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We have reviewed the development and current status of therapies based on
exposure to non-ionizing radiation (with a photon energy less than 10 eV)
aimed at suppressing the venous neointimal hyperplasia, and consequentially
at avoiding stenosis in arteriovenous grafts. Due to the drawbacks associated
with the medical use of ionizing radiation, prominently the radiation-induced
cardiovascular disease, the availability of procedures using non-ionizing
radiation is becoming a noteworthy objective for the current research. Further,
the focus of the review was the use of such procedures for improving the
vascular access function and assuring the clinical success of arteriovenous
fistulae in hemodialysis patients. Following a brief discussion of the physical
principles underlying radiotherapy, the current methods based on non-
ionizing radiation, either in use or under development, were described in
detail. There are currently five such techniques, including photodynamic
therapy (PDT), far-infrared therapy, photochemical tissue passivation (PTP),
Alucent vascular scaffolding, and adventitial photocrosslinking. The last three
are contingent on the mechanical stiffening achievable by the exogenous
photochemical crosslinking of tissular collagen, a process that leads to the
decrease of venous compliance. As there are conflicting opinions on the role
of compliance mismatch between arterial and venous conduits in a graft, this
aspect was also considered in our review.
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AVF, arteriovenous fistula; AVG, arteriovenous graft; FIR, far infrared; GSV, great saphenous vein; NIH,
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passivation; ROS, reactive oxygen species; SMC, smooth muscle cell, UV, ultraviolet.
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Introduction

Carrel and Guthrie were the first to report the critical

thickening of venous intima at anastomotic sites following the

transplantation of veins into arteries (1). This process, now

commonly referred to as neointimal hyperplasia (NIH), is

recognized as a contributing factor to the stenosis events leading

to complications and failures in interventions that involve venous

conduits, such as coronary artery bypass grafting, coronary

angioplasty, lower limb vein bypass, peripheral artery angioplasty,

carotid endarterectomy, and arteriovenous fistula (AVF) or

artificial graft for hemodialysis. The complex etiology and

pathophysiology of NIH have been progressively unraveled

through years of many physician-scientists’ research, and

excellently presented in several successive landmark reviews

(2–14). In essence, the triggering event in the development of

NIH is an injury to the vascular endothelium generated by

turbulent vasculature hemodynamics. Following a series of other

contributing events occurring over a period of post-anastomotic

“arterialization”, the uncontrolled proliferation and migration of

medial smooth muscle cells (SMCs) in tunica intima prevails and

brings the hyperplasia process to a close, resulting in stenosis

and loss of luminal patency. An abnormal arterialization is not

compatible with a functional AVF, and the failure will occur

rather sooner than later.

AVFs are crucial for maintaining the life and health of those

afflicted by end-stage kidney disease and needing hemodialysis

for survival. Failure of dialysis, leading to morbidity and

mortality in such patients, is mainly caused by the vascular

access dysfunction, which is a result of venous stenosis due to a

complexity of pathophysiological events where NIH can play an

aggravating role (15–18). The mechanism of the processes

involved and their after effects on the vascular access, as well as

the attempts to suppress them, are well documented (3, 4, 19–30).

The AVF, which was first introduced around 60 years ago

(31, 32), has become the preferred form of vascular access for

renal replacement therapies that involve dialysis (33, 34). Its

functionality is traditionally assessed using the term

“maturation”. According to some practical guidelines, a mature

AVF must be able to deliver, ideally not later than 6 weeks after

surgery, at least 300–600 ml/min blood for 3–5 h, and can be

routinely cannulated with two needles. Although there is no

consensus on an in-principle definition (19, 24), maturation can

be reasonably qualified (32, 35, 36) as the ability of the inflow

artery and the outflow vein to respond to the increased blood

flow that occurs upon anastomosis of the two vessels.

Due to the low pressure in the venous system, immediately after

performing AVF and exposing the venous wall to arterial pressure,

the remodeling process is initiated through wall distension,

endothelial injury, local ischemia, and cell apoptosis (37–39).

Overtime, these will lead to generation of inflammatory process at

the venous wall and NIH (38, 40). New methods, such as external

stenting, have been developed and proposed to reduce NIH and

local inflammation (41). However, none of these methods can be

applied to AVF due to the requirement of periodic puncture of

the venous component during dialysis sessions.
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Amongst many therapeutic strategies against NIH-induced

stenosis, the ionizing radiation has been employed due to its

ability to kill cells, being administered for suppressing or

reducing the proliferation of SMCs within the neointima. The

method, which was pioneered (42) in hypercholesterolemic rabbit

model, is classified as a sealed-source radiotherapeutic procedure,

and it is known as endovascular (or intravascular) brachytherapy.

Following animal experimentation, it has been applied

episodically for treating stenosis associated with NIH in venous

grafts including AVF, with variable outcomes (13, 24, 43–54).

However, there is no clear evidence that the radiation therapies

based suppressing the intimal SMCs had lasting benefits in

preventing stenosis. Two forms of ionizing radiation were

commonly used for the endovascular brachytherapy: particle

radiation such as β radiation (beam of electrons), or

electromagnetic radiation as γ-rays (photons). Radioisotopes of

different half-lives were used as radiation sources, including 192Ir,
32P, 48V, 90Sr, or 90Y, and delivered in various formats such as

seeds, pellets, tubes, wires, gels etc. In a different approach, the

use of the ionizing region of ultraviolet (UV) radiation, UV-C, to

inhibit SMC proliferation has been the subject of a U.S. patent

(55), but its application has never been reported. We may

conclude that no treatments based on ionizing radiation in

human patients proved capable to assure the reverse of NIH

in AVF.

The causal association between cardiovascular disease and

exposure to ionizing radiation (either therapeutic, diagnostic or

environmental), even at low dose, is of great concern (56–62),

leading currently to revised principles for risk assessment and

mitigation in patients undergoing radiotherapy, and to additional

recommendations for cardiovascular management, protection and

prevention (63, 64). This should be regarded as an argument for

using the non-ionizing radiation as a substitute for the ionizing

radiation, at least in vascular applications. The risk of radiation-

induced cardiovascular disease remains present regardless of the

location and type of therapeutic target.

A refreshment of the knowledge of the physics of non-ionizing

radiation would be therefore beneficial. The radiation is energy

emitted and transmitted as waves or particles through space or

matter, and we are surrounded by electromagnetic, particle,

acoustic, and gravitational radiations. Importantly, the first three

types of radiation found applications in medicine. The radiations

are commonly categorized into ionizing and non-ionizing,

depending on the energy of the wave or particle, which

ultimately determines the effect of irradiation onto the matter.

While the particle radiations (α, β, protons, neutrons, positrons)

are all of ionizing kind, the electromagnetic radiation presents a

different situation. The current consensus holds that any

radiation that carry an amount of energy higher than 10 eV is

able to ionize atoms and molecules and cleave chemical bonds,

therefore able to break down biomolecules. In the order of

their increasing wavelength (i.e., decreasing energy), the

electromagnetic spectrum contains the following regions: γ-rays,

x-rays, ultraviolet, visible light, infrared, microwaves, and radio

waves. The γ- and x-rays, with energies above 1,000 eV and

much higher, can irreversibly damage cells and tissues.
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Ultraviolet (wavelength, 100–400 nm; photon energy, 12.4–3.1 eV)

is the region where transition from ionizing to non-ionizing

radiation occurs. As the 10-eV mark is situated within the

ultraviolet-C region (100–280 nm; 12.4–4.43 eV), it appears that

avoiding to irradiate biological tissue with UV-C would be a safe

alternative. It is generally accepted that the UV-A region (315–

400 nm; 3.94–3.1 eV) is biologically safe. Looking further, the

photons in visible (400–700 nm; 3.1–1.7 eV) and infrared (700 –

106 nm; 1.8–1.24 × 10–3 eV) regions are not energetic enough to

trigger ionization, therefore they are considered safe for most

medical applications.

The aim of this review is to present the procedures based on

non-ionizing radiations that have ever been employed to prevent

NIH-induced stenosis, focusing on their application for AVF

management. There are five such procedures in practice or

development, and they are presented in Table 1. With the
TABLE 1 Summary of strategies based on non-ionizing radiation to
suppress venous neointimal hyperplasia.

Method Principle Significance
for AVF

References

Photodynamic
therapy (PDT)

Irradiation with visible
light to generate ROS
that damage
proliferating SMCs

Inhibition of NIH in
animal models

a

Far-infrared
therapy

Irradiation with FIR
radiationf

# Human clinical
trials
# Improved AVF
maturation
# Increased vein
diameter
# Improved access
flow
# Improved AVF
primary and
secondary patency

b

Photochemical
tissue passivation
(PTP)

Irradiation with green
light (max. at 550 nm)
with rose Bengal to
induce crosslinking of
collagen and stiffening
of venous wall possible
cytotoxicity to SMCs

models including
AVF

c

Alucent vascular
scaffolding

Irradiation with visible
light (400–525 nm)
with naphthalimides to
induce crosslinking of
collagen and stiffening
of venous wall

Promising outcome
in animal AVF
models

d

Adventitial
crosslinking

Irradiation with UV-A
rays (365 nm) with
riboflavin to induce
crosslinking of collagen
and decrease venous
compliance

Ex-vivo human
veins become
significantly stiffer

e

AVF, arteriovenous fistula; FIR, far infrared; NIH, neointimal hyperplasia; PDT,

photodynamic therapy; PTP, photochemical tissue passivation; ROS, reactive

oxygen species; SMC, smooth muscle cell; UV, ultraviolet.
aBarton et al. (65); Burgher et al. (66); Jerjes et al. (67); Houthoofd et al. (68).
bLin et al. (69); Lin et al. (70); Bashar et al. (71); Wan et al. (72); Shemilt et al. (73);

Lindhard et al. (74).
cGoldstone et al. 75; Salinas et al. 76; Goldstone et al. 77; Goldstein et al. 78.
dShiu et al. (79); He et al. (80).
eArbanasi et al. (81).
fMechanism not fully elucidated.
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exception of a brief mention (21), the applications of non-

ionizing radiation were rather ignored in all major reviews. We

also discuss the role played in the NIH process by one of the

fundamental mechanical characteristics of the blood vessels, the

compliance (alternative terms include flexibility and pliability),

which is the opposite of stiffness and can be defined as the

ability of a body (in this case, the venous wall) to exhibit

deformation upon the action of external forces.
Photodynamic therapy

A photodynamic activity in biological systems involves

photochemical reactions in which oxygen is consumed to

generate bioactive harmful products, a process that generally

elicits cell death, the target in this case being the SMCs. In the

photodynamic therapy (PDT), this photochemical process is

directed to the treatment of a disease and is based on the

cooperation of three essential components: a photosensitizing

agent, a radiation source with a specific wavelength, and tissular

oxygen. Initially developed for treating cancers, PDT is currently

used in several medical applications (82–84). In brief, the process

commences with the absorption by the photosensitizer (PS)

molecules, located within the target tissue, of the radiation

provided by the source. Upon excitation due to irradiation, PS is

transformed from its ground state (the singlet, 1PS) into a short-

lived excited singlet state (1PS*), which within nanoseconds will

dissipate its energy excess through three alternative routes: light

emission (fluorescence), heat generation, or adoption of a more

stable excited state (the triplet, 3PS*) through a process called

intersystem crossing. The triplet has enough long lifetime

(microseconds) to transfer its excess energy to the molecular

oxygen (O2) in the tissue, generating singlet oxygen (1O2), which

is short-lived and has a short radius of action, but is highly

reactive and can induce oxidative damage and cell death. The

triplet also has enough time to react directly with the tissular

biomolecules and, through transfer of electrons or hydrogen

extraction, generate free radicals, which by reacting with O2

produce reactive oxygen species (ROS), mainly the superoxide

(O2
–·) and hydroxyl (HO·) radicals, and hydrogen peroxide

(H2O2). All ROS cause severe damage to cells.

The radiation commonly used for applying PDT is within a

range from the end of visible (orange/red) to the beginning of

near infrared regions, i.e., ∼600–850 nm, corresponding to

photon energies between ∼2.1 and 1.46 eV. Sources include dye-

pumped lasers, light-emitting diodes, or conventional lamps. The

latter are generally avoided because unwanted thermal side

effects. There is a large variety of photosensitizers used in PDT,

and new agents are in continual development (82, 85, 86), as

these compounds are key factors for a successful application of

PDT. They must have radiation absorption peaks within the

aforementioned wavelength range, and shall possess

physiochemical characteristics that facilitate their optimal

distribution and efficacy in the target tissues, as well as their

elimination from the body. A photosensitizer from the class of

porphyrins (Photofrin II) proved to be specifically cytotoxic in
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vitro to human atheromatous SMCs, even without photoactivation

(87) Interestingly, the in vitro photodynamic activity of this

particular photosensitizer was revealed by irradiating with UV-A

rays the cultured SMCs, comparatively from non-atherosclerotic

arteries and from stenosing lesions (88). Only 20% of the latter

remained viable following irradiation. However, ultraviolet

radiation is not used currently in PDT.

The efficacy of PDT in inhibiting arterial NIH was evaluated

experimentally in animal models (rabbit, dog, rat) where the

initial intimal injury was created with balloon catheters (89–91).

The literature reporting the application of PDT for preventing

NIH and for reducing formation of atherosclerotic plaques has

been recently reviewed (68). The radiation levels used in these

experiments were in the wavelength range of 600–710 nm,

generated by lasers at fluences up to 100 J/cm2, in the presence

of a variety of photosensitizers. The general conclusion was that

PDT is a promising strategy against NIH. A study has been

reported (67) in human patients with congenital vascular

anomalies, who were exposed to 652-nm radiation provided by a

diode laser at fluences of 10–20 J/cm2 in the presence of m-

tetrahydroxyphenylchlorin as a photosensitizer. After an average

follow-up of 21 months, 50% of the patients displayed good

response to the PDT.

Related to the vascular access in hemodialysis patients, PDT

was applied to a prosthetic arteriovenous graft (AVG), where the

artery and vein were connected indirectly, through a tubular graft

made of polytetrafluoroethylene (PTFE, Teflon). The study (65)

was performed on dogs that had femoral AVGs implanted

bilaterally. Four weeks after implantation, indium chloride

methylpyropheophorbide (known as PhotoPointTM MV6401) was

administered as a photosensitizer to the animals. After creating

injury in the veins with balloon catheters, the anastomotic sites

were irradiated with light of 590 nm wavelength at a fluence of

100 J/cm2 (source not specified). Based on the thickness

reduction revealed histologically, the authors concluded that PDT

effectively inhibited the formation of NIH. The same group

reported a similar study (66), but using the 664-nm radiation

delivered by a diode laser and a photosensitizer known as

MV2101 (composition not disclosed), also with similarly

positive conclusions.

As far as our literature search has extended, there was no

publication reporting the use of PDT for inhibition of NIH in

non-prosthetic AVF, neither in animals nor in human subjects.
Far-infrared therapy

In contrast to PDT, the use of far-infrared (FIR) radiation

therapy for improving the blood flow, maturation and the

patency of AVFs has been frequently reported, and was the

objective of several human randomized clinical trials such as

those presented in some major reviews (69–72, 74, 92, 93). It

appears indeed that FIR therapy for AVF is a major application

in cardiovascular medicine.

The non-ionizing far-infrared region is part of the infrared

portion of electromagnetic radiation, which—in one of the many
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existing classifications—is contained between the wavelengths of

15 and 1,000 μm, corresponding to energies between 1.24 and

83 meV. Biologically, at such low energy, FIR is a safe radiation

for medical applications. For vascular applications, emitters

generating radiation within the wavelength range 3–25 μm (with

a peak around 8 μm, energy 155 meV) are routinely employed.

No sensitizing agents are required in this procedure. The trials

reviewed in the above articles have involved thousands of

hemodialysis patients (69–72, 74, 92, 93). It is important to

mention that most of the FIR trials were not blinded. A range of

evaluation criteria have been used, including changes in the

access flow, survival number of AVF, quality of maturation,

primary patency rate after one year of treatment, rate of stenosis

and other AVF complications, cardiac output, assessment of

inflammatory, vasoregulatory and endothelial functional factors,

and changes in the content of asymmetric dimethylarginine (an

inhibitor of nitric oxide synthase). However, based on changes in

the content of vascular adhesion molecules, a recent clinical

study (74) concluded that FIR might not have the expected

vasoprotective effects, in spite of the previous favorable reports.

In a prospective observational study including patients with both

AVFs and AVGs (94), it was found that FIR therapy was not

effective in preventing restenosis in AVFs after percutaneous

translational angioplasty.

The mechanism of FIR therapeutic action is different from that

of PDT and more complex. It may involve the reduction of growth

rate of SMCs, but probably not by killing the cells. There are two

effects of FIR, thermal and non-thermal, and they likely occur

together. A number of mechanistic effects of FIR radiation have

been revealed (69, 71, 73, 93, 95–97), such as vasodilation and

increased access flow; angiogenesis; reduction of oxidative stress;

release of anti-inflammatory factors; upregulation of endothelial

nitric oxide synthase (eNOS); upregulation of heme oxygenase-1

(HO-1); inhibition of NIH. It is believed that all these effects

may have a positive influence on the survival of AVFs.
Photochemical tissue passivation

The technique of photochemical tissue passivation (PTP),

sometimes referred to as photochemical tissue bonding (PTB), is

based on the photochemical reactions occurring when tissues are

irradiated with non-ionizing visible radiation in the presence of

rose Bengal. This dye is a halogenated xanthene dianion that

absorbs in the green region of the electromagnetic visible

spectrum, with a maximum absorption peak at 550 nm. The

photochemistry behind principles of PTP is identical to those

underlying PDT, however the aim of PTP is to induce the

crosslinking between tissular proteins (mostly native fibrillar

collagen) leading to significant enhancement of tissues’

mechanical properties (e.g., stiffening) and of their enzymolytic

resistance, while the cells’ life is preserved.

The methodology for exogenous crosslinking of native collagen

is related to the crosslinking of engineered collagen-based materials

(98–100), and has led to several therapeutic strategies for treating

disorders of the connective tissue. In contrast to many
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photosensitizing dyes, the rose Bengal molecule manifests a

preference to bind strongly to tissular collagen (101, 102). The

PTP technique has been developed at Wellman Center for

Photomedicine (Harvard) in Boston (102, 103). An early vascular

application was reported in animal (pig, rat) arteries (104), where

it provided tight seals between anastomotic surfaces.

The direct inhibition of NIH was demonstrated (75) in porcine

veins of which adventitia was subjected to 550-nm radiation

emitted by a diode array light source at 90–120 J/cm2, in the

presence of rose Bengal. Histologically, a decrease in SMC

proliferation was also noticed following PTP, which may suggest

accompanying free-radical-induced cytotoxicity, like in PDT.

More important, due to photochemical crosslinking of adventitial

collagen, the stiffness of veins increased tenfold. The scenario

proposed (75) may explain the effect of PTP. When included

into the arterial environment, a vein can be injured by

mechanical pressure factors such as pulsatile stretching, turbulent

flow, and shear stress in the wall. Exposed to the action of these

factors, the vein becomes substantially distended, which triggers

endothelial injury, followed by platelet aggregation, inflammatory

processes, and specific signaling cascades, leading eventually to

SMC proliferation, a key element in the formation of NIH. It

was assumed that by strengthening the venous adventitia, the

mechanical damage is significantly restricted. Similar results were

reported by the same authors in in vivo studies in rat (76) and

pig models (78). The role of venous compliance/stiffness is

further discussed in the last section of this review.

We are aware of only one reported study regarding the efficacy

of PTP in preventing NIH formation in AVF (77). PTP was

performed on the vein prior to the creation of an AVF between

the femoral artery and epigastric vein in rats, by irradiating with

550-nm light (diode array source) at a fluence of 25 J/cm2 and

an irradiance of 87 mW/cm2. The animals were sacrificed and

assessed one month after surgery. PTP reduced venous diametric

dilation by ∼70% compared to controls; it also reduced ∼4 times

the juxta-anastomotic intimal area, and ∼2.5 times total intimal

area. An increase in the AVF flow was recorded following PTP,

but not of high statistical significance. The investigators

concluded that PTP might be considered as a promising therapy

for preventing AVF failure.
Alucent vascular scaffolding

This is yet another technique based on the same principle as

PDT and PTP: irradiation with low-energy visible light in the

presence of a photosensitizer. In fact, the only claim to the

novelty of the procedure is that a new class of photosensitizers

(substituted 4-amino-1,8-naphthalimides) was specifically

developed for this purpose (105), although other chemical

compounds were routinely available to fulfill that role. The

current owner of the technology is Alucent Biomedical Inc. (Salt

Lake City, UT, USA), who adopted an obvious misnomer for their

proprietary product: “Natural Vascular Scaffold”. There is nothing

“natural” in the concept, as the photosensitizer is a substance fully

synthesized in laboratory, the radiation (wavelength 400–525 nm)
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is generated by manufactured instruments (xenon lamps or

lasers), and luminal pre-dilation (which is crucial to the main

application of the procedure) is achieved by standard balloon

angioplasty. The procedure was initially intended to replace

percutaneous transluminal angioplasty/stenting as a treatment for

peripheral artery disease (106). It was claimed (105) that because

only a limited number of crosslinks are produced in collagen, the

resulting stent-like constructs will be not as rigid as the stents in

current use. However, no explanation has been offered for a

strategy that would be able to “limit” the extent of a

photochemical crosslinking process.

The technique was applied to AVF in animal models. In such a

study (79), an AVF was created between femoral vein and femoral

artery in rats. After restoring blood flow, a solution of the

photosensitizer (4-amino-1,8-naphthalimide) was dropped on the

anastomotic site, and after 5 min the area was irradiated with

450-nm light (source not specified) for 1 min. Animals were

sacrificed one month later, and tissue specimens were harvested

and processed to be analyzed by histology, morphometry,

immunohistochemistry, and microscopy. It was found that in the

treated vessels the luminal area was larger than in controls, while

the contents in IL-6 and MMP markers were significantly

reduced. It was also surmised that the changes detected in the

structure of native collagen might have a beneficial effect on AVF

maturation. In a recent in vivo study (80), the method was

applied to sheep cephalic veins using a balloon catheter coated

with the photosensitizer and carrying a light fiber through which

450-nm radiation was delivered. The resulting luminal area was

larger in the treated animals, where an increased number of

SMCs was also observed, without noticeable NIH. In the same

study, donor human saphenous and cephalic veins were

subjected to the same treatment, and then to a distensibility

assessment. The treated veins could tolerate up to 66% overstretch.
Adventitial photocrosslinking

Mechanical augmentation of aortic adventitia by irradiating it

with UV-A rays in the presence of riboflavin has been

demonstrated in ex-vivo porcine abdominal aortas (107), and

proposed as a method to lower the risk of rupture of abdominal

aortic aneurysms. The reinforcement effect is due to the

riboflavin-photosensitized crosslinking of the adventitial collagen,

and was shown to take place even if the adventitial specimens

were experimentally degraded by collagenolysis (108) or

elastolysis (109). There are no doubts about the chemistry

underlying the method, as the radiation-induced, riboflavin-

photosensitized crosslinking of tissue proteins is based on well

elucidated and understood photochemical processes (102).

The method has been recently extended to the venous wall

(81), with an aim at reinforcing it mechanically as a potential

method to inhibit the development of NIH, of obvious relevance

to the vascular access through AVFs. Whole-thickness wall

specimens of human superficial femoral vein and great

saphenous vein (GSV), retrieved form a patient who underwent

limb amputation, were soaked in riboflavin solution and then
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exposed to UV-A radiation (365 nm) for 3 min at an irradiance of

50 mW/cm2. The samples were evaluated biaxially in a specialized

biomechanical tester, before and after the radiative treatment. The

measured Young’s modulus (representing stiffness—the reciprocal

of compliance) of the GSV specimens increased significantly after

irradiation, by ∼120% longitudinally and ∼80% circumferentially,

proving the efficacy of the method. In addition, specimens of

superficial femoral artery were also included in the study (81),

and the investigators found that the mechanical behavior of the

irradiated vein became similar to that of the non-irradiated

artery. In these experiments, the adventitia was not separated

from the wall. As it is unlikely that the radiation penetrated

further into the tunica media, the adventitia took up the whole

radiation output. However, the mechanical effect was global,

reflected in enhanced stiffness and strength of the entire venous

wall. An additional complication warranting consideration of

UV-A exposure as a novel therapeutic approach is the

development of aneurysms in AVF, in the case where during

surgery we registered an important increase in vein diameter. In

instances where surgical intervention is lacking, the progression

of these aneurysms may culminate in rupture, precipitating

hemorrhagic shock and eventual fatality (110, 111).
Role of venous compliance

The compliance of the venous wall and the pre-operative

diameter of the vein play an important role in AVF dysfunction.

Numerous studies have tried to identify an optimal pre-operative

venous diameter threshold to ensure AVF maturation (111–113).

Thus, according to the guidelines of the European Society of

Vascular and Endovascular Surgery, a minimum internal

diameter for the arterial and venous component of 2 mm in the

case of radiocephalic AVF (RCAVF) and a minimum of 3 mm in

the case of brachiocephalic AVF (BCAVF) and brachiobasilic

AVF (BBAVF) is recommended (113). Similarly Kaller et al.

(111), demonstrated that a diameter greater than 2.25 mm for

the radial artery and 2.55 mm for the cephalic vein is associated

with a higher maturation rate in the case of RCAVF. Recently,

another study (112) identified that a pre-operative diameter

smaller than 2.95 mm for the artery and 2.15 mm for the vein is

associated with AVF dysfunction. Moreover, other studies

(114–116) have demonstrated the importance of increasing the

venous diameter (intra-operatively and immediately post-

operatively) in the favorable evolution of AVF. In contrast, there

are several published studies (117–122) showing that by

reinforcing the vein graft via an external stent/sheath made of

synthetic polymers, the stiffness was enhanced, lessening the

compliance mismatch, and resulting in the reduction of SMC

proliferation, thus inhibiting hyperplasia.

It can be seen from the above overview (and also shown in

Table 1) that three of the methods developed to inhibit NIH in

venous grafts are relying on the mechanical reinforcement of the

venous wall induced by photochemical crosslinking of tissular

collagen, while exposed either to visible radiation, like in PTP

(75–78, 104) or Alucent technique (79, 80), or to UV-A
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radiation, like in adventitial crosslinking method (81). The

underlying hypothesis was that the reduction of vascular

compliance in the venous component (equivalent to the increase

of its stiffness), intended to also reduce the compliance mismatch

between the two different conduits, lowers the risk of endothelial

injury induced by an abnormal distension of the vein following

its grafting to an artery. The role of hemodynamics in the

progression of NIH and in vein-grafting outcomes has been

intensively investigated over the past three decades (123, 124). It

was suggested (123) that no less than 9 different mechanical

effects can act upon a grafted vein conduit after being exposed to

arterial pressure and flow. On the other hand, it was found

(125–129) that following experimental mechanical stretching of

venous conduits in vitro or in animal models, the growth factors

promoting SMC proliferation were upregulated. Can an increase,

achieved by exogenous means, of the venous conduit’s stiffness

neutralize such effects? Moreover, what shall be done about the

compliance of the arterial conduit? These issues are complex and

encumbered by dissenting findings or hypotheses.

Regarding the arterial component in the AVF, a review (130)

showed that a stiffer arterial conduit contributes to the failure of

AVF maturation, extending the conclusion to veins too with no

valid reason, and recommending a general reduction of stiffness

as a preventive treatment. However, other studies (131–135)

failed to establish a definite role of arterial stiffness in the

maturation of AVF.

Regarding the compliance of venous conduits in AVFs, two

studies on human patients that included biomechanical

evaluation either by plethysmography (136) or by dynamic

mechanical analysis (137) have demonstrated higher failure rates

with reduced venous compliance (i.e., with increased stiffness). It

has also been reported that venous compliance decreases

naturally with age (138) and that in hypertensive hemodialysis

patients, the compliance is reduced irreversibly (139). These

findings seem to cast doubt on the possibility of preventing NIH

by reducing venous compliance, achievable through the cross-

linking of vascular collagen. However, this issue is far from being

resolved because the results of the animal model contradict (41,

140) the above-mentioned information. This obviously suggests

that more research on this subject would be both relevant and

beneficial. So far, FIR therapy has shown to be highly

advantageous for patients with AVF, where there is no notable

increase in venous diameter immediately after surgery. This

therapy effectively increases the maturation and long-term

patency of the AVF. As for other therapeutic strategies, while

published results are promising, further studies are needed to

establish the criteria for their applicability.
Conclusions

In an attempt to counter the disadvantages of therapies based on

ionizing radiation, such as the risk of induced cardiovascular disease

and increasingly stringent safety requirements, procedures using

non-ionizing radiation are currently developed and assessed as

means to inhibit neointimal hyperplasia and prevent stenosis in
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venous grafts. This is of crucial importance in the quest for reducing

the failure rate of arteriovenous fistula in hemodialysis patients.
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