tailoring interventions based on individual cytokine profiles

may lead to more targeted and effective treatment strategies,

contributing to improved patient outcomes.

This article is organized logically and coherently to thoroughly

analyze the subject at hand. Section 2’s literature review provides

an in-depth analysis of existing research on the topic as a basis

for the research. The third section describes the study approach,

including a description of the dataset, the suggested model

framework, the training of the hyper models, and the processes

for optimizing the hyperparameters to produce optimal feature

weights. Section 4 describes the performed experiments,

performance evaluations, and model performance comparisons.

In this section, the outcomes of the study are discussed. In

Section 5, the paper’s principal results and recommendations for

future research are outlined. Overall, the format of the article is

intended to provide a complete and clear comprehension of the

conducted research and its outcomes.
2 Literature review

In literature, high-level methods like RNNs & CNNs are widely

anticipated to extract patterns for verifications, judgments, and

treatments (16). Authors in (13) illustrate the “exploratory
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juxtaposition of “CNN” and RNN’ by modifying various tuning

settings and combining k-fold cross-validation. This successful

resampling method solves the overfitting problem and improves

the model’s generalization. The Random Oversampling Example

Technique (ROSE) enriches and balances the data prior to model

creation and final prediction due to data availability constraints

(17). The Integrated R Archive Network hosts ROSE, which puts

on balanced synthetic data using a smoothing bootstrap technique.

A comprehensive analysis of biomarkers was conducted to

determine whether individuals with or without clinical coronary

artery disease (CAD) are at risk of developing the condition. Four

hundred fifty plasma cytokines were utilized as novel biomarkers in

this endeavor. Using multiple biomarkers in combination allowed

for the development of a robust and accurate classification system

for CAD. This approach represents a significant advancement in

identifying and diagnosing this prevalent disease. The utilization of

these biomarkers may have the potential to improve the detection

and management of CAD. The method can help to uncover

disease pathways involving previously undiscovered cytokine

targets and improve early diagnosis in high-risk people (18).

The immune system creates cytokines, or proteins, reacting to

cellular signals. Cytokines such as “lymphokines,” “chemokine,”

“interferon,” and interleukins respond to environmental signals to

launch a pro- or anti-inflammatory cascade reply (14, 19). The

development and progression of coronary artery disease have been

linked to cytokines (9).

Hampel et al. (20) proposed using machine learning techniques

to investigate cardiac computed tomography (CT) visualization.

Due to a scarcity of experienced cardiac imagers and the severe

workload of medical practitioners, CT provides detailed high 3-D

images with hundreds100 of underutilized slices (21). By

producing reliable and fast answers, machine learning algorithms

can overcome the limitations of manual diagnosis, potentially

leading to further secondary diagnoses. Over the last ten years,

machine learning techniques have improved CAD detection and

characterization, according to this survey. Despite the obstacles of

using ML in a clinical setting, the power of novel ML algorithms

drives significant discoveries in CAD classification, according to

the findings (22).

Due to the nature ofML algorithms learning from prior estimates,

“Martin-Isla, Carlos, et al.” (23). Examined the use of (“ML”)

algorithms for image-based CAD diagnosis that has enabled deeper

eligibility and more excellent diagnosis. Furthermore, a considerable

amount of literature in this field emphasizes the potential of

machine learning techniques in CAD identification.

The inflammatory profile of mature patients with the disease of

mouth, foot, and hand, joint in the Asia-Pacific area, was studied

using cytokines by Ling-Hua Yu et al. (15). Participants used a

random forest to identify the (HFMD) illness collection from

controls using 26 key cytokines as predictive characteristics (24).

The study revealed links between enterovirus infection, genotype,

and clinical manifestation. The algorithm RNN-LSTM ended up

with an AUROC value of 0.91, exhibiting its partitioning solid

ability. Stevens et al. (25) Working cytokine predictors to

discriminate the disease malaria from bloodstream bacterial

infections using RNN-LSTM, implying that cytokines are active
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and predictive solid biomarker profiles. The 6–15 cytokines

employed for the job were chosen using ML classification

algorithms. Researchers employed cytokines to discriminate

severe malaria contagion from asymptomatic malaria to

compensate for the absence of quick malaria diagnosis. This

study found that 88% of disease states could be predicted

accurately, which could lead to the development of new rapid

diagnostics in Sub-Saharan Africa.

Saini examined the application of CNN for recognizing

QRS complex waves in ECG-related data, Indu et al. (26). The

authors demonstrated that the k value and the classification

distance metric primarily determine prediction accuracy.

Experiments showed that the Euclidean distance value and k = 3

are the best when paired with a 6-fold cross-validation-produced

CNN classifier. Forecast accuracy reached 99 percent, which is

extremely high.

A CANTO (canakinumab anti-inflammatory thrombosis

outcomes) was an objective assessment funded by Novartis that

aimed to investigate the role of interleukin 1 in inflammation at

the cellular level. R, Paul M et al. The males in the study will get

monoclonal antibodies against interleukin one beta as part of the

trial. Canakinumab, an anti-inflammatory drug that targets the

interleukin one beta innate immune pathway every three months

the, is given 150 mg. Compared to placebo, there was a

considerably decreased incidence of cardiovascular events

unrelated to cholesterol lowering in the research. This research

aims to improve and extend the approaches employed in

previous investigations. The primary goal is to improve

separability for AUROC curve assessment by combining

sophisticated algorithms, such as the “CNN” and RNN (LSTM),

with new cytokine-biomarkers.

Almost half of all deaths worldwide are caused by heart disease

or stroke, according to Lozano et al. (27). Both diseases are

significant public health issues in developing countries, notably

Africa. Significant socioeconomic disparities in heart disease and

stroke morbidity and mortality are common in many Western

countries, particularly the United States (28). Although there

have been improvements in reducing disparities in morbidity

and mortality related to heart disease and stroke, the gap

between rich and poor is expected to widen over the next several

years in several countries. This is particularly evident when

considering the persistent disparities between socioeconomically

disadvantaged groups and their more affluent counterparts.

Implementing practical strategies and preventive interventions is

crucial to address the health disparities related to heart disease

and stroke, especially among older adults, in the context of

socioeconomic inequality. Doing so can effectively reduce health

inequalities and promote better overall health outcomes.

According to Mattiussi and Lippi (29), approximately 70% of

heart disease and stroke cases occur in individuals over the age

of 65, indicating that heart disease and stroke are diseases of

aging (Yousuf et al.) (30). The World Health Organization

reports that as populations age and the income disparity between

rich and poor continues to widen, the global incidence of heart

disease and stroke continues to rise, particularly in low- and

middle-income countries (LMICs) such as China (31). Few
Frontiers in Cardiovascular Medicine 04
studies have examined the relationship between socioeconomic

status and heart disease and stroke; evidence linking these

diseases to socioeconomic status is still scarce in low- and

middle-income countries, particularly developing countries. Most

evidence from low- and middle-income countries comes from

hospital-based studies involving various middle-aged populations

of varying quality (31). According to the International Society for

Cardiovascular Diseases (ISCD), the relationship between

socioeconomic status (SES) and mortality from heart disease and

stroke in older adults in low- and middle-income countries needs

to be better understood (LMICs). As a result, it is primarily

concerned with China’s older adults, the subject of this thesis,

which examines their relationship with them.

Numerous studies have been conducted to determine which

parameters or factors significantly improve the efficacy of CRT.

These studies’ findings were published in the journal Radiology.

Park et al. (32) demonstrated that using SPECT images to assess

the LV’s most recent activation can improve both the speed with

which the LV is placed and the quality of the CRT response.

Machine learning techniques have been employed in various

studies to predict mortality in patients with coronary artery

disease and other ailments. For instance, researchers effectively

employed machine learning to identify patients with CRT

(Cardiac et al.) who would benefit from the phenol group. This

approach enabled them to observe the improvements in CRT

response over time. The researchers utilized unsupervised

learning methods to identify patients more likely to respond

positively to the treatment. They combined clinical characteristics

with echocardiographic data, precisely measurements of

myocardial infarction. They left ventricular volume changes

throughout the cardiac cycle to identify patients with a higher

likelihood of positive response. According to the findings, it is

possible to classify heterogeneous groups of heart failure patients

in a clinically meaningful manner using an unsupervised

machine learning technique, which can aid in the identification

of subgroups of patients who are most likely to respond to

specific therapies. According to the paper’s authors, a prospective

controlled trial should assess the proposed model’s feasibility in

patients with phenotypic heart failure and clinical decision-making.

The research article outlines (33), a randomized trial examining

the impact of low-dose colchicine (0.5 mg daily) vs. a placebo on

patients who recently experienced a myocardial infarction.

Involving 4,745 participants over 22.6 months, the trial revealed

a significant reduction (5.5% vs. 7.1%, hazard ratio 0.77) in the

primary composite endpoint, including cardiovascular death,

myocardial infarction, and stroke. Noteworthy reductions were

observed in death from cardiovascular causes, stroke, and urgent

hospitalization for angina leading to coronary revascularization.

Diarrhea, the primary adverse event, occurred more frequently

in the colchicine group (17% vs. 8.9%). The study concludes

that low-dose colchicine effectively reduces cardiovascular events,

presenting a potential cost-effective treatment for coronary

artery disease.

This study presents a meta-analysis of randomized controlled

trials (RCTs) assessing the efficacy and safety of colchicine in

post-acute coronary syndrome (ACS) patients (34).
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Encompassing two RCTs and 5,540 participants (50.1% colchicine,

49.9% placebo), the primary outcome was major adverse

cardiovascular events (MACE), with secondary endpoints

including stroke, myocardial infarction (MI), all-cause and

cardiovascular death, and urgent revascularization. Results

indicate a significant reduction in the colchicine group for the

composite endpoint (5.5% vs. 7.6%, OR 0.67, 95% CI 0.46–0.98,

p = 0.04, I2 = 46%). Notably, colchicine demonstrated substantial

reductions in cerebrovascular accidents (OR 0.31, 95% CI 0.14–

0.69, p = 0.004, I2 = 0%) and repeat revascularization (OR 0.36,

95% CI 0.14–0.90, p = 0.03, I2 = 54%). Nevertheless, no significant

differences were observed in cardiovascular death, non-

cardiovascular death, MI at longest follow-up, or resuscitated

cardiac arrest between the colchicine and placebo groups.
3 Methodology

3.1 Custom data Set creation

A total of 1,040 people were included in the study, each with

different biomarker levels. Each of the 450 cytokine indicators

was tested. They assigned People to the CAD (390 individuals)

or control groups based on the final target trait qualities (650

individuals). The 36 cytokine biomarkers were merged in the

model’s feature space to quantify similarity, followed by the CAD

or Regulator categorization. They approved this study via the

institutional review board human research group & followed the

standards of the Declaration of Kuwait Teaching Hospital

Peshawar. Prior to participating, all individuals signed a written
TABLE 1 Selected cytokines and their role in CAD.

Cytokine Role in CAD
Tumor necrosis factor-α
(TNF-α)

Proinflammatory cytokine, implicated in chronic
inflammatory diseases, including CAD.

Interferon-γ (IFN-γ) Proinflammatory cytokine associated with the
development of chronic inflammatory illnesses
such as CAD.

Interleukin-1 (IL-1) Influences endothelial cells lining the artery wall,
contributing to CAD development.

Interleukin-6 (IL-6) Important proinflammatory cytokine genetically
linked to CAD; elevated levels are associated with
CAD.

Interleukin-10 (IL-10) Anti-inflammatory cytokine, may have a
protective role in CAD by modulating immune
responses.

Interleukin-8 (IL-8) Chemokine involved in recruiting immune cells
to inflammation sites; associated with CAD
progression.

Interleukin-12 (IL-12) Proinflammatory cytokine linked to
atherosclerosis, contributing to CAD
development.

Transforming growth factor-β
(TGF-β)

Plays a role in tissue repair but may contribute to
fibrosis in CAD; its dysregulation is linked to
CAD.

Monocyte chemoattractant
protein-1 (MCP-1)

Chemokine involved in monocyte recruitment,
contributing to inflammation and atherosclerosis
in CAD.

Vascular endothelial growth
factor (VEGF)

Associated with angiogenesis, may influence
vascular health and contribute to CAD pathology.
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informed consent form. Blood samples were taken from males

(43.3%) and females (43.3%) whose ages ranged from 17 to 64

years (median age = 40). This group included individuals who

had been diagnosed with CAD as well as age- and sex-matched

controls. The infarction Myocardial, angiographic ally confirmed

(CAD), or coronary artery bypass graft surgery was all present in

the CAD participants. There was no history of CAD or clinical

indication of it in the control group. In our study, we examined

the relationship between cytokines and coronary artery disease

(CAD), focusing on the role of these signaling proteins in

cardiovascular health. We utilized a large dataset of 450

cytokines, each playing a crucial role in immune responses and

inflammation. The selected cytokines in Table 1 provide a

comprehensive overview of the key players associated with CAD.

While the table includes only 10 cytokines, it serves as a

representative sample of our extensive analysis.

Prior or Current therapy for autoimmune illness or cancer,

diabetes, smoking, use of NSAIDs before blood collection,

postmenopausal women, and anyone over the age of 65 were all

excluded. There were no lipid-lowering drugs given to the

participants. The blood is taken into EDTA collecting tubes and

placed on ice immediately. Separate plasma from samples by

centrifuging, then aliquot and store at −80°C until further use.

Before detecting cytokine levels using the Thermosphere/Life

Sciences 45-fold Human ELISA kit, samples must be thawed on

ice per the manufacturer’s instructions. Using a standard curve

for each cytokine, the exponent program was used to analyze the

raw data and convert them to pg./mL. Table 2 presents

demographic and clinical data for the study cohort.
3.2 Pre processing steps

The characteristics of the information are normalized before

operating the classifier on the test to prevent predicted cues with

greater values from overwhelming those with smaller values,

which could lead to biased categorization. In addition, domain

experts review and adjust the data for anomalies, such as nulls or

outliers. The data is synthetically incremented by a smoothing

bootstrap method because of considerably imbalanced tiny data

sets, which minimizes overfitting in the training phase and

translates to the testing phase, which is higher generalizability.

Using the R programming language, ROSE Package enhances

data synthesis to 1,000, balancing CAD in 52 percent of cases

and Controls in 48 percent. By emulating a smooth bootstrap

technique, the ROSE Package aids in these endeavors. Z-score

normalization is used to scale the data. The resulting balanced

data, which contains 52 percent (“CAD”) and 48% percent
TABLE 2 Analyzing pooled plasma samples allowed researchers to
compare the demographic traits of CHD patients with those of healthy
controls.

Gender CAD Control Total (values of n = 1,040)
Male 187 253 440

Female 203 397 600

Overall 390 650 1,040
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Control, is suitable for LSTM and CNN implementation. When

data is expanded to one thousand observations and combined

with balance data, standard partitioning for training and testing

partitions can be used 75-25 percent of the time. This split will

enable observations to be included in the training dataset,

preventing model underfitting.

In addition, to avoid biased predictions, a 10-fold cross-

validation with three replications was used to choose

hyperparameters. Because feature selection was unnecessary after

balancing and adding data to avoid model underfitting or

overfitting, a total prediction feature space of 450 cytokines was

used. The proposed CAD framework is depicted in Figure 1. The

optimal balancing of bias-variance (underfitting and overfitting)

tradeoffs is achieved using these strategies.
3.3 Convolutional neural network

A convolutional neural network (CNN or ConvNet) is a

framework that leverages patterns in data, such as photos, videos,

text, and bioinformatics sequences, to automatically recognize

and classify information (35). CNNs are particularly useful for

evaluating time series and signal data, and the structure and

function of the brain’s visual cortex strongly influence their

design. The visual cortex comprises stratified tissue and two

fundamental cell types: simple and complicated. Simple cells

respond to primitive patterns in the subregion of visual stimuli,

while complex cells use this information to identify more

intricate characteristics.
FIGURE 1

Proposed deep learning framework for CORONARY ARTERY DISEASE detec
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CNNs duplicate the visual cortex by utilizing three essential

concepts: local connection, localization invariance, and local

transition invariance. As shown in Figure 2, the fundamental

structure of a CNN involves different nonlinear layers (36). Filters or

weight vectors are applied to local data blocks to generate feature

maps at each convolutional layer. These feature maps are then

utilized to generate feature maps at a higher level. The recurrent

application of filters throughout the dataset increases training

efficiency by decreasing the number of parameters to be learned.

The nonlinear layers are then blended to enhance the map’s

nonlinear characteristics. Subsampling non-overlapping regions with

maximum or average values, the clustering layer further aggregates

local characteristics to uncover more complex features (37).
3.4 Deep network

A deep network that uses data operations to learn specific features

from the data. As depicted in Figure 3, a CNN consists of multiple

layers, including a convolutional, activation, and pooling layer. The

convolutional layers pass the input image through several

convolutional filters, each activating a distinct image feature. This

method, known as feature extraction, finds patterns in your data. The

activation layer is often implemented as a rectified linear unit (ReLU)

for faster and more efficient training. This method is sometimes

called feature selection since only enabled features are passed to the

subsequent layer (38). Table 3 presents the detailed architecture of

the proposed CNN, providing information on the input and output

of each layer, as well as the network training parameters.
tion.
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FIGURE 2

CNN structure with convolution, nonlinear, and pooling layers.
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The clustering layer loses the number of considerations the

system needs to discover by subsampling the output nonlinearly.

This minimizes computing complexity and increases the

network’s resiliency. CNN architecture moves on to classification

after learning multi-layer features. The next layer is the fully

connected layer, which outputs a K-dimensional vector, where K

is the number of predicted classes. This vector includes the

likelihood that each class in an image is classified. The

classification layer, the final layer of the CNN design, uses

methods such as softmax to produce the result. This process is

performed multiple times, and each layer learns to distinguish

unique features. CNNs can learn and detect increasingly

complicated data patterns by stacking numerous layers.
3.5 Recurrent network

A recurrent network like RNN was created mainly for

sequential data handling. Circular connections within hidden

cells enable circular computing. This circular computation
FIGURE 3

Proposed convolutional neural network model.
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implicitly enables the network to store past data as a state vector.

This information is utilized to calculate the output of a specific

input in addition to the current input. Long-term memory

networks (LSTMs) are a popular type of RNNs commonly

employed in applications such as speech recognition, where

previous and future inputs influence outputs. LSTM is designed

to overcome the leaking gradient problem, a prevalent issue in

RNNs that makes learning long-term dependencies challenging.

Table 4 showcases the comprehensive architecture details of the

proposed RNN-LSTM model. It elucidates the input and output

specifications of each layer while also offering insights into the

network’s training parameters.

The RNNs can develop deeper structures over time and make

systems appropriate for sequential data applications such as natural

language processing, language translation, and time series

prediction. In recent years, RNNs have been successfully

employed in multiple domains thanks to the development of

increasingly complicated hidden units, such as LSTM memory

cells, drastically reducing the gradient vanishing issue. RNNs

have additional prospects for more advanced applications,

including speech recognition, synthesis, and image captioning.

Figure 4 depicts the fundamental structure of a recurrent neural

network (RNN), which consists of input cells (x), hidden cells (h),
TABLE 3 CNN architecture and parameters of the proposed deep learning
model.

Layer type Input/output Shape Parameters
Input sequence Sequence (Seq, Features) 0

Conv2D Feature vector (1, 1, 32) 448

AvgPooling2D Feature vector (1, 1, 32) 0

Batch normalization Feature vector (1, 1, 32) 64

ReLU Feature vector (1, 1, 32) 0

Conv2D Feature vector (1, 1, 64) 4,640

MaxPooling2D Feature vector (1, 1, 64) 0

Batch normalization Feature vector (1, 1, 64) 128

ReLU Feature vector (1, 1, 64) 0

Flatten Feature vector (64) 0

Fully connected Feature vector (2) 2,171,392

Softmax Probabilities (2) 258

Classification output Probabilities (2) 0

Total parameters 2,178,130
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FIGURE 4

Recurrent features learning block of LSTM classifier.

TABLE 4 RNN-LSTM architecture and parameters of the proposed deep
learning model.

Layer type Input/output Shape Parameters
Sequence input Sequence (Seq, Features) 0

LSTM Sequence (Seq, 128) 98,816

LSTM Feature vector (64) 49,408

Reshape Feature vector (1, 1, 64) 0

Conv2D Feature vector (1, 1, 32) 18,464

AvgPooling2D Feature vector (1, 1, 32) 0

Batch norm Feature vector (1, 1, 32) 128

RELU Feature vector (1, 1, 32) 0

Conv2D Feature vector (1, 1, 64) 36,928

MaxPooling2D Feature vector (1, 1, 64) 0

Batch norm Feature vector (1, 1, 64) 256

RELU Feature vector (1, 1, 64) 0

Flatten Feature vector (64) 0

Fully connected Feature vector (2) 130

Softmax Probabilities (2) 0

Total parameters 184,130

FIGURE 5

Proposed extended short-term memory-based recurrent neural
network model.
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and output cells (o) (y). The hidden cells are designed to use

circular joins to handle sequential information, allowing

computation to consider inputs from hidden cells from earlier

time steps and current input cells. This circular join enables the

network to store past information implicitly in hidden units

called state vectors and to use state vectors to compute the

output of the current input while accounting for all previous

inputs. If the RNN grows over time, it can reflect circular

computation more precisely. Each time step is represented by an

index in this representation, and the masked unit (h) gets input

from the input unit (x) and the masked unit from the previous

time step (h-1). The calculation result is then transmitted to the

output (y) and the masked cell for the subsequent time step (h + 1).

In Figure 5, a feature learning block with an LSTM node is added

to the neural network. The input features are first converted to

sequential data, where each data point is linked with the next and

previous data points to add up some sequential information by

matching the same patterns in data points. Instead of a single

LSTM layer, multiple LSTM is used to create a sequence-to-

sequence model, where the input to the first LSTM is a sequence,

and the output of the first LSTM is also a sequence. Similarly, the

second LSTM accepts sequence as input but generates a features

map as output. The feature map passes through several

convolutional operations for learning robust and optimal features.
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The last two layers of the LSTM-RNN are SoftMax and

classification, which are responsible for probability calculation and

prediction, i.e., assigning a class label to the test sample.
3.6 K-fold cross validation

To improve the final classification results, combine k-fold

cross-validation with an optimization method considering

statistically significant cytokines. The k-fold cross-validation

methodology improves the prediction power of fresh unlabeled

data while avoiding problems like overfitting and variety bias.

The method investigated by a (10-fold) cross-validation with

(k = 10) was performed three times.

The CNN technique, which involves 450 cytokine prediction

characteristics with Euclidean distance, was used in the first

classifier experiment. The second classifier used 450 cytokines to

create an RNN-LSTM. The experimental framework classifier is

depicted graphically in the following image, Figure 1.

A general set of performance evaluation measures can be

applied to acquire insights into the algorithm’s correctness. In

this study, we used AUROC to compare the performance of the

developed classifiers and to estimate the precision &

discriminating the CAD group from the control group.
3.7 Area under receiver operating
characteristic (AUROC)

This is a commonly used statistic for determining the degree of

separability across different classification algorithm implementations.

A higher AUROC indicates that the algorithm can accurately classify

examples into objective sets. An AUROC graph is generated by

mapping false-positive rates on the X-axis in opposition to true-

positive rates on the Y-axis. AUROC provides an excellent
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technique to compare different classifiers’ statistical consistency and

discrimination accuracy.
4 Experimental result

The accompanying tables (Table 5) and graphs demonstrate

the test results produced by executing the algorithm on the test

data (Figures 6–8). The hyperparameters tuning measure was

adjusted by resampling replicas of the cross-validation results in

the test results.
4.1 Convolutional neural network

To classify “at risk” instances, the classifier utilizes the CNN

using the “Adam” optimization technique for optimal weights

calculation. A total of 450 cytokines were employed in this

classification. The AUROC value of 0.95, representing the

degree of separation between CAD and the control, is quite

essential. The above table and graphs provide detailed
TABLE 5 Results comparison of proposed CNN and RNN (LSTM) classifier
with 450 cytokines.

Algorithm CNN RNN-LSTM
Classification criterion LSTM Stacking

Optimizer = “Adam” Optimizer = “Adam”

Epoch = 50 Epoch = 50

Batch size = 8 Batch size = 8

Predictor feature space 450 cytokines 450 cytokines

AUROC with 95% CI 0.954 (.929,.979) 0.99 (.982,.999)

Prediction accuracy 0.832 0.96

Sensitivity 0.992 0.954

Specificity 0.658 0.967

FIGURE 6

Proposed RNN-LSTM architecture validation accuracy and loss plot.
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information on the AUROC, the optimal CNN neighbors

determined by cross-validation, and the numerical metric of

classifier 1. (Table 5 and Figures 8, 9). The Figure 10 illustrates

the smooth training of the proposed CNN model. The model

was trained for 50 epochs, exhibiting higher training and

validation accuracy.
4.2 RNN-LSTM classifier result

Classifier 2 uses 450 cytokines as predictor characteristics in an

RNN-LSTM. The AUROC of 0.99 is extremely high, and it

outperforms previous classifiers in terms of accuracy. The

foundation of the RNN-LSTM algorithm explains this

achievement. For the RNN-LSTM classification, Stacked LSTM

layers are used for learning the plasma cytokines data, six feature

variables as segmentation standard, and the Gini index is a

quality assessor were employed as hyperparameters. Combining

random feature segmentation criteria, several LSTM layers and

the accumulation of intermediate outcomes from these LSTM

resulted in excellent results. Many LSTM units utilized the

decision-making method to improve the final forecasts

“accuracy” and “stability”. The graph and table below show the

final numerical metric results and the AUROC for Classifier

2. (Table 5 and Figure 11).
4.3 Performance comparison of CNN and
LSTM

Using confidence intervals, the procedure can be combined

with a t-test to check for significant differences in AUROC

scores. A box-line plot can be used to compare the two classifiers

visually. With p-values smaller than 7.48, independent t-test
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FIGURE 7

Performance comparison of convolutional neural network and recurrent neural network for coronary artery disease detection.
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comparisons show two classifiers have significantly different

AUROC values. The following figure shows paired box plot

comparisons of AUROC, sensitivity, and specificity (Figure 12).

Table 6 provides a comparative analysis between the proposed

method, which incorporates CNN and RNN-LSTM, and other

state-of-the-art (SOTA) approaches in detecting coronary artery

disease using plasma cytokine data. The results indicate that the

proposed method outperforms the other models regarding

prediction accuracy. Specifically, the CNN model achieved an

accuracy of 83%, while the RNN-LSTM model demonstrated an

impressive accuracy of 96%. These accuracies surpass the

performance of several well-known models commonly found in

the literature, such as K-Nearest Neighbor, Random Forest,

Logistic Regression, Artificial Neural Network, AdaBoost, SVM,
FIGURE 8

CNN classifier with an optimal epoch value 50 for 450 cytokines.
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KNN, Bagging, Gaussian Naive Bayes, Decision Tree, Naive

Bayes, Random Forest, Support Vector Machine, and Extreme

Gradient Boosting. These findings strongly suggest that the

proposed method holds great promise as a practical approach for

detecting coronary artery disease using plasma cytokine data.
5 Discussion

With the experiment of RNN-LSTM classifier, 2 (450

cytokines) was shown that the ML is a reasonable classification

technique overall, with a score of AUROC (99%) and a (95%)

confidence interval of “95” percent (“.982,.999”). Figure 7

compares the two proposed deep-learning models for coronary

artery disease classification concerning performance. The data

comprises a collection of non-sequential data that work together

to produce better classification than the CNN model; RNN-

LSTM outperforms other models and achieves almost perfect

AUROC. RNN-LSTM, like stacking, uses bootstrap samples to

form a deep network. RNN-LSTM also picks a subset of

sequences for each partition they construct. This desirable trait

leads to single output predictions with more diversity and

uncorrelated prediction errors. Creating the classifier with a

random subset of characteristics at each partition point allows

for more diversified integration and, thus, higher overall

performance than methods like CNN.

The (AUROC) value of (0.955) with 95% percent CI for the

(CNN) with “450” cytokines (Classifier 1 experiment) (“.929”

“.979”) is an excellent but not better than Classifier 2, which

gave near good control differentiation and CAD. The RNN-

LSTM classifier (classifier 2) considerably outperformed the CNN
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FIGURE 9

CNN classifier AUROC curve with 95% CI with an optimal epoch = 50 for 450 cytokines.
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classifier (p-value 7.48) in a t-test comparing the AUROC scores of

the two classifiers (p-value 7.48) (classifier 1).

Due to the incredible processing power and excellent predicted

accuracy, ML algorithms are becoming more widely used, which is

an improvement over current qualitative picture analysis and basic

quantitative assessments of heart anatomy and function. ML

algorithms can build a holistic framework incorporating images

and other valuable aspects for trustworthy insight and early

diagnosis that can save lives.

The reviewed studies and current research emphasize the

status of the machine learning approach and how it can be

utilized to detect patients at higher risk for (CAD) and guide

conventional treatment options. RNN-LSTM is a deep-learning

classification algorithm popular and used in various domain

areas, including medical diagnosis. At the same time, CNN is

an algorithm of similarity metric based. RNN-LSTM used in
FIGURE 10

Proposed CNN architecture validation accuracy and loss plot.
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this research is stacked LSTM, where the output of the first

LSTM is also a sequence that is forwarded to the next LSTM

layer for learning purposes; LSTM is very popular for learning

sequential data and is used in a wide range of domain areas;

including medical diagnosis. Some of the most well-known are

discussed here. The current analysis shows outstanding

prediction accuracy, a significant improvement over Alizadeh

Sani et al. research work (13). The RNN-LSTM highest

AUROC used in this investigation received (.99), outperforming

Yu et al. review study (15). Traditional procedures, such as

angiography, cannot be replaced by this prediction system. It

can, however, suggest more advanced tests for people at risk of

developing a more severe disease. When used and compared,

multiple methods are an effective way to gain a categorized

overall perspective. This comparison paradigm is combined in

the current investigation to present (23) results. The current
FIGURE 11

RNN-LSTM classifier AUROC curve for 450 cytokines.
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FIGURE 12

LSTM and CNN classification model comparison using: AUROC curve, sensitivity, and specificity on a set of 450 cytokines.
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study’s in-depth investigation was guided by empirical evidence

of performance enhancement using hyperparameter change and

(cross-validation) (43) with RNN-LSTM and CNN. In general,

fine-tuning hyperparameters has proven to be a successful

optimization strategy. (Novel, cytokine, biomarkers) as

indicators of inflammation (9, 44, 45) could be employed to

predict CAD risk and serve as a comprehensive therapy target

in the future more accurately.
TABLE 6 Performance comparison of proposed deep learning model with
some SOTA approaches.

Article Method Accuracy
(39) K-nearest neighbor 69.71 83%

Random forest 81.33 96%

(40) Logistic regression 62%

Artificial neural network 74%

(41) AdaBoost 79%

SVM 82%

KNN 75%

Bagging 79%

Logistic regression 81%

Gaussian naïve bayes 80%

(42) Decision tree 82

K-nearest neighbor 79

Logistic regression 65

Naïve bayes 79

Random forest 64

Support vector machine 74

Extreme gradient boosting 69

Proposed CNN 83%

RNN (LSTM) 96%
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6 Conclusion

This study is the first to employ cytokine plasma indicators to

distinguish CAD from non-CAD sufferers. It also emphasizes the

experimental methodology of multiple classifier studies, which

demonstrate better-predicting accuracy across models. The

performance of the CNN algorithm implementation is

compared to that of the RNN-LSTM method in terms of

efficacy. In comparison to earlier research employed RNN-

LSTM and (“cytokines”) to identify and control disease groups,

this study had a higher AUROC (0.99). For all 450 cytokines,

mutually forest and “k—NN” produced reasonable effects.

Cross-validation, data balancing, data augmentation, and

employing 75-25 percent of the training and test sets splits were

used in the CNN and RNN-LSTM classifier trials to balance the

bias-covariance tradeoff. Overall, the RNN-LSTM has an

AUROC of 0.99 with a 95 percent confidence interval of

(0.982,.999), a prediction accuracy of 0.96, and a p-value is less

than 7.480e-10. Utilizing the optimization, generalization,

computational, and abstraction power of universal ML is vital

and is employed in a wide range of fields in this era of creative

and universal ML systems. Medicine is a well-known profession.

Future research on the role of cytokine profiles in detecting the

inflammation that CAD patients experience will lead to

treatment targets. Many biological variables, including species

of molecular lipoproteins, genetic drivers, oxidative stress of

coagulopathy, and inflammation, have been demonstrated to

contribute to CAD risk in recent studies. The analytical

mathematical approaches developed in this study will allow for

investigating various elements in estimating CAD risk,
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including their interactions. Adding a wide range of cytokines will

provide additional aspects to this study, allowing for better risk

prediction and new treatment options.
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