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Mitophagy in hypertension-
mediated organ damage
Yulong Ma, Xunjie Zhou, Mingtai Gui, Lei Yao, Jianhua Li,
Xiaozhe Chen, Mingzhu Wang, Bo Lu* and Deyu Fu*

Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
Hypertension constitutes a pervasive chronic ailment on a global scale, frequently
inflicting damage upon vital organs, such as the heart, blood vessels, kidneys,
brain, and others. And this is a complex clinical dilemma that requires
immediate attention. The mitochondria assume a crucial function in the
generation of energy, and it is of utmost importance to eliminate any
malfunctioning or surplus mitochondria to uphold intracellular homeostasis.
Mitophagy is considered a classic example of selective autophagy, an important
component of mitochondrial quality control, and is closely associated with
many physiological and pathological processes. The ubiquitin-dependent
pathway, facilitated by PINK1/Parkin, along with the ubiquitin-independent
pathway, orchestrated by receptor proteins such as BNIP3, NIX, and FUNDC1,
represent the extensively investigated mechanisms underlying mitophagy. In
recent years, research has increasingly shown that mitophagy plays an
important role in organ damage associated with hypertension. Exploring the
molecular mechanisms of mitophagy in hypertension-mediated organ damage
could represent a critical avenue for future research in the development of
innovative therapeutic modalities. Therefore, this article provides a
comprehensive review of the impact of mitophagy on organ damage due to
hypertension.
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1 Introduction

Hypertension has emerged as the predominant risk factor for mortality in the world

(1). Epidemiological surveys indicate that the worldwide incidence of hypertension has

surged to encompass 1.3 billion individuals (2). In 2019, hypertension affected 32% of

men and 34% of women within the cohort aged 30 to 79 globally (3). Between 2017

and 2020, the National Health and Nutrition Examination Survey revealed a high

hypertension prevalence of about 46.7% among adults aged 20 years and older. The

rates of hypertension awareness, treatment, and control were 62%, 52.6%, and 25.7% (4, 5).

It is estimated that annually, elevated blood pressure results in the deaths of between 7.7

and 10.4 million individuals (6). A prospective study revealed that for each increase of

20 mmHg in systolic blood pressure and 10 mmHg in diastolic blood pressure, the risk

of developing ischemic heart disease and stroke doubled. The findings indicate a strong

correlation between blood pressure levels and subsequent cardiovascular events (7).

Hypertension-mediated organ damage (HMOD) including stroke, ischemic heart disease,

kidney disease, and other vascular conditions, is responsible for causing 85 million deaths

globally (8, 9). The treatment and management of hypertension pose a significant burden
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on the healthcare system worldwide. Despite the extensive use of

efficient antihypertensive medications, combatting HMOD remains

an urgent medical challenge.

Mitochondria are specialized double-membrane organelles that

originated from the engulfment of α-amoebae by eukaryotic

progenitor cells (10). Mitochondria function as metabolic

signaling centers and energy production sites, supplying the

necessary biochemical reactions for cellular activity (11). Their

role in maintaining cell survival, death, and metabolic

homeostasis is paramount (12). Maintaining intracellular

mitochondrial homeostasis necessitates a quality control system

comprising mitochondrial biogenesis, mitochondrial dynamics,

mitophagy, and mitolysosome exocytosis (13, 14). Mitochondria

are integral organelles in cardiomyocytes that perform vital

functions necessary for maintaining appropriate myocardial

activity (15). Mitophagy contributes to intracellular homeostasis

by eliminating damaged and excess mitochondria (16). Under

typical circumstances, mitophagy supports the preservation of

cardiomyocyte energy metabolism homeostasis by eliminating

unhealthy mitochondria (17). When mitophagy is either

insufficient or excessive, it causes imbalanced mitochondrial

homeostasis, which subsequently initiates a range of diseases.

Mitophagy can have a positive or negative impact on

cardiovascular disease, contingent on the preservation of

mitochondrial homeostasis (18). Therefore, this review focus on

the correlation between faulty mitophagy, which encompasses

inadequate and excessive mitophagy, and multiple HMOD.
FIGURE 1

The main processes in mitophagy. (A) ROS, toxic chemicals, and mitocho
potential; (B,C) Damaged mitochondria are encapsulated by autophagoso
degraded by lysosomes. All figures were created with BioRender.com and a
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2 Overview of mitophagy

Mitochondria, often referred to as the body’s “energy production

center”, are susceptible to substantial levels of exposure to reactive

oxygen species (ROS) due to their unique functions (19). This can

easily cause mutations in mitochondrial DNA (mtDNA) and

result in structural and functional changes in proteins, leading to

mitochondrial harm. Mitophagy (Figure 1), the process responsible

for the degradation of dysfunctional mitochondria, is crucial in

maintaining intracellular homeostasis (20). The primary modalities

that govern mitophagy encompass ubiquitin-dependent, receptor-

dependent, and other pathways (21).
2.1 Ubiquitin-mediated pathway

In the realm of ubiquitin-dependentmitophagy, the PTEN-induced

putative kinase protein 1 (PINK1)-Parkin pathway stands as an

exemplar (20). PINK1 is a serine protease located upstream of Parkin.

Normally, PINK1 is transported inside the mitochondria and

eventually degraded by the proteasome (22–24). The amount of

Parkin in the cytoplasm is minimal. PINK1 stabilizes on the out

mitochondrial membrane (OMM) when there is a loss of

mitochondrial membrane potential or accumulation of misfolded

proteins (25, 26). PINK1 phosphorylates ubiquitin at Ser65, which is a

critical step in activating Parkin. This phosphorylation is essential for

Parkin to function properly (27–29). However, the phosphorylation of
ndrial DNA mutations lead to a decrease in mitochondrial membrane
mes; (D) Autophagosomes fuse with lysosomes; (E) Mitochondrial is
re licensed for use.

frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fcvm.2023.1309863
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Ma et al. 10.3389/fcvm.2023.1309863
Parkin alone is inadequate to bestow activity. Activated Parkin

subsequently forms ubiquitin chains on several proteins in the OMM,

ultimately attracting autophagy receptors that bind to ubiquitin (22).

A set of receptor proteins, including Sequestosome-1 (SQSTM1 or

p62), Optineurin (OPTN), Next to BRCA1 gene 1 protein (NBR1),

Calcium-binding and coiled-coil domain-containing protein 2

(NDP52 or CALCOCO2), and Tax1-binding protein 1 (TAX1BP1),

interact with microtubule-associated protein 1A/1B-light chain 3

(LC3), thereby initiating the mitophagy process (30, 31). Notably,

phosphorylation of ubiquitin induced by PINK1 serves as a signal for

mitophagy, which is subsequently amplified by Parkin (26, 32). The

deubiquitinase USP30 has demonstrated its ability to remove ubiquitin

from depolarized mitochondria and hinder mitophagy (33).

Moreover, multiple signaling pathways influence mitophagy by

modulating the expression of PINK1/Parkin. Autophagy and beclin 1

regulator 1 (AMBRA1) plays a important role in mitophagy,

regulating this process through its interaction with ATPase family

AAA domain containing 3A (ATAD3A) and by strengthening the

stability of PINK1 (34). Targeting ATAD3A also overcomes resistance

to chemoimmunotherapy by redirecting PD-L1 to mitochondria (35).

LncRNA H19 downregulates mitophagy by limiting the translation of

Pink1, thereby attenuating cardiac injury induced by obesity (36).

Spliced X-box binding protein 1 (XBP1s) regulates mitophagy by

interacting with PINK1, an interaction which is transcription- and

phosphorylation-dependent (37). In addition to regulating mitophagy,

PINK1 plays other roles, including inhibiting tumor growth through

and reducing production of acetyl coenzyme A (38).
2.2 Ubiquitin-independent pathway

Mitophagy via the ubiquitin-independent pathway is also

commonly referred to as receptor-dependent mitophagy. Unlike

mitophagy facilitated by the PINK1/Parkin pathway, the receptor-

mediated pathway does not necessitate ubiquitin participation. The

OMM contains a range of receptor proteins which have the ability to

bind to LC3. For example, BCL2/adenovirus E1B 19 kDa protein-

interacting protein 3 (BNIP3), BNIP3-Like (BNIP3l or NIX), and

FUN14 domain-containing protein 1 (FUNDC1) can interact directly

with LC3, resulting in recognition by the autophagosome. This

process is the driving mechanism behind the direction of mitophagy.

2.2.1 BNIP3, NIX
BCL2 family members are categorized based on the presence of

one or more BCL2 homologous structural domains (39). BNIP3

and BNIP3l, which have structural domain homology to BCL2 in

BH3, are proteins produced by the BNIP3 gene located on

chromosome 10q26.3. They have a molecular weight of 21.5 kDa

and a peptide chain comprising 194 amino acids. These proteins

play significant roles in the processes of autophagy (40). BNIP3

protein is expressed at low levels in cells and tissues under normal

circumstances, including skeletal muscle, brain, and heart (40, 41).

Under hypoxic conditions, the BNIP3 protein undergoes

upregulation and becomes anchored to the OMM through its C-

terminal transmembrane structural domain. This exposes the N-

terminal structural domain to the cytoplasm (42). Like other
Frontiers in Cardiovascular Medicine 03
mitophagy receptor proteins, BNIP3 contains an LC3-interacting

region (LIR) motif at its N-terminus. The phosphorylation of the

two tandem serine residues, Ser 34 and Ser 35, that are near the

LIR motif, stabilizes the NIX-LC3 interaction, leading to the

promotion of mitophagy (43). Furthermore, BNIP3 plays a crucial

role in regulating ROS production during mitophagy. It has been

reported that during hypoxia, hypoxia-inducible factor-1α (HIF1α)

promotes BNIP3 expression, which limits ROS production through

mitophagy (44, 45). Increased HIF1α expression, in contrast, led to

an upregulation of mitochondrial ROS levels in BNIP3-KO tumor

cells (46). Furthermore, mitophagy mediated by HIF1α/BNIP3 in

renal tubular cells protects against acute kidney injury induced by

reperfusion after ischemia by inhibiting apoptosis and ROS

generation (47). Similar to BNIP3, the dimerization of NIX,

specifically the phosphorylation of its C-terminal region, is crucial

for the targeted autophagy in the mitochondria (48). NIX

participates in the clearance of mitochondria in the course of

reticulocyte maturation (49, 50). The SCF-FBXL4 complex,

operating as a ubiquitin E3 ligase in the mitochondria, promotes

the degradation of BNIP3 and NIX, resulting in the inhibition of

mitophagy (51). However, BNIP3/NIX is not entirely independent

of mitophagy mediated by PINK1/Parkin. BNIP3 interacts with

PINK1, leading to an accumulation of PINK1 on the OMM. This,

in turn, promotes the recruitment of Parkin to mitochondria (52).

Inhibition of cyclin dependent kinase 9 (CDK9) inhibits PINK1/

Parkin-mediated initiation of mitophagy through regulation of the

SIRT1/FOXO3/BNIP3 axis (53). The ubiquitination of NIX by

Parkin facilitates the binding of ubiquitin and LC3 through the

selective autophagy junction protein NBR1. As a result,

autophagosome wrapping around mitochondria is promoted (54).

2.2.2 FUNDC1
FUNDC1 is situated within the OMM and is characterized by a

canonical LIR motif, in addition to three transmembrane structural

domains near its N-terminus (55). This protein serves as a receptor

for mitophagy induced by hypoxia. Serine 13 and Tyrosine 18

residues of FUNDC1 can be dephosphorylated under hypoxic stress

and in abnormal mitochondrial membrane potential situations. The

LIR motif of FUNDC1 interacts hydrophobically with the Y and L

pockets of the LC3 protein thereby inducing mitophagy (56, 57).

FUNDC1-mediated mitophagy is tightly dependent on the interaction

between typical LIR motifs and LC3 (58). In hypoxic conditions, the

expression of FUNDC1 was decreased (55). In addition, uULK1 has

the ability to phosphorylate FUNDC1, which activates mitophagy.

During hypoxia or mitochondrial depolarization, ULK1 expression is

induced, and it targets mitochondria to phosphorylate FUNDC1 at

Ser17 (near the LIR motif). This leads to an enhanced interaction of

FUNDC1 with LC3 (59).

2.2.3 Other pathways
In addition to the mitophagy-mediated mechanisms mentioned

earlier, alternative pathways exist for the elimination of

dysfunctional mitochondria. Bcl-2-like protein 13 (Bcl2-L-13) is a

single-channel membrane protein anchored to the OMM. It binds

to LC3 through the LIR motif, recruiting the ULK1 complex to

trigger mitophagy in Parkin-deficient cells (60). FK506-binding
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protein 8 (FKBP8) can induce mitophagy by interacting with LC3A

through its LIR motifs (61). minichromosome maintenance complex

component 8 (MCM8) initiates mitophagy by binding to LC3 via

the LIR motif. Additionally, this type of mitophagy mediated by

MCM8 operates independently of previously identified mechanisms

(62). While in cells where Bcl2-L-13 is knocked down, there is a

reduction in fission and mitophagy due to mitochondrial damage

(63). Recent studies have shown that damaged mitochondria are

eliminated through extracellular vesicles when lysosomal

degradation is inhibited (64). Flunarizine induces the fusion of

mitochondria and lysosomes resulting in the generation of a unique

structure known as the mitolysosome. This phenomenon occurs

through a direct mechanism (65). The mitolysosome is expelled to

the extracellular compartment through cytokinesis dependent on

VAMP2/ STX4 as vesicles, leading to a reduction in the total

number of mitochondria within the cell. This approach works

independently of autophagy protein 5 (ATG5) or ras-related protein

9 (RAB9)-mediated mitophagy (65). Migratory cells selectively

eliminate impaired mitochondria using migratory bodies to

maintain organismal balance, seamlessly linking mitochondrial

balance to cell migration (66).
3 Mitophagy in hypertension-mediated
organ damage

Hypertension constitutes a substantial risk factor for various life-

threatening diseases (67–69). Consequently, proper mitochondrial
FIGURE 2

Mitophagy in HMOD. PINK1, PTEN-induced putative kinase protein 1; BNIP3
adenovirus E1B 19 kDa protein-interacting protein 3-like; FUNDC1, FUN14 d
light chain 3. All figures were created with BioRender.com and are licensed
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function is crucial to cardiovascular health. Alterations in

mitochondrial function, structure and homeostasis can be commonly

seen in organ tissues of patients with hypertension. Mitochondrial

hyperacetylation leads to a cyclic relationship between metabolic

disturbances and mitochondrial oxidative stress, which contributes to

vascular dysfunction and hypertension (70). A systematic

investigation involving 264 hypertensive patients discovered a

connection between mitochondrial dysfunction and hypertension.

Nevertheless, additional research is necessary to clarify the

relationship between mt-DNA mutations and the development of

hypertension (71). Abnormalities in mitochondrial function or

structure have been discovered in numerous experimental

hypertension models (72–74). Overexpression of DNA-damage

regulated autophagy modulator 1 (DRAM1) was found to reduce

oxidative stress, improve mitochondrial fusion and fission, and

increase mitophagy in the placenta of pre-eclamptic mice. These

improvements ultimately lead to a reduction in blood pressure (75).

Mitophagy serves as a crucial element in HMOD (Figure 2, Table 1),

being a component of the mitochondrial quality control system.

Studies indicate that there is a correlation between mitophagy activity

and hypertension, as genetic variants in the PARK2 gene, which

encodes Parkin, have been found to elevate blood pressure level (88).
3.1 Cardiac

Cardiac damage is a common type of organ damage caused by

hypertension. A significant quantity of mitophagy is observable in
, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3; NIX, BCL2/
omain-containing protein 1; LC3, microtubule-associated protein 1A/1B-
for use.
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TABLE 1 The role of mitophagy in HMOD.

Damaged
organ

Mechanisms Effects on
mitophagy

References

Cardiac FoxP3 inhibits Parkin expression and downregulates excessive mitophagy by binding to ATF4 downstream sites or
sequestering ATF4 in the nucleus, thereby ameliorating myocardial remodeling.

Inhibit (76)

Cardiac GSNOR promotes mitophagy through anti-denitrification mechanisms and inhibits cardiac hypertrophy. Promote (77)

Cardiac SIRT3 promotes mitophagy and mitigates cardiac injury by upregulating PINK1/Parkin. Promote (78)

Cardiac Valsartan inhibits excessive mitophagy and alleviates ventricular hypertrophy by modulating autophagy-related genes, such
as Atg5.

Inhibit (79)

Cardiac Spermine reduces blood pressure and ameliorates cardiac hypertrophy in salt-sensitive hypertensive rats by enhancing
mitophagy.

Promote (80)

Vascular Astaxanthin enhances mitophagy and enhances vascular remodeling by increasing PINK1/Parkin. Promote (81)

Vascular The overexpression of SIRT3 enhances mitophagy to stimulate angiogenesis. Promote (78)

Kidney Adiporon mitigates renal fibrosis in salt-sensitive hypertensive mice by enhancing autophagy. Promote (82)

Cerebrum The activation of mitophagy reduces the risk of stroke in spontaneously hypertensive rats on a high-salt diet. Promote (83)

Cerebrum Defective mitophagy leads to neuronal cell injury during chronic hypoxia. Promote (84)

Cerebrum The activation of mitophagy eliminates damaged mitochondria from neurons and safeguards their integrity. Promote (85)

Cerebrum SYNJ2BP and SYNJ2 are essential for anchoring Pink1 mRNA to mitochondria through the RNA-binding domain in SYNJ2,
thus activating mitophagy.

Promote (86)

Cerebrum Morinda officinalis oligosaccharides reduce depression-like behavior in hypertensive rats by upregulating Mfn2 expression and
initiating mitophagy through the PI3K/Akt/mTOR pathway, thereby effectively eliminating damaged mitochondria in astrocytes.

Promote (87)

PINK1, PTEN-induced putative kinase protein 1; GSNOR, S-nitroglutathione reductase; Atg 5, autophagy protein 5; SYNJ2BP, synaptojanin 2 binding protein; SYNJ2),

synaptojanin 2; Mfn2, mitofusin-2; SIRT3, PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; mTOR, mechanistic target of rapamycin; sirtuin-3; ATF4, activating

transcription factor 4.
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a mouse model experiencing isoprenaline-induced cardiac

remodeling. Interestingly, there was also a significant upregulation

of mitophagy in the left ventricle of forkhead box protein P3

(FoxP3)-KO mice. Inhibition of FoxP3 expression and down-

regulation of nuclear translocation leads to excessive Parkin-

mediated mitophagy and more malignant cardiac remodelling.

FoxP3 can downregulate activating transcription factor 4 (ATF4),

decrease Parkin expression, and inhibit mitophagy, improving

cardiac remodeling through two pathways (76). Dr. Tang isolated

and cultured neonatal mouse cardiomyocytes from S-

nitroglutathione reductase (GSNOR)-cKO mice. Mitophagy

markers were detected. The results showed that the expression of

PARKIN, PINK1, LC3II/I and p62 was significantly disorganized

after Ang Ⅱ treatment, which was significantly ameliorated by

overexpression of mtGSNOR, suggesting that mtGSNOR inhibits

cardiomyocyte hypertrophy by regulating mitophagy. Furthermore,

the researchers illustrated that GSNOR interacts with adenine

nucleotide translocator isoform 1 (ANT1) to decrease SNO-ANT1

levels in mitochondria, encourage mitophagy, and improve

mitochondrial dysfunction in hypertrophic cardiomyocytes (77). Dr

Wei conducted a study on sirtuin-3 (SIRT3)-KO mice whereby

they were treated with Ang II. The results of the study showed the

presence of hypoxia and microvascular reduction in the cardiac

tissue of the mice. In addition, mitochondrial dysfunction and

cardiac fibrosis were also observed. They conclude that SIRT3 may

promote angiogenesis and thus ameliorate myocardial fibrosis by

attenuating mitochondrial dysfunction caused by defective

mitophagy (78). Obesity reduces mitochondrial protein and

deoxyribonucleic acid content and expands mitochondrial self-

degradation in hypertensive hearts. The coexistence of obesity and

hypertension also contributes to myocardial fibrosis and left

ventricular diastolic dysfunction. Mitochondrial function improves

cardiac damage in individuals suffering from hypertension and
Frontiers in Cardiovascular Medicine 05
obesity (89). Valsartan can regulate mitophagy-related genes to

inhibit excessive mitophagy, decrease blood pressure, and improve

ventricular hypertrophy (79). In addition, spermidine was found to

inhibit the progression of heart failure by regulating mitophagy to

decrease blood pressure and prevent cardiac hypertrophy and

diastolic dysfunction in Dahl salt-sensitive hypertensive rats (80).
3.2 Vascular

Vascular damage is prevalent among patients with hypertension,

and it constitutes a significant contributing factor to the

development of hypertension. Defective mitochondrial function

promotes autophagy in endothelial cells, leading to reduced

migratory and vasculogenic capacity, vascular endothelial

dysfunction, and ultimately resulting in hypertension (90).

Oxidative stress enhances mitochondrial damage, which in turn

leads to vascular dysfunction, a process that is an important

mechanism in the pathogenesis of hypertension. Astaxanthin

promotes mitophagy and biosynthesis by upregulating the

expression of Pink, Parkin, and mtDNA, resulting in restored

mitochondrial function and improved vascular remodeling (81). It

is likely that the decrease in angiogenic capacity of late EPCs,

mediated by mitochondrial dysfunction due to defective CXCR4/

JAK2/SIRT5 signal pathway, is responsible for capillary rarefaction

in hypertension (91). Significant mitochondrial dysfunction was

observed in rat aortic vascular smooth muscle cells treated with

angiotensin II. This included increased oxygen consumption,

elevated levels of ROS, reduced ATP production, decreased

mtDNA levels, upregulated expression of Parkin and dynamin 1-

like protein 1 (Drp1), and increased expression of peroxisome

proliferator-activated receptor-γ coactivator-1α (PGC-1α) and

transcription factor A (TFAM). Astragaloside IV has the potential
frontiersin.org
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to reverse the described phenomena. Based on the results, it can be

inferred that Astragaloside IV is able to ameliorate the injury to

vascular smooth muscle cells caused by Ang Ⅱ-induced

mitochondrial dysfunction in rat aortic cells by promoting

mitophagy and biosynthesis (92). Another study has shown that

overexpression of SIRT3 enhances mitophagy for angiogenesis and

ameliorates cardiac remodeling in hypertension (78). Increased

division of endothelial mitochondria induced by Drp1

upregulation may be an important mechanism mediating vascular

dysfunction in hypertension. Physical exercise or Drp1 inhibition

effectively reduces mitochondrial division in endothelial cells,

leading to the improvement of vascular endothelial function and

the reduction of blood pressure (93). In mice injected with Ang II,

Mito2HOBA enhanced Sirt3 activity and production of endothelial

nitric oxide. It also reduced vascular superoxide levels, thereby

improving endothelium-dependent relaxation, and decreased blood

pressure. Furthermore, Mito2HOBA exhibited the ability to

preserve mitochondrial respiration, protect ATP production, and

reduce the opening of mitochondrial permeability pores in these

Ang Ⅱ-injected mice (94).
3.3 Kidney

Hypertension elevates the risk of developing tubulointerstitial

fibrosis, tubular atrophy, and glomerulosclerosis (95). The SIRT2/

Septin4 deacetylase pathway mitigates hypertensive kidney injury

by improving oxidative stress and preventing apoptosis in renal

peduncle cells (96). Stimulator of interferon genes (STING)

regulates renal inflammatory response and fibrosis induced by

hypertension through acyl-CoA synthetase long chain family

member 4 (ACSL4)-mediated fibroblasts. The inhibitors of ACSL4,

rosiglitazone, and fibroblasts inhibitor, Fer-1, downregulated

mtDNA/STING dependent renal inflammation induced by Ang Ⅱ
(97). Adiporon, a lipocalin receptor agonist, improves renal

fibrosis by promoting autophagy in a mouse model of

hypertension induced by a high salt diet (82). Alfonso Eirin’s team

analyzed biological samples from 25 patients diagnosed with

primary hypertension, 34 patients diagnosed with secondary

hypertension caused by renal vascular disease, and 22 healthy

volunteers. The findings indicate that blood pressure, urinary

neutrophil gelatinase protein, and kidney injury molecule-1 levels

were elevated in patients with both essential hypertension and

secondary hypertension caused by renal vascular disease. The

researchers concluded that heightened urinary mitochondrial DNA

copy number may serve as an indicator for hypertensive patients

and those with renal impairment and insufficiency. This indicates

that there is mitochondrial impairment in hypertensive kidney

disease in human (98).
3.4 Cerebrum

Hypertension represents a substantial risk factor for various

cerebrovascular conditions, such as stroke and vascular dementia.

Mitochondrial quality is crucial for the survival of neurons
Frontiers in Cardiovascular Medicine 06
following ischemic insults (99). One study discovered that

mitochondria located in the brain tissue of spontaneously

hypertensive rats had a decreased ability to produce ATP (100).

Another study indicated that losartan enhanced the metabolic of

mitochondria in the brain tissue of spontaneously hypertensive rats

(101). Mitophagy deficiency has been associated with various

neurological disorders (102). Dr. Maurizio found that the brains of

spontaneously hypertensive rats on a high-salt diet display impaired

mitochondrial function. Mitophagy activation was found to reduce

stroke risk (83). Chronic cerebral hypoperfusion is thought to

severely affect cognitive function. Impaired autophagy or BNIP3-

mediated mitophagy may serve as a mechanism for neuronal cell

injury during chronic hypoxia (84). Interestingly, the process of

mitophagy in ischemic neurons does not occur directly in the axon

but instead takes place during the transit back to the neuronal

cytosol. By activating mitophagy, damaged mitochondria are

removed from neurons, ultimately providing protection (85).

Interestingly, another study has indicated that synaptojanin 2

binding protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are

required to tether Pink1 mRNA to mitochondria via the RNA-

binding domain in SYNJ2 to activate mitophagy (86). More than

half of individuals with hypertension suffer from depression (103).

A recent study discovered that morinda officinalis oligosaccharides

decrease depression-like behavior in hypertensive rats by increasing

Mfn2 expression and initiating mitophagy through the PI3K/Akt/

mTOR pathway, effectively removing damaged mitochondria in

astrocytes (87). Moreover, research on hypertension induced by

stress has indicated that inhibiting the HMGB1/RAGE axis

increases stress-induced mitochondrial autophagic flux and reduces

microglia-mediated neuroinflammation, which reduces sympathetic

vasoconstriction in the ventral lateral aspect of the medulla

cephaladis and decreases blood pressure (104).
4 Discussion

The projected prevalence of hypertension suggests that it will

affect 1/3 of the global population until 2025 (105). Organ damage

resulting from hypertension is a significant issue that requires

attention. Hypertension is tightly linked to energy metabolism, and

maintaining mitochondrial homeostasis is essential for the

prevention and treatment of cardiovascular disease. A significant

amount of evidence indicates that mitochondrial dysfunction is

strongly related to HMOD. Mitophagy, an indispensable pathway

for maintaining mitochondrial quality control, plays a significant

role in hypertension and HMOD, such as improving cardiac

remodelling, renal fibrosis, vascular remodelling, and nerve cell

damage due to hypertension. Regulation of mitophagy has a

positive impact on hypertension treatment. The PINK1/Parkin-

mediated pathway for mitophagy is presently one of the most

comprehensively researched pathways. PINK1 kinase activity and its

localization to mitochondria are necessary for inducing Parkin

translocation to depolarized mitochondria. In addition, the process

by which p62 is recruited to the OMM is essential for mitophagy

(106). It is apparent that PINK1/Parkin plays an extremely

important role in mitophagy. Furthermore, PINK1 has the ability to
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regulate mitophagy-independent mitochondrial dynamics through

phosphorylates Drp1 S616 (107). In the absence of PINK1/Parkin,

a variety of receptor proteins exist to mediate mitophagy, such as

BNIP3, NIX, FUNDC1, and FKBP8.

Typically, mitophagy is regarded as a safeguard or adaptive

mechanism in pathological settings. Nevertheless, in certain

instances, mitophagy can have negative effects. Maintaining cellular

homeostasis relies on a delicate balance in mitophagy. Swift and

effective removal of damaged mitochondria is imperative to prevent

the buildup of dysfunctional organelles that may disrupt cellular

function. Therefore, it is of paramount importance to comprehend

the regulatory mechanisms and factors influencing mitophagy

activity. In summary, two potential scenarios of mitophagy exist in

hypertensive states: one displaying deficient mitophagy and the

other exhibiting excessive mitophagy. Both scenarios prove

detrimental to organismal homeostasis. Deficient mitophagy leads

to excessive accumulation of mtROS and reduction of mtDNA,

which in turn impairs mitochondrial and intracellular homeostasis.

When excessive mitophagy occurs, the number of normal

mitochondria in the cell decreases, resulting in a shortage in the

cellular energy supply chain. Most of the current evidence suggests

that promoting mitophagy reduces organ or tissue damage caused

by hypertension. Nonetheless, other studies have found that

inhibiting excessive mitophagy may have a protective effect. These

two completely contrasting phenomena may be correlated with the

disease type and stage. Therefore, it is imperative to solve this

enigma as soon as possible. And that is also the direction of our

research. The regulation of mitophagy is incredibly complicated,

and its significance in disease is of utmost importance. The

investigation of molecular mechanisms that underlie mitophagy in

disease progression presents an auspicious approach for creating

innovative therapeutic methods. This necessitates understanding the

process involved, including its underlying biological principles, to

combine with such mechanisms. Moreover, the clinical

implementation of these findings demands meticulous assessment

of their applicability in a clinical milieu.

Despite the large number of meaningful studies on mitophagy

conducted by scientists, there are still many limitations. Firstly,

mitophagy is a dynamic process, and most of the current studies

only observe the changes in mitophagy at a certain point in time

or over a period of time, which does not fully show the

development of mitophagy in an organism. This is also related to

the current detection technology. Secondly, mitophagy may have

opposite effects in different diseases or at different stages of the

same disease, which makes the study more difficult. Finally, most

of the current studies are still at the stage of basic research, and

translating basic research into clinical therapeutic strategies

requires a more in-depth understanding of the mechanism of

mitophagy in HMOD. Although many effective antihypertensive
Frontiers in Cardiovascular Medicine 07
medications are widely available, the rate of control of

hypertension remains unsatisfactory. Uncontrolled hypertension

results in damage to multiple target organs. The development of

artificial intelligence has greatly facilitated our work. Perhaps we

can use AI to discover more gene targets that play a role in

mitophagy, and then screen for mitochondria-targeted drugs to

treat HMOD, or develop novel nanomaterials to deliver drugs to

mitochondria. In addition, searching for reliable biomarkers of

mitophagy in HMOD patients and developing non-invasive

methods to assess mitochondrial autophagic activity could be

used for early diagnosis and monitoring of treatment effects. All

these are yet to be explored and investigated.
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