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Prediction models for major
adverse cardiovascular events
after percutaneous coronary
intervention: a systematic review
Wenqi Deng1†, Dayang Wang1,2†, Yandi Wan1, Sijia Lai1, Yukun Ding1

and Xian Wang1,2*
1Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China, 2Institute of
Cardiovascular Diseases, Beijing University of Chinese Medicine, Beijing, China
Background: The number of models developed for predicting major adverse
cardiovascular events (MACE) in patients undergoing percutaneous coronary
intervention (PCI) is increasing, but the performance of these models is
unknown. The purpose of this systematic review is to evaluate, describe, and
compare existing models and analyze the factors that can predict outcomes.
Methods: We adhered to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) 2020 during the execution of this review.
Databases including Embase, PubMed, The Cochrane Library, Web of Science,
CNKI, Wanfang Data, VIP, and SINOMED were comprehensively searched for
identifying studies published from 1977 to 19 May 2023. Model development
studies specifically designed for assessing the occurrence of MACE after PCI
with or without external validation were included. Bias and transparency were
evaluated by the Prediction Model Risk Of Bias Assessment Tool (PROBAST)
and Transparent Reporting of a multivariate Individual Prognosis Or Diagnosis
(TRIPOD) statement. The key findings were narratively summarized and
presented in tables.
Results: A total of 5,234 articles were retrieved, and after thorough screening, 23
studies that met the predefined inclusion criteria were ultimately included. The
models were mainly constructed using data from individuals diagnosed with
ST-segment elevation myocardial infarction (STEMI). The discrimination of the
models, as measured by the area under the curve (AUC) or C-index, varied
between 0.638 and 0.96. The commonly used predictor variables include
LVEF, age, Killip classification, diabetes, and various others. All models were
determined to have a high risk of bias, and their adherence to the TRIPOD
items was reported to be over 60%.
Conclusion: The existing models show some predictive ability, but all have a high
risk of bias due to methodological shortcomings. This suggests that investigators
should follow guidelines to develop high-quality models for better clinical
service and dissemination.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/
display_record.php?RecordID=400835, Identifier CRD42023400835.
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Introduction

As global populations continue to grow and age, cardiovascular

diseases, particularly coronary artery disease (CAD), have emerged

as significant contributors to both mortality and disability (1).

Since its first introduction in 1977, percutaneous coronary

intervention (PCI) techniques have seen rapid advancements.

Presently, PCI is recommended for various scenarios including

single-vessel disease accompanied by symptoms and ischemia, as

well as early invasive treatment for acute coronary syndrome

(ACS), specifically in high-risk patients (2). Despite successful

revascularization, patients still face an incidence rate of

approximately 20% (3) for cardiovascular events or deaths,

primarily occurring within the first year after PCI (4). This has a

profound impact on their prognosis and quality of life.

Major adverse cardiovascular events (MACE), which are typically

defined as a combination of cardiovascular mortality, non-fatal

myocardial infarction, and non-fatal stroke (3-point MACE),

represent a frequently utilized outcome in cardiovascular research.

When hospitalization for heart failure is also considered, it is

referred to as the 4-point MACE (5). In certain studies, the scope

of the MACE definition may extend to encompass additional events

such as unplanned coronary revascularization, hospitalization for

chest pain, arrhythmia, all-cause mortality, and others (6, 7).

Numerous studies are dedicated to pinpointing predictive

factors associated with MACE occurrence. Some modifiable

clinical parameters and laboratory markers have garnered

attention. Indicators such as increased neutrophil-to-lymphocyte

ratio (8), elevated Lp(a) level combined with heightened hs-CRP

(9), the monocyte to high-density lipoprotein ratio, and Gensini

score (10) are acknowledged as potential predictors of MACE in

individuals undergoing PCI.

Models combined with multiple predictors may assist in

identifying high-risk populations. Several predicting models

(11–14) have been developed, manifesting as risk score systems

or nomograms, to forecast 30-day MACE, 1-year MACE, or

longer-term outcomes following PCI. However, the model

performance of these models remains uncertain. The purpose of

this study is to identify, describe, and appraise existing models

used to predict MACE among post-PCI patients.
Materials and methods

This study was conducted in adherence to the guidelines

provided by the Preferred Reporting Items for Systematic reviews

and Meta-analysis (PRISMA) 2020 (15). The study was registered

at PROSPERO with CRD42023400835. Since that this review

comprises published studies and publicly available data, ethical

approval is not deemed necessary.
Eligibility criteria

All model development studies, whether validated or not,

whether the patient underwent elective or emergency PCI, are
Frontiers in Cardiovascular Medicine 02
encompassed within the scope of this review. These models should

have postoperative MACE as their designated outcome, and they

are eligible for inclusion irrespective of the duration of follow-up. It

is imperative that these studies report on the performance of the

models, including but not limited to discrimination and calibration.

Studies will be excluded if they fall within the following

categories: (1) Conference abstracts, editorials, expert views, notes,

or letters; (2) Review or meta-analysis articles; (3) Full-text articles

were not available; (4) Studies that developed CPMs exclusively for

specific populations, such as patients with diabetes, chronic kidney

disease, atrial fibrillation, or the elderly or women; (5) Studies that

applied an existing model to a new domain or evaluated the

performance of known models adding one or more new predictors;

(6) Studies focused on comparing models rather than assessing

their predictive capability for MACE; and (7) External validation

articles lacking corresponding development data.
Search strategy

We conducted searches across the following databases: Embase,

PubMed, The Cochrane Library, Web of Science, CNKI, Wanfang

Data, VIP and SINOMED on 19 May 2023. All studies published

from 1977 in which year the first coronary intervention was

reported up until the date of literature retrieval are entirely

considered. In addition, we supplemented our initial search by

manually reviewing the reference lists of identified studies,

aiming to minimize the possibility of missing relevant data. The

search strategy takes a combination of subject words (MeSH,

ENTREE, and others) and free-text terms related to PCI, CPM,

and MACE. The search terms encompass a range of expressions

including “Percutaneous Coronary Intervention,” “Coronary

Revascularization,” “major adverse cardiovascular event,”

“cardiovascular outcome,” “MACE,” “prediction model,” “risk

stratification,” “risk score,” and others. Endnote X9 software

(Thomson Reuters, Philadelphia, Pennsylvania, USA) was used

for document management and duplicate removal. In cases

where multiple reports are derived from the same population,

only the most recent study will be included. Detailed search

strategies are provided in Supplementary Appendix S1.
Selection process

The eligibility of studies was assessed independently (YW and

SL) with a third investigator (XW) available to resolve any

disagreements. Initially, articles seemingly unrelated to the

intended research objectives were excluded based on the

screening of titles and abstracts. Then, the studies meeting the

criteria were included after a comprehensive full-text reading.
Data extraction

As the Critical Appraisal and Data Extraction for Systematic

Reviews of Prediction Modelling Studies (CHARMS) Checklist
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(16) suggests, descriptive tables were used to extract information that

encompasses the following items: (1) characteristics of studies (e.g.,

the authorship, publication year, country, study design,

participants, outcome definition); (2) characteristics of the models

(e.g., the predictors, sample size, algorithms used to select the

predictors, model development method, internal validation

method, model evaluation metrics such as the area under the

curve(AUC)/C-index for discrimination, calibration, sensitivity,

specificity; details of dealing missing data; Model presentation).

Data were extracted independently by two viewers (YD and WD),

and the viewers cross-checked the data before analysis.
Quality assessment

The assessment of the risk of bias and applicability was performed

independently by the reviewers (WD and DW) using the PROBAST

tool (17), which consists of four domains: participants, predictors,

outcome, and analysis. To support the evaluation, a set of 20

questions (Supplementary Appendix S2) was answered with “yes,”

“probably yes,” “no,” “probably no,” or “no information.”
Data synthesis and analysis

The key findings were summarized in a narrative manner and

presented in a tabular format or graphs. In addition, we analyzed

the adherence to the TRIPOD (18) statement of each study. The
FIGURE 1

Flowchart of study inclusion.
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22 items (Supplementary Appendix S3) covered a range of

aspects including the title, abstract, methods, results, and other

information. No qualitative analysis was performed in this study.
Results

Study selection

The initial search identified 5,234 potentially relevant articles,

and an additional one was added through reference citation

(19). After removing 945 duplicates, 4,820 articles remained.

Subsequently, we screened the titles and abstracts, resulting in

the exclusion of 4,146 studies that did not meet the inclusion

criteria. In total, 114 articles were reviewed in full text. Following

this comprehensive evaluation, we identified 23 studies for the

final analysis. Among them, 11 studies were published in Chinese

(20–30), while the remaining 12 studies were published

in English (11–13, 31–39). The selection process is visually

depicted in Figure 1.
Study and model characteristics

A total of 23 studies developed 28 new models for predicting

MACE. Each study presented at least one model. Notably, four

studies (24, 26, 32, 34) created multiple predictive models,

incorporating distinct variables. The models sharing identical
frontiersin.org
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predictor variables and stemming from the same study population,

yet predicting MACE at varying time intervals, were categorized as

one model. A total of 12 studies addressed prognostic models for

patients with ST-segment elevation myocardial infarction

(STEMI) (20, 26–29, 32–34, 36–39). Six studies were centered on

patients with myocardial infarction (MI) (11, 12, 21, 22, 24, 35).

Meanwhile, three studies specifically focused on patients with

acute coronary syndrome (13, 23, 25). Notably, Grayson et al.

(31) recruited patients undergoing PCI across a spectrum of

conditions including stable angina, unstable angina, acute

myocardial infarction (AMI), and cardiogenic shock. He (30) did

not explicitly mention the diagnostic information of the patients.

The prognostic models were mostly developed within 3 years

(n = 19, 82.6%). Among the 23 studies, 20 were retrospective

cohort studies, while two were prospective studies (13, 37), and

one was a nested case–control study (12). Approximately 91.3%

of the studies (n = 21) were constructed using Chinese

populations, while one study (31) was based on England

individuals, and another study (37) was based on Spain

individuals. The models developed in the eight studies (21, 24,

25, 30, 33, 37, 39) did not undergo either internal or external
TABLE 1 Main characteristics of the included studies.

Study Research type Design

For STEMI patients
Ma J-2022 E + IV1 + IV2 R

Cui L-2022 E + IV2 R

Shi S-2022 E R

Wang Y-2022 E + IV R

Zhang X-2022 E + IV2 R

Fang C-2022 E + IV2 R

Marcos-Garcés-2022 E P

Yao W-2022 E + IV R

Yu J-2022 E UN

Ma Q-2021 E + IV1 R

Zhao E-2020 E + IV1 R

Zhao X-2020 E R

For AMI/MI patients
Li Q-202 E R

Zeng W-2022 E + IV R

Cao J-2021 E R

Pan D-2021 E + IV2 R

Wu C-2021 E + IV2 R

V3 P

V3 R

Zhao X-2020 E + V3 R A:2010.0

For ACS patients
Huang G-2022 E + IV2 R

Li Y-2022 E R

Kong S-2021 E + IV1 P

For other patients
Grayson AD-2006 E + IV2 + V3 R

He H-2023 E R

E, estimation; V, validation; IV, internal validation; IV1, randomized split validation; IV2, b

no information; A, training set; B, validating set; STEMI, ST-elevation myocardial infarc

per variable.
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validation. Three studies performed external validation by

enrolling patients at different times (11, 31, 35). The study

sample sizes ranged from 124 (22) to 23,718 (35). Events were

reported in 21 studies (91.3%), ranging from 17 (34) to 2,615

(35). The main characteristics of the included studies are

summarized in Table 1.
Model development and performance

All models employed regression analysis, with 15 studies (12,

20–25, 27, 28, 30, 31, 34–36, 38) using logistic regression, while

eight studies (11, 13, 26, 29, 32, 33, 37, 39) using Cox regression.

The models were ultimately presented in various forms, such as

formulas (22, 30, 31), risk scores (35, 37), nomograms (12, 13,

20, 21, 25–29, 36, 38, 39), or combinations thereof. Detailed

information regarding the modeling methods, variable selecting

methods, calibration method, and model presentation can be

found in Table 2. The predicted outcomes spanned from in-

hospital MACE (20, 21, 25, 27, 31, 35, 36) to MACE occurring

post-discharge, with follow-up periods extending up to a
Research time Sample Events EPV

2015.01–2017.12 554 78 13

2017.01–2019.04 354 144 18

2015.06–2019.06 500 85 8.5

2013.08–2018.07 875 292 58.4

2017.01–2018.12 166 62 12.4

2018.01–2022.06 466 127 31.35

2007–2017 1,118 216 54

2016.01–2016.12 526 70 11.7

2017.10–2019.12 373 UN NI

2017.04–2018.12 157 17 5.67

Dryad digital
Repository

460 118 11

2010.01–2018.07 3,708 397 33.08

2019.01–2019.07 962 122 24.4

2018.01–2020.12 124 41 6.8

2017.06–2019.03 297 102 17

2015.01–2020.12 1,958 421 52.625

2011 23,718 2,615 290.1

2012.12–2014.08

2015

1–2017.06 B:2017.07–2018.12 4,103 544 49.45

2018.09–2021.06 200 52 10.4

2019.06–2021.06 276 73 12.2

2013.01–2019.07 1,986 297 49.5

A:2001.8.1–2003.12.31
B:2004.1.1–2004.12.31

– UN NI

2018.01–2021.06 238 49 8.2

ootstrapping; V3, time validation; P, prospective; R, retrospective; UN, unclear; NI,

tion; AMI, acute myocardial infarction; ACS, acute coronary syndrome; EPV, events
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TABLE 2 Model methods.

Study Variable screening method Modeling method Calibration method Presentation

For STEMI patients
Ma J-2022 Univariate analysis COX Hosmer–Lemeshow test, Calibration curve Nomogram

Cui L-2022 Lasso Logistics Calibration curve Nomogram

Shi S-2022 Univariate analysis Logistics Hosmer–Lemeshow test, Calibration curve Nomogram

Wang Y-2022 Univariate analysis Logistics Calibration curve Nomogram

Zhang X-2022 Lasso COX Hosmer–Lemeshow test Nomogram

Fang C-2022 Lasso Logistics Hosmer–Lemeshow test, Calibration curve Nomogram

Marcos-Garcés-2022 Lasso COX NI Risk score

Yao W-2022 Univariate analysis Logistics Hosmer–Lemeshow test, Calibration curve Nomogram

Yu J-2022 Univariate analysis, step forward COX NI Nomogram

Ma Q-2021 Univariate analysis, lasso Logistics Hosmer–Lemeshow test, Calibration curve Nomogram, Formula

Zhao E-2020 Backward stepwise selection, AIC COX Calibration curve Nomogram, Formula

Zhao X-2020 Univariate analysis, backward stepwise COX NI Risk score, Nomogram

For AMI/MI patients
Li Q-202 Lasso Logistics NI Nomogram, Formula

Zeng W-2022 Univariate analysis Logistics NI Formula

Cao J-2021 Lasso Logistics Hosmer–Lemeshow test, Calibration curve Nomogram

Pan D-2021 Univariate analysis Logistics Hosmer–Lemeshow test, Calibration curve Nomogram

Wu C-2021 Stepwise, multivariable Logistics Calibration curve Risk score

Zhao X-2020 Univariate analysis, lasso COX Calibration curve Risk score, Nomogram

For ACS patients
Huang G-2022 Univariate analysis Logistics NI Nomogram, Formula

Li Y-2022 Lasso Logistics Calibration curve Nomogram

Kong S-2021 Univariate analysis, Forward stepwise selection, AIC COX Calibration curve Nomogram

For other patients
Grayson AD 2006 Forward stepwise Logistics Calibration curve, Hosmer–Lemeshow test Formula

He H-2023 Univariate analysis Logistics NI Formula

NI, no information; UN, unclear; AIC, Akaike information criterion.

Deng et al. 10.3389/fcvm.2023.1287434
maximum of 5 years (11). In terms of calibration, one study (29)

reported Hosmer–Lemeshow test results, while six studies (11,

13, 20, 25, 28, 32, 35) provided calibration curves. In addition,

nine studies (12, 21, 26, 27, 30, 31, 34, 36, 38) reported both

calibration curves and test results. A total of 7 studies (22–24, 30,

33, 37, 39) did not report calibration information. The predictors

and definitions of MACE across these studies were outlined in

Supplementary Table S1.

Discrimination, assessed by the area under the curve or C-

index, stands as the most critical metric for evaluating model

predictive performance. With the exception of one study (37), 22

studies reported model discrimination ranging from 0.638 to 0.96

(Figure 2). The AUC values for the models constructed for

STEMI patients, AMI/MI patients, and ACS patients ranged

from 0.666 to 0.96 (Figure 2A), 0.638 to 0.872 (Figure 2B), and

0.712 to 0.854 (Figure 2B), respectively. In the training set, the

AUC values ranged from 0.72 to 0.94 (Figure 2C).
Predictor variables

The predictors were consistently standardized across studies

before analysis. In various studies, the same indicators may be

measured by different methods or at different time points. Some

indicators, although different, share close clinical significance. In
Frontiers in Cardiovascular Medicine 05
these cases, these indicators were analyzed collectively. For

instance, terms such as “age” and “advanced age” were

standardized as “age.” Similarly, variations such as “male,”

“female,” “sex,” “female gender,” and “female sex” were

standardized as “gender.” Expressions such as “Diabetes

mellitus,” “diabetes,” “history of diabetes,” and “history of

Diabetes mellitus (DM)” were all standardized as “diabetes.”

Likewise, terms such as “Killip grade II–IV,” “Killip grade≥ 3,”

“Killip class,” “the Killip classification,” and “Killip’s

classification > I” were standardized as “Killip classification.”

Similarly, expressions such as “left ventricular ejection fraction

(LVEF),” “Low LVEF,” “ejection fraction at admission,” “CMR-

LVEF <40%,” and “EF” were all standardized as “LVEF.” Terms

such as “smoking history” and “smoking” were both standardized

as “smoking history.” Terms such as “peak cTnI,” “cTnI,” “ TnI,”

and “hypersensitive troponin T” were all harmonized to “cTnI”;

“ high-sensitivity C-reactive protein (hs-CRP),” “C-reactive

protein (CRP),” “hs-CRP > 10 mg/L,” and “hs-CRP level” were

combined as “CRP/hs-CRP”; “N-terminal pro-B-type natriuretic

peptide (NT-proBNP),” “baseline NT-proBNP,” “B-type

natriuretic peptide (BNP),” and “BNP level” were combined as

“BNP/NT-proBNP.” In addition, “creatinine” and “Scr” were

both standardized as “Cr” and jointly analyzed alongside

“estimated glomerular filtration rate eGFR.” The predictors

applied in prediction models were multifarious covering
frontiersin.org
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FIGURE 2

Forest plots in the discrimination of models. (A) Forest plot for the training set. (B) Forest plot for the training set—continued. (C) Forest plot for the
validating set. STEMI, ST-segment elevation myocardial infarction; AMI, acute myocardial infarction; MI, myocardial infarction; ACS, acute coronary
syndrome; MACE, major adverse cardiovascular events.

Deng et al. 10.3389/fcvm.2023.1287434

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2023.1287434
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Deng et al. 10.3389/fcvm.2023.1287434
demographic indicators, medical history, medications usage, lesion

locations, PCI procedures, radiological indicators, and serological

biomarkers. Most predictors appeared only once. In the same

research where multiple models were constructed, the predictors

were not counted repeatedly. The 10 most frequently occurring

predictor variables in this review were as follows (Figure 3): LVEF

(14/23), age (12/23), Killip classification (8/23), diabetes (7/23), Cr/

eGFR (7/23), BNP/NT-proBNP (6/23), gender (5/23), cTnI (5/23),

smoking (4/23), hypertension (4/23), and CRP/hs-CRP (4/23).
Risk of bias and applicability assessment

According to the PROBAST assessment results, it was

determined that all studies had a high risk of bias (Figure 4)

owing to deficiencies in their study design, execution, and

analysis. The participants’ domain mostly consisted of data (n =

20, 86.9%) derived from retrospective cohort studies or registry

data that were not originally collected for the specific purpose of

developing predictive models. A total of 16 studies directly

excluded cases with incomplete data or subgroups that might

have an impact on predictive outcomes. This could potentially

introduce higher risk of bias. In the predictors’ domain, none of

the studies provided any information regarding the use of a

blinding method. Consequently, they all received a response of

“no information” when addressing the signaling question “Were

predictor assessments made without knowledge of outcome

data?” In the results’ domain, a predominant issue emerged: the

inappropriate definition of outcomes in all studies. The outcome

definition did not exclude predictor variables in five studies (20,
FIGURE 3

Main predictors of the included models. CKD, chronic kidney disease; LVEF,
natriuretic peptide; NT-proBNP, N-terminal pro-B-type natriuretic peptide
sensitivity C-reactive protein; WBC, white blood cell count; LDL, low-
lipoprotein(a).
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21, 24, 25, 30), for instance, heart failure was included in the

outcome, while LVEF or NT-proBNP were used as predictors.

Moreover, certain studies (20, 23, 25, 27) aimed to predict in-

hospital MACE, yet they were unable to specify the timing of

parameter collection. This could result in an improper time

interval between the outcomes. The analysis domain is a high-

risk area for bias, primarily stemming from several factors. These

include sample sizes that were insufficient to fulfill the

requirement of having events per variable (EPV) of ≥20 (15/23,

65.2%), the inappropriate conversion of continuous variables into

categorical variables (16/23, 69.6%), the improper handling of

missing data (18/23, 78.3%), and the absence of calibration

reporting (6/23, 26.1%), among other factors. Predictor selection

was predominantly based on univariable analysis (12, 22, 24, 26–

28, 30, 37); however, it is advisable to avoid using this method.

All the studies included in this review had a low risk of

applicability due to the primary focus on evaluating models and

identifying potential prognostic factors, with less emphasis on

participant and outcome heterogeneity. The PROBAST results for

each study are shown in Supplementary Table S2.
Transparent reporting assessment

The study’s adherence to transparent reporting of a

multivariable prediction model for individual prognosis or

diagnosis (TRIPOD) items reflects the completeness of reporting

the included CPM studies. In this review, the median adherence

rate stands at 53%, with an interquartile range (IQR) varying

from 30.4% to 100% (Figure 5).
left ventricular ejection fraction; SBP, systolic blood pressure; BNP, brain
; CK-MB, creatine kinase-MB; CRP, C-reactive protein; hs-CRP, high-
density lipoprotein; eGFR, estimated glomerular filtration rate; Lp(a),
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FIGURE 4

PROBAST risk of bias assessment.

FIGURE 5

Overall adherence (%) per TRIPOD items. Total sample n= 23.

Deng et al. 10.3389/fcvm.2023.1287434

Frontiers in Cardiovascular Medicine 08
Those poorly reported items were mainly concentrated within

the Methods section. The omission of blinding was a significant

issue in this review since neither the evaluation of outcomes

(Item 6b) nor the evaluation of predictors (Item 7b) provided any

details regarding blinding procedures or measures to prevent bias.

Despite the provision of sample sizes, researchers never clarified

how the study size was determined (Item 8). Moreover, no

studies explained how they deal with predictors (Item 10a). Five

items had adherence rates below 50%. Only two studies (2/23,

8.7%) reported on risk groups (32, 35) (Item 11) and participant

selection flowcharts (35, 37) (Item 13a). Furthermore, only three

studies (3/23, 13.0%) reported relevant treatment (12, 25, 28)

(Item 5c). In addition, seven studies (7/23, 30.4%) adhered to the

recommendation citing existing models when introducing the

medical background in the Introduction section (11–13, 29, 31,

32, 35) (Item 3a). Nine studies (11–13, 32–34, 36, 37, 39) (9/23,

39.1%) provided supplementary information (Item 21). Four

items were incompletely reported (50%–80% adherence). The
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eligibility criteria (Item 5b) were addressed in 18 studies (18/23,

78.3%). Ten studies (13/23, 56.5%) described how to use the

model (Item 15ba). Fourteen studies (14/23, 60.9%) detailed the

definition of the predictor (Item 7a). The funding information

(Item 22) was reported in 18 out of 23 articles (78.3%) where

this item was suitable. All studies completely described the

following nine items (100% adherence). In the Abstract, all

studies provided ample information (Item 2). Within the

Methods section, the description of the study design (Item 4a)

and outcome definition (Item 6a) were all presented. Studies

also efficiently described the characteristics of the participants

(Item 13b), model presentation (Item 15a), and performance

measures (Item 16) in the Results section. Meanwhile, the

Discussion section of all studies were fully organized around

the study limitations (Item 18), overall interpretation (Item

19a), and potential clinical application (Item 20). The articles

included in this review had 80% compliance with the remaining

TRIPOD items (Supplementary Figure S1).
Discussion

Recently, there has been a noticeable increase in the number of

prognostic model development studies that specifically focus on

post-PCI patients. These studies frequently center on endpoints

such as mortality (40–42), hemorrhage, renal injury, and atrial

fibrillation (43–45). Another important endpoint that has

garnered significant interest among researchers is MACE. The

application of clinical prediction models can provide valuable

information to patients and families and assist healthcare

professionals in allocating hospital resources, potentially

contributing to the improvement of healthcare quality. In

addition, prediction models may aid in the clinical trial design,

identifying patients with the required risk characteristics, thereby

enhancing statistical power or reducing sample size and costs (46).

This systematic review provides an overview of the current

landscape of models designed to predict MACE after PCI. In

total, 23 articles were included in this study, presenting a total of

28 proposed models. The discriminatory power of these models

varied, spanning from 0.638 to 0.96, where 66.7% of the models

achieved a discrimination value exceeding 0.75. In terms of

follow-up time, the AUC range for models predicting in-hospital

MACE is 0.76–0.888, while the AUC range for the six models

predicting 1-year MACE is 0.715–0.96. It is evident that the

models explored in our study demonstrated commendable

predictive powers in identifying high-risk patients.

The best-performing model (34) in this study achieved an AUC

of 0.94 in the training set and an AUC of 0.90 in the validation set.

This outstanding performance might be attributed to the model’s

reliance on a wide array of quantitative imaging parameters.

Currently, polygenic risk scores, proteomics, lipidomics (47–49),

and other data are gradually being introduced to predict

cardiovascular events. Clearly, clinical predictive models based on

easily accessible traditional risk factors may be more

straightforward to apply and generalize. Collecting and utilizing

such data may involve higher costs but hold the potential to
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improve model performance. Artificial intelligence (AI) and

machine learning algorithms, including techniques such as

Extreme Gradient Boosting, the Gaussian mixture model,

Decision Tree, and Random Forest (50–53) have become

increasingly prevalent in addressing such challenges. Machine

learning with its remarkable capability to analyze extensive

volumes of intricate data (54) holds tremendous potential for

enhancing predictive performance and should see wider adoption

in the medical field.

This review has found that the most common variables for

predicting post-PCI MACE include LVEF, age, Killip

classification, diabetes, Cr, BNP, gender, troponin, smoking,

hypertension, and CRP. These variables encompass unmodifiable

factors such as demographic data like age and gender. The

included studies consistently indicate that older age is associated

with worse outcomes. The odds ratio (OR) for individuals over

60 years of age is 1.212 times higher than for those under 60

years (25), while individuals aged 80 and above have a higher

risk of MACE compared with those aged 70–79 (31). Several

studies suggest that female patients generally have worse

prognoses, although Ma et al.’s study (26) arrived at the opposite

conclusion. This could be attributed to the study’s male-to-

female patient ratio, which was 3.5 times higher, with no

adjustment made during the analysis. In the models developed

for STEMI patients, the top three variables are LVEF, Killip

classification, and age. For AMI patients, the most common

variables include LVEF, diabetes, and age, while in ACS patients,

the primary variables are LVEF, age, and BNP. There is a

consistent demonstration of the value of LVEF and age for

adverse outcomes of PCI patients. When analyzing these

predictive factors collectively, it cannot be overlooked that the

Killip classification assesses cardiac function in cases of AMI, but

it is not applicable to patients with unstable angina within the

ACS population. Variables assessing kidney function, such as a

history of CKD, SCr, and eGFR, were also included in multiple

studies. This emphasizes the need for clinical attention to both

cardiac and renal function to identify individuals at risk of

adverse outcomes early. In recent years, several studies have

revealed the connection between inflammation and coronary

heart disease. Inflammatory-related variables such as NLR, CRP,

and hs-CRP were also incorporated into multiple models.

Residual inflammatory risk (RIR), defined as when plasma LDL-

C levels are below 1.8 mmol/L and plasma hs-CRP levels are

≥2 mg/L (55), was employed in a model constructed to predict

in-hospital MACE in AMI patients after PCI (21). The model

achieved an AUC value of 0.82, indicating a close correlation

between RIR and recurrent cardiovascular events.

However, the reporting is not rigorous enough, and all studies

were judged to be at high risk of bias. The primary factors

contributing to this included retrospective study designs, the

absence of blinding during the assessment of predictors or

outcomes, unjustified categorization and definition of outcomes,

failure to circumvent univariate analysis when screening variables,

insufficient sample size for EPV, improper internal validation

methods, lack of external validation, and improper handling of

missing data. The PROBAST, released in 2019 (17), serves as a
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pivotal tool for evaluating clinical predictive modeling during

systematic reviews. Intriguingly, despite 22 out of 23 articles in this

review being published post-2019, they still exhibited

methodological shortcomings across various facets. To enhance the

quality of clinical predictive modeling and maximize the value of

such models in clinical applications, it is advisable for researchers

to acquaint themselves with the PROBAST tool at an early stage

to minimize possible biases in the study design or data sources.
Potential clinical applications

Although these models demonstrate good predictive

performance, all studies were at high overall risk of bias. This

review reveals that there is insufficient evidence to apply any of

these models in clinical practice. However, clinical practitioners

can pay closer attention to the common variables in the models

and intervene appropriately with modifiable risk factors, which

may help reduce the incidence of MACE.
Strength and limitations

This study marks a notable effort in directing our attention

towards predicting models for MACE in post-PCI patients. We

adopted convincing tools such as PROBAST and TRIPOD in this

systematic review to provide more informative results. Certain

procedural characteristics, such as access site, vessel dilation, type

of PCI, initial and final TIMI flow grade, stent type (drug-eluting

stents or bare metal stents), and stent length, can reflect the

contemporariness of the treatment and indicate the complexity of

the medical condition (56). They can also serve as a basis for

identifying high-risk individuals. However, these factors have not

been sufficiently considered in the current models. Future

researchers should give greater consideration to these aspects in

their studies. In addition, the application of a language filter

limiting studies to Chinese and English during literature

screening may result in the omission of valuable data and

insights published in other languages. This could introduce some

and potentially impact the conclusions of this systematic review.

Due to the limited number of relevant studies, we incorporated

prediction models designed for patients undergoing PCI in all

clinical settings. Nevertheless, it is essential to recognize that

patient prognosis and risk factors exhibit variations in different

clinical settings. Moreover, these studies vary in their definitions

of MACE and the duration of follow-up. Although we made

efforts to describe them categorically, the inherent heterogeneity

makes further quantitative analysis challenging.
Conclusion

In summary, despite the rising number of modeling studies, the

practicality of many models remains uncertain due to a lack of
Frontiers in Cardiovascular Medicine 10
external validation and methodological shortcomings. It is

imperative for researchers to adhere to guidelines to enhance

study designs and construct models with high clinical

applicability using proper internal validation and external methods.
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