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Beyond acute infection:
molecular mechanisms
underpinning cardiovascular
complications in long COVID
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2Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt, 3Department of
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SARS-CoV-2, responsible for the global COVID-19 pandemic, has manifested
significant cardiovascular implications for the infected population. These
cardiovascular repercussions not only linger beyond the initial phase of illness
but have also been observed in individuals who remain asymptomatic. This
extended and pervasive impact is often called the post-acute COVID-19
syndrome (PACS) or “Long COVID”. With the number of confirmed global
cases approaching an alarming 756 million, the multifaceted challenges of
Long COVID are undeniable. These challenges span from individual health
complications to considerable burdens on worldwide healthcare systems. Our
review comprehensively examines the complications of the persistent
cardiovascular complications associated with COVID-19. Furthermore, we
shed light on emerging therapeutic strategies that promise to manage and
possibly mitigate these complications. We also introduce and discuss the
profound concerns regarding the potential transgenerational repercussions of
SARS-CoV-2, emphasizing the need for a proactive and informed approach to
future research and clinical practice.
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Introduction

In December 2019, Wuhan in China experienced a Coronavirus Disease 2019

(COVID-19) outbreak, leading to a global pandemic. This highly infectious virus, the

severe acute respiratory syndrome coronavirus (SARS-CoV-2), primarily invades the

respiratory system, causing severe pneumonia that can progress to acute respiratory

distress syndrome (1). By February 2023, the World Health Organization (WHO) had

reported approximately 756 million confirmed cases of COVID-19 globally, along with

a staggering 6.8 million cumulative deaths attributable to the virus (2).

The COVID-19 virus contains five structural proteins: spike (S), envelope (E),

membrane (M), and nucleocapsid (N). The distinctive crown-like morphology of the

coronavirus results from the spike protein, which also facilitates host cell entry and

consists of S1 and S2 subunits (3).

SARS-CoV-2, part of the Beta-CoV genus and the Nidovirales order, belongs to the

Coronaviridae family. Notably, two previous beta-CoV virus outbreaks—SARS-CoV and

Middle East Respiratory Syndrome (MERS) viruses—hit the world in 2002 and

2012, respectively (3).
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SARS-CoV-2 has shown higher virulence than SARS-CoV,

which is attributed to two key acquired mutations. The receptor

binding domain (RBD), a highly variable segment in the SARS-

CoV and SARS-CoV-2 genomes, uses six central amino acid

residues for adequate recognition of the host angiotensin-

converting enzyme 2 (ACE2) receptor. In SARS-CoV-2,

mutations in five of the six primary amino acid residues in the

RBD allow for a greater binding affinity to the ACE2 receptor.

Moreover, an insertion mutation at the S1/S2 fusion site

introduces a furin cleavage site, enhancing cellular entry and

viral tissue tropism due to S-priming with furin and

other proteases (4, 5).

SARS-CoV-2 has led to a significant cardiovascular burden in

the infected population, with harmful cardiovascular sequelae

persisting even after the acute phase and in asymptomatic

patients. This review focuses on the pathophysiology underlying

the long-term cardiovascular burden associated with COVID-19

and explores potential new therapeutic targets.
COVID-19 pathogenesis and
pathophysiology

Host neuropilin-1 (NRP-1) binding to the NRP-1 binding

domain in RBD precedes ACE2 recognition. This action

facilitates host ACE2 recognition by the RBD of COVID-19,

triggering a conformational change that allows the virus to

become closer to the host cells (6).

SARS-CoV-2 can enter cells through one of two pathways:

membrane fusion or endocytosis. In membrane fusion, a host

protease known as transmembrane protease serine 2 (TMPRSS2)

cleaves and primes the spike protein. Subsequently, the fusion

peptide within the S2 subunit is inserted into the host cell

membrane. The two heptad repeat domains in the S2 subunit,

HR1, and HR2, interact, drawing the viral and host membranes

together and enabling membrane fusion. This process allows the

injection of the viral genome into the host cell. In the

endocytosis pathway, the virus-receptor complex is endocytosed

into the endosome, where the S protein is cleaved by cathepsin

enzymes (7–9).

SARS-CoV-2 exhibits a broad tissue tropism, as its receptor is

expressed in various tissues, including the lung, heart, small

intestine, oral mucosa, and testis. These tissues have been found

to harbor SARS-CoV-2 RNA (10–13). Viral entry triggers

multiple immune responses. Toll-like receptor 3 (TLR-3)

recognizes the cytosolic viral genome and activates nuclear factor

kappa B (NF-κB), which translocates into the nucleus and

stimulates the transcription of interferon-gamma and other

inflammatory cytokines. Additionally, the NOD-like receptor

(NLRP) gene is activated, leading to the production of NLRP3

proteins. NLRP3 initiates the formation of inflammasomes,

which induce cell death through pyroptosis and promote

inflammation by stimulating the secretion of inflammatory

cytokines (14, 15). This immune response activates a wide range

of immune cells, including dendritic cells (DCs), T-cells, and

B-cells. DCs carry the viral antigen with major histocompatibility
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complex class II (MHC-II) receptors and migrate to lymph nodes

to stimulate further T and B cell responses. T-cells and B-cells

are then activated to eliminate the virus through direct cell

killing and antibody secretion, respectively (14, 16).

The excessive release of inflammatory cytokines often leads to a

cytokine storm, a lethal state of hyperactive immune response

associated with systemic inflammation. Persistent systemic

inflammation can cause vasculitis, increasing the risk of blood

clot formation, hypercoagulability, ischemia, and cell death.

Additionally, acute respiratory distress syndrome results in poor

perfusion, hypoxia, multiorgan failure, and death (14, 16).

Although COVID-19 was initially considered primarily a

respiratory illness, it is now evident that it causes a systemic

infection, damaging multiple organs during and after the

infection. This damage may arise from a direct viral infection or

the detrimental effects of systemic inflammation (17).
COVID-19 and the cardiovascular
system

Cardiovascular injury is common among SARS-CoV-2-

infected patients, with damage to the myocytes varying from

initial injury with elevated troponins to eventual heart failure,

indicated by increased levels of the N-terminal-prohormone

brain natriuretic peptide BNP (NT-proBNP) (18–20). Among the

cardiovascular complications linked to COVID-19 are

arrhythmia, myocarditis, acute coronary syndrome, myocardial

infarction, and venous thrombosis embolisms, which are

detectable through methods such as echocardiography, MRI,

electrocardiogram (ECG), coronary angiography, and cardiac

autopsies in COVID-19 patients (20–22).

Cardiac involvement in COVID-19 patients predisposes to a

higher mortality rate compared to COVID-19 patients without

such complications. Higher troponin levels in COVID-19

patients with pre-existing cardiovascular diseases have been

associated with doubling the mortality rate (18, 23). Children

may also suffer from cardiac dysfunction and coronary

abnormalities, such as Kawasaki disease (24).
Mechanisms of COVID-19-associated
cardiovascular injury

Although several mechanisms have been proposed, the precise

pathophysiological pathway by which SARS-CoV-2 causes cardiac

damage has not been entirely established. One such pathway

involves SARS-CoV-2-induced hypoxemia secondary to pulmonary

dysfunction and respiratory distress syndrome. This results in poor

organ perfusion, leading to hypoxic injury in cardiac cells and

contributing to myocardial infarction. Another related mechanism

involves microvascular injury and thrombosis in the lung

microvasculature, which leads to right ventricle heart failure (7, 25).

Systemic inflammation and cytokine storms play a vital role in

microvascular injury, endothelial cell activation, venous

thrombosis, and the hypercoagulative state associated with
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1268571
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Mostafa and Moustafa 10.3389/fcvm.2024.1268571
COVID-19 (26). This concurs with findings from heart autopsies of

COVID-19 patients, where venous thrombosis and immune cell

infiltration by CD3+ and CD8+ cytotoxic lymphocytes, CD68+

macrophages, and CD45RO memory cells were identified (27–29).

Overexpression of cytokines can cause myocarditis and myocardial

injury (27, 30), and cardiac biomarkers have been found to correlate

with the levels of inflammatory cytokines (26, 31). Moreover,

patients with predisposing cardiovascular risk factors are more

susceptible to microvascular injury and endothelial dysfunction since

SARS-CoV2 associated inflammation exacerbates the pre-existing

endothelial damage aggravating thrombosis which leads to an

increased risk of acute coronary syndrome andmyocardial injury (32).

Direct virus entry is another proposed mechanism of

COVID-19-associated cardiac damage. Inflammation and

oxidative stress have also been shown to increase the entry of the

SARS-CoV-2 virus into cardiac cells and promote cellular

apoptosis (33). Linder et al. documented the presence of SARS-

CoV-2 RNA in 61.5% of myocardial autopsies of patients who

died of COVID-19, with the viral load exceeding 1,000 copies

per μg RNA in 41% of the tissues (27). On the other hand,

another study denied the existence of viral RNA and recorded

very few RNA copies (34, 35). Similarly, Moustafa et al. found

that traces of SARS-CoV-2 RNA are present in peripheral blood

mononuclear cells of COVID-19 patients, although in

significantly lower quantities compared to bronchoalveolar lavage

specimens, suggesting limited viral RNA in the blood (36). Han

et al. suggested that COVID-19 could directly infect the heart’s

pacemaker, causing arrhythmia in hamster models and human

embryonic stem cell (hESC)-derived SAN-like pacemaker cells,

where the viral RNA was detected inside the pacemaker cells and

was capable of inducing ferroptosis (37). In Drosophila and

mouse models, non-structural protein 6 (NSP6) of SARS-CoV-2

interacted with host proteins in the heart, potentiating

glycolysis, disrupting mitochondrial function, and increasing

ROS formation (38).

After viral entry, COVID-19 patients are susceptible to

hypertension due to the downregulation of ACE2 receptors in

host cells. The ACE2 receptor plays a critical role in the renin-

angiotensin-aldosterone (RAAS) system, with its downregulation

leading to the upregulation of angiotensin 2, a potent

vasoconstrictor (10, 14, 16).

Recent studies using omics-based analyses have provided a more

comprehensive understanding of the pathophysiology underlying

COVID-19-associated cardiovascular diseases. In the heart tissues

of COVID-19 patients, there was an observed upregulation in the

transcriptional level of phospholipase C γ2 (PLCG2) in pericytes,

fibroblasts, and cardiomyocytes. In contrast, the Afadin level,

encoded by the Adherens Junction Formation Factor (AFDN)

gene, was predominantly high in endothelial cells (34). Although

the mechanism of PLCG2 in the heart is not thoroughly

investigated, PLC-γ is known as a regulator of calcium

homeostasis within heart tissues and plays a crucial role in cardiac

pathogenesis. Its upregulation has been associated with

cardiomyocyte apoptosis and mitochondrial dysfunction in

patients with myocardial infarction, while its dysregulation can

cause cardiac hypertrophy (39, 40). Furthermore, PLC is proposed
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as an arrhythmogenic factor, exacerbating cardiac fibrosis (41, 42).

Whereas Afadin is essential for maintaining endothelial barrier

function, the mechanism by which it is linked to SAS-CoV2-

associated CVD is not known. Enrichment analysis revealed

upregulation in cell differentiation, cell adhesion with elevated

immune response, and apoptosis due to oxidative stress in

fibroblasts, cardiac cells, and pericytes, respectively (34).

Meanwhile, endocrine senescence pathways in plasma were

significantly upregulated in COVID-19 patients with cardiac

complications. High FSTL3 and low ADAMTS13 levels were

associated with heart failure in COVID-19 patients. The former is an

indirect marker of biological aging induced by the TGF-B pathway,

and the latter is an antithrombotic agent (19, 43). Another study by

Garg et al. found elevated levels of miR-155, miR-499, miR-208a,

miR-21, and miR-126 in the blood of critically ill COVID-19

patients. These miRNAs are associated with inflammation,

myocardial function, fibroblasts, and endothelial cells (44).

Lipopolysaccharide (LPS)-binding protein (LBP) was

upregulated and strongly associated with NT-pro-BNP in

critically ill patients with cardiac involvement. LBP levels increase

in response to circulating LPS, a major component of the outer

membrane of gram-negative bacteria, suggesting gut leakage as

an additional mechanism that could exacerbate heart failure in

SAR-CoV-2-infected patients (45–48).
Cardiovascular manifestations of long
COVID

Recently, it became evident that the adverse effects of COVID-

19 are not limited to the acute phase but also extend to a condition

known as long COVID. According to the National Institute for

Health and Care Excellence (NICE), patients with ongoing

symptoms of COVID-19 or newly developed ones that last

beyond three months are diagnosed with long-term COVID (49).

In the Netherlands, patients were followed for three months

post-infection and showed evidence of elevated inflammatory

cytokines and endothelial dysfunction. This is in line with the

elevated plasma levels of endothelin-1 (ET-1) that correlate with

contact activation factors, hence suggesting endothelial activation

and the coagulation process (50). In England, hospitalized

COVID-19 patients suffered from an increased rate of major

adverse cardiovascular events after discharge. People without any

prior cardiovascular events developed cardiovascular diseases at a

rate three times higher compared to healthy individuals (51).

Another study followed patients for four months post-infection,

and the rate of various cardiovascular diseases increased with

new onsets of hypercoagulability and cardiomyopathy sequelae

post-infection (52). Similarly, in the USA, a substantial excess

burden of cardiovascular diseases occurred in a graded fashion

according to the severity of the acute phase when patients were

followed in two studies for six months and a year (17, 53). The

commonly detected long-term cardiovascular sequelae were

cerebrovascular disorders, dysrhythmia, pericarditis, myocarditis,

ischemic heart diseases, hypertension, heart failure, and

thrombotic disorders (17, 52, 53).
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Pathophysiology of long COVID
cardiovascular complications

Long COVID’s clinical burden stresses healthcare systems and

demands resources (54), emphasizing the urgency to understand

the clinical pathology behind the disease and identify novel clinical

targets (Figure 1). However, the absolute mechanism underlying

long COVID sequelae has yet to be extensively deciphered.
Cell senescence and mitochondrial
dysfunction

The first proposed mechanism is accelerated biological aging.

In COVID-19 survivors’ peripheral blood mononuclear cells

(PBMCs), the cells were five years above their expected biological

age (55). Furthermore, accelerated aging was associated with

downregulated ACE2 levels and telomere shortening, which are

notable in cardiovascular diseases (56, 57). The senescence-

associated secretory phenotype was reported to be correlated with

cardiac involvement in COVID-19 patients (19).

Mitochondrial damage is another cornerstone of biological

aging (58). In COVID-19 post-acute phase survivors, there was

considerable CpG island methylation in the promotor region of

elongation of very long chain fatty acids-like 2 (ELOVL2) in

PBMCs (55). ELOVL2 is crucial for proper mitochondrial

function. Mitochondrial dysfunction in COVID-19 patients’

PBMCs was reported by Ajaz et al. (59). PBMCs with damaged
FIGURE 1

Proposed pathophysiological mechanisms and potential transgenerational
plasminogen-like protein B1; ET-1, Endothelin-1; PBMCs, peripheral blood
like 2; nsp 13, non-structural protein; HERV-W, human endogenous ret
inhibitory downstream sequel, red arrows represent upregulation, question
Created in BioRender.com.
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mitochondria are known to aggravate heart failure (60, 61).

Another study found downregulated profiles of genes responsible

for metabolic and mitochondrial function in SARS-CoV-2-

infected cardiac tissues (62). In the iPSC-derived human

cardiomyocytes (iPSC-CMs) model, SARS-CoV-2 infection

impaired mitochondrial function, cell bioenergetics, and

calcium cycling (63).
DNA damage and cell cycle arrest
influenced by SARS-CoV-2

DNA damage presented another pathogenic pathway inhibiting

the symptoms’ resilience in COVID-19 patients. However, further

studies are needed to investigate the longevity of these genetic

instabilities and their correlation to long COVID. DNA damage

was detected in cultured AC16 cardiomyocyte cells treated with

the serum of COVID-19 patients, where markers of DNA double-

strand break, γH2Ax, and H3K79me2, were elevated. Persistent

inflammatory cytokines were detected in long COVID patients’

serum samples, which are inducers of chromosomal instability

(64–66). In agreement, γH2Ax was upregulated in cardiac autopsy

tissues from COVID-19 patients (62). SARS-CoV showed an

increase in H2AX histone phosphorylation in the infected

population due to the interaction between its nonstructural

protein nsp13 and the host DNA polymerase δ, leading to

replication fork collapse and DNA damage followed by cell cycle

arrest. SARS-CoV-induced cycle arrest led to the consumption of
cardiovascular impact of long COVID. EC, endothelial cells; PLGLB1,
mononuclear cells; ELOVL2, elongation of very long chain fatty acids-
rovirus-w. Black arrows represent downstream sequel, bars represent
marks represent hypothesized mechanisms requiring further research.
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host cellular metabolites to allow viral replication (67). Considering

the 79% similarity between SARS-CoV and SARS-CoV-2 and the

99.8% similarity between nsp13 in both species (64, 68, 69) and

that SARS-CoV-2 can directly infect myocardium and actively

replicate inside (27), this could be a potential mechanism by

which cardiomyocyte damage occurs during COVID-19 and

extends towards long COVID manifestations.
Prolonged immune activation and
endothelial damage

Another potential molecular pathway for long COVID is

endothelial dysfunction, leading to ischemic injuries and organ

damage. Prolonged active CD8+ and CD4+ effector T cells

selective for endothelial cells were detected in the blood of

COVID-19 convalescent patients (70). In another study, the anti-

angiogenic plasminogen-like protein B (PLGLB1) protein was

more elevated in the serum of convalescent patients than in the

acute phase. PLGLB1 inhibits vascular cell proliferation and

prevents vascular repair in damaged vessels due to SARS-CoV-2

infection. Higher PLGLB1 levels in convalescence than in the

acute phase indicate endothelial deterioration (71, 72).

Moreover, the immune system remains active in COVID-19

long-haulers, where serum samples showed dominant alterations

in type II interferon and NF-κB signaling pathways (65). In

PBMCs, miR-155-5p was upregulated during the post-acute

phase, which is a factor known to be associated with

inflammation and cardiovascular diseases (73, 74).
Retrotransposons and genetic
reprogramming in myocytes

SARS-CoV-2 has been implicated in entering heart cells and

integrating its reverse-transcribed genome into the host cell genome.

In a study where SARS-CoV-2 infection was introduced into

human iPSC-derived cardiac cells, chimeric viral-host transcripts

were detected, suggesting the possibility of integrating the viral

genome into the host’s genetic material. This mechanism is

hypothesized to be driven by the long interspersed nuclear elements

(LINE-1) retrotransposition mechanism (75). However, more

research is required to confirm this hypothesis, which is considered

a rare event. Notably, an independent study suggested that these

chimeric transcripts might be artifactual and created during the

preparation of RNA-seq libraries via RT-switching (76, 77).

An increase in the retrotransposon element (LINE) was

observed in the lungs and intestines following the SARS-CoV-2

infection. This surge was attributed to an increase in ten-eleven

translocation (TET) enzymes, which alter the methylation profile

and activate LINE transcription (78). Transposable elements (TE)

were found to be upregulated in bronchoalveolar biopsies but

downregulated in PBMCs. The downstream targets for these

dysregulated TEs were enriched for pioneer transcription factors

(TF) and immune responses. Pioneer TF can alter the global

methylome profile of the cells. Compared to other viral
Frontiers in Cardiovascular Medicine 05
infections, TE levels in COVID-19 showed the highest copy

number (79). The retroelements are also known to be associated

with cell senescence and aging (80, 81). Further studies are

needed to analyze their levels in correlation to SARS-CoV-2

long-term cardiovascular complications.

Additionally, the Human Endogenous Retrovirus-W (HERV-W)

protein, known to be stimulated in viral infection and to induce

immune and neurotoxic deleterious effects, was found elevated in

the endothelial cells and pericardial fatty tissues of postmortem

cardiac autopsy samples of COVID-19 patients (82–84).
Altered gut microbiome

The gut microbiota has been implicated in the pathophysiology

of various diseases, including COVID-19. During the acute phase

of COVID-19, the gut leakage marker Lipopolysaccharide

Binding Protein (LBP) was found to be elevated in plasma

samples and was associated with cardiovascular complications via

the activation of inflammasomes (46, 48). Persistent gut dysbiosis

was found in hospitalized COVID-19 patients, and this

imbalance between opportunistic pathogens and beneficial

symbionts prolonged after the acute phase (85–87).

In a 6-month period of COVID-19, a significant difference in

gut microbiota composition was observed between patients with

long COVID symptoms and those without symptoms or healthy

individuals (88). Ruminococcus gnavus was found to be elevated in

post-acute COVID-19 syndrome (PACS), known for its association

with atherosclerosis and coronary artery disease. Faecalibacterium

prausnitzii, a protective species against atherosclerosis, was

depleted in PACS patients. Collinsella aerofaciens level was low in

PACS, and its decreased level was associated with CAD and

cardiac valve calcification (88–94). Furthermore, Bifidobacterium

pseudocatenulatum, known to ameliorate TNF inflammatory

signals and protect against endothelial damage, had an inverse

relationship with PACS symptoms. On the other hand, Bacteroides

vulgatus, an atherosclerosis attenuator species, was found to be

abundant in PACS patients (88, 95–98).
Intergenerational and
transgenerational inheritance

Long-term cardiovascular effects of COVID-19 have been

observed in the infected population. However, whether these

effects extend to future generations is still unknown (17, 53).

Systematic reviews suggest that 20%–30% of neonates born to

SARS-CoV-2-positive mothers are infected due to vertical

transmission, exhibiting clinical manifestations such as

hypotension and tachycardia (99, 100).

Neonates born to positive mothers or preconception-positive

parents are still at high risk of developing adverse events, even if

they are not infected. Growing evidence shows that parental

environmental factors, stress, and infection before or during

conception can influence the offspring’s phenotype by

modulating their epigenetics (101–103). These epigenetic markers
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can be inherited by the offspring or grandoffspring, suggesting a

potential role for the intergenerational and transgenerational

inheritance of SARS-CoV-2 adverse events due to parental

exposure to SARS-CoV-2 (102).

In the context of paternal contributions, infection and immune

activation can alter the sperm epigenome and affect future

generations. The sperm transfers its epigenetic information into

the embryos, impacting embryonic development (104–106).

Moreover, cardiovascular disease inheritance by sperm non-

coding RNA was suggested by Wagner et al. (107). There is

mounting evidence that SARS-CoV-2 negatively affects sperm,

altering the semen proteomics of convalescent patients, which is

associated with multiple pathways, including inflammatory

cytokines, sperm differentiation, and ROS formation. DNA

fragmentation has also been reported in the sperm of

convalescent COVID-19 patients (108–110).

Furthermore, maternal immune activation during pregnancy

can have adverse effects on the cardiovascular system of the

offspring and may potentiate the activation of inflammatory

pathways in neonates and ROS formation (102). SARS-CoV-2

can influence mitochondrial damage in peripheral blood cells and

cardiac cells, which can potentially affect oocyte mitochondria

(59, 62, 63). However, the quality of oocytes in recovered patients

has been reported as normal (111). Since maternal mitochondria

are transferred to the zygote during fertilization and

mitochondrial DNA mutations can predispose individuals to

cardiovascular diseases, there may be risks associated with

mitochondrial damage due to COVID-19 (112, 113).
Conclusion

SARS-CoV-2’s impact extends beyond the acute respiratory

distress often spotlighted in medical narratives. Its ability to

affect multiple organs and lead to serious cardiovascular

complications provides a broader perspective on the virus’s toll.

As highlighted in our review, while the mechanisms underlying

these complications are not fully defined, they likely involve

hypoxia, endothelial dysfunction, and an exacerbated immune

response. Notably, persistent cardiovascular ramifications have

emerged not just in symptomatic COVID-19 survivors but also

in those who remained asymptomatic.

With an astounding 756 million confirmed COVID-19 cases

worldwide, the repercussions of long COVID, especially its
Frontiers in Cardiovascular Medicine 06
cardiovascular sequelae, present both a challenge and a burden to

global healthcare systems. We have reviewed several proposed

pathophysiological mechanisms for these complications,

including systemic biological aging, gut microbiome disruptions,

mitochondrial and direct cardiac damage, sustained systemic

inflammation, and epigenomic alterations.

Nevertheless, a significant gap remains in our comprehensive

understanding of these mechanisms, with many still hypothesized

and awaiting rigorous scientific validation. The urgency of the

current situation underscores the need for continued research

into the pathophysiology of long COVID. Only by elucidating

these pathways can we hope to identify effective therapeutic

targets and address the extensive cardiovascular consequences of

this pandemic.
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