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The elusive brain perivascular
fibroblast: a potential role in
vascular stability and homeostasis
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In the brain, perivascular fibroblasts (PVFs) reside within the perivascular spaces
(PVSs) of arterioles and large venules, however their physiological and
pathophysiological roles remain largely unknown. PVFs express numerous
extracellular matrix proteins that are found in the basement membrane and PVS
surrounding large diameter vessels. PVFs are sandwiched between the mural
cell layer and astrocytic endfeet, where they are poised to interact with mural
cells, perivascular macrophages, and astrocytes. We draw connections between
the more well-studied PVF pro-fibrotic response in ischemic injury and the less
understood thickening of the vascular wall and enlargement of the PVS
described in dementia and neurodegenerative diseases. We postulate that PVFs
may be responsible for stability and homeostasis of the brain vasculature, and
may also contribute to changes within the PVS during disease.
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Introduction

Perivascular fibroblasts (PVFs) surround the wall of pial arteries and veins on the brain

surface, and extend onto parenchymal arterioles and large diameter venules as they penetrate

into the central nervous system (1–3). They reside within the perivascular space (PVS)

(also called the Virchow-Robin space in superficial layers of the cortex) which is an

extracellular matrix (ECM) and cerebral spinal fluid (CSF) filled space encircling arterioles

and venules (4). Although PVFs are found within the PVS, their role in this location, and

how they support vessel function in health and contribute to vascular pathology in

disease remains poorly understood. Here we will discuss how PVFs may maintain vessel

integrity, highlighting new data on the organizational and morphological characteristics of

PVFs, their transcriptional profiles, and parallels in development and disease.
Morphology and vascular organization of perivascular
fibroblasts

“Flattened adventitial cells” were first described to surround penetrating vessels in the

brain in 1969 and were later characterized as pial fibroblasts that were continuous with

the overlying meninges, forming a sheath around arteries and veins (5–7). This pial

sheath was initially described to dive mainly along arterioles into the brain forming a

continuous connection with intracerebral arterioles and arteries in the subarachnoid

space. More recent studies using fibroblast reporter mouse lines (Col1a1-GFP and Col1a2-
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CreER) described PVFs as having flattened somata and lamella that

create a sheath around arterioles and venules in the central nervous

system (CNS) (3). Further, we now know that PVFs are likely

derived from pial fibroblasts during development (8). Collectively

these studies have confirmed the identity of these “flattened

adventitial cells” on penetrating vessels as being PVFs, likely

derived from the overlying pia.

As for their organization along the brain vasculature, PVFs

surround pial arteries extending all along arterioles to their

termination points deep into the brain (Figure 1A) (3). Their

coverage continues on vessels that branch from penetrating

arterioles, known as the arteriole-capillary transition (ACT) zone,

and ends prior to the capillary bed, when levels of alpha-smooth

muscle actin drop from high to low/undetectable levels (12).

PVFs are also found on large diameter venules (≥12 μm), most

abundantly on the largest ascending venules, principal cortical

venules, that extend from the pial surface down into the

underlying white matter in the cerebral cortex (3, 13). Along all

vascular zones, PVFs maintain a consistent morphology, with

flattened somata and lamellar sheaths surrounding the vessel wall.

However, their function along these distinct vascular territories in

the healthy brain is largely unknown.
Perivascular fibroblast dynamics and
cellular interactions in the perivascular
space

It is well established that PVFs occupy the PVS which is an

ECM/CSF-filled space surrounding arterioles and venules

continuous with the subarachnoid space (2, 9). The CSF-filled

PVS is very apparent in the upper layers of the cortex and

eventually decreases in size in the deeper layers becoming mostly

basement membrane (Figures 1A,B). In addition to harboring

immune cells like perivascular macrophages (PVMs), the PVS is

known to participate in brain waste clearance which relies on

continual movement of CSF via arteriole vasomotor activity and

heartbeat (14–17). PVFs are embedded in the outer basement

membrane in between the mural cell layer and the astrocytic

endfeet (9) (Figure 1B). Within this space, PVFs exhibit some

limited mobility within their territories in the normal brain,

which is in contrast to pericytes that appear firmly embedded in

their positions (3). This lends to the possibility that PVFs are

sensing the perivascular environment, modulating the outer

vascular wall, and interacting with other perivascular populations

like PVMs, astrocytes, and mural cells.

PVFs and PVMs both reside within the PVS (Figures 1A,B).

PVMs are a subset of parenchymal border macrophages and are

distinguished by expression of CD206 and Lyve1 (18). They are

mainly known for their immune surveillance and phagocytic

activity (19, 20). Their phagocytic activity is particularly important

for blood-brain barrier (BBB) function in brain regions where

vessels lack barrier properties like the area postrema in which

PVMs sequester molecules larger than 10kDa (21). PVMs on

arterioles also take up fluorescent tracers injected into the caudate

putamen, demonstrating a potential role in brain waste clearance
Frontiers in Cardiovascular Medicine 02
(22). Further, depletion of PVMs, in addition to parenchymal

border macrophages, resulted in increased expression of ECM

genes in PVFs (18). Along with the loss of PVM-derived matrix

metalloproteinase proteins, this is thought to stiffen the vascular

wall reducing vasomotor activity of arteries and arterioles and thus

impairing CSF flow and waste clearance. In non-CNS tissues,

studies have revealed that reciprocal signaling between

macrophages and fibroblasts is involved in maintenance of cellular

quiescence and fibrotic responses during disease (23). Thus, it is

likely that PVMs and PVFs regulate the cellular state of one

another to maintain homeostasis and function of the PVS.

Notably, the spatiotemporal development of PVFs and PVMs

along penetrating vessels coincide almost identically (8). Further,

timing of PVF and PVM arrival around postnatal day 7 in the

brain corresponds to when the PVS begins to clear brain waste

(24). Together this suggests PVFs and PVMs respond to similar

developmental cues and perhaps establish interactions that are

important for the creation, function, and/or homeostasis of the PVS.

Astrocytes ensheath the outermost layer of the vasculature with

their endfeet encasing the PVS and bridging the vasculature with

neurons (25). Astrocytes, along with PVFs, likely participate in

creating the outer basement membrane by depositing laminin

(26) (Figure 1B). Further, the majority of astrocytes proliferate

and differentiate in the postnatal mouse brain where they begin

to assist in neurotransmitter recycling, modulation of

synaptogenesis and synaptic transmission, water transport, and

BBB maintenance (27, 28). Astrocytes are also well known for

regulating blood flow by sensing neuronal activity and

subsequent release of vasomodulators on arterioles to increase

local blood flow (29). This is called neurovascular coupling and

is dependent on gap junctions and hemichannels formed by

Cx43, Cx30, and Cx26 proteins to relay electrical signals

(K+, Ca2+) throughout the astrocytic networks and expose the

vasculature to vasomodulators (30). Based on single cell

transcriptomic data, PVFs as well as meningeal fibroblasts highly

express Cx43, Cx30, and Cx26 (31). Thus, PVFs may relay

vasomodulators and electrical signals through direct

communication with astrocytes and smooth muscle cells via gap

junctions and hemichannels, respectively. However, it has not

been established if direct communication exists between

astrocytes, PVFs, and smooth muscle cells, and whether PVFs are

involved in blood flow regulation.

PVFs surround the mural cell layer, specifically smooth muscle

cells on arterioles, ensheathing pericytes on the ACT zone, and

venule stellate mural cells on venules (3) (Figure 1A). Due to

their perivascular location and common expression of Pdgfrβ,

pericytes and PVFs have been confused with one another, where

PVFs are sometimes referred to as “type A pericytes” (32, 33).

However, use of Col1a1 and other fibroblast markers like Pdgfrɑ,
in addition to their perimural location have allowed for better

distinction between the two perivascular cell types (1–3). Mural

cells along arterioles and the ACT zone are capable of rapid

modulation of blood flow into the capillary network in response

to neuronal activity (12). While it is unknown if PVFs actively

regulate blood flow in the brain as discussed above, it is possible

they play a part by modulating the tension of the arteriole wall.
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FIGURE 1

Organization of perivascular fibroblasts on the brain vasculature and role in perivascular space pathology. (A) Graphic depicting the vascular organization of
perivascular fibroblasts (PVFs) on the brain vasculature accompanied with respective electron micrographs of a penetrating arteriole and ascending venule
from the MICrONS 3D electron microscopy (EM) dataset (9, 10) (Arteriole coordinates: 174937, 111854, 19349; Venule coordinates: 296137, 112937, 20593).
PVFs (purple) lie within the perivascular space (PVS) and surround smooth muscle cells (red) on penetrating arterioles, ensheathing pericytes (orange) on
arteriole capillary transition (ACT) zone, and venule mural cells (blue) on ascending venules. PVFs are not found on capillary vessels where capillary
pericytes (green) reside. The cerebral spinal fluid (CSF; light blue)-filled PVS is apparent around arterioles in the upper layers of the cortex and
becomes less obvious in deeper cortical layers. Vasomotor oscillations of arteries and arterioles draw CSF into the PVS and brain parenchyma where it
mixes with interstitial fluid (ISF) and waste, ultimately exiting out of the brain via the glymphatics or intramural periarterial drainage (IPAD) pathways.
Perivascular macrophages (PVMs) (yellow) can be distinguished by the presence of lysosomes (Lys) (11) and also reside within the perivascular space
along similar vascular territories as PVFs. Astrocytes (gray) reside in the parenchyma and extend processes to create endfeet that surround the brain
vasculature. (B) Graphic depicting a cross-section of an arteriole in the upper and deeper cortical layers as well as a venule showing the layering of the
vasculature. Endothelial cells (light pink), smooth muscle cells and PVFs are encased in separate BMs (pink and light purple). Astrocytic endfeet deposit
extracellular matrix and adhere to the vascular wall. CSF also fills within the PVS. The PVS is denoted in each cross-section with zoomed-in insets for
arterioles and venules to depict the basement membrane layers. (C) Graphic depicting the pathological changes to the PVS in neurodegenerative
diseases. PVFs may undergo some degeneration and aberrant signaling. Degeneration of smooth muscle cells, thickening of the vascular basement
membranes, and deposition of proteins in the basement membranes are known to occur. This hinders vasomotion and movement of CSF. Together
these likely contribute to enlargement of the PVS which is associated with poor waste clearance. It is unknown if degeneration or aberrant signaling in
PVFs plays a role in smooth muscle cell degeneration and/or thickening of the vascular basement membranes.
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PVFs, mural cells, and endothelial cells are encased within unique

basement membranes (34) (Figure 1B). In general, each basement

membrane consists of glycoproteins from four major families:

laminins, non-fibrillar collagens, nidogens and heparan sulfate

proteoglycans. The innermost basement membrane around the

endothelial layer predominantly consists of non-fibrillar collagen

type IV with laminin α4 and α5. The mural basement membrane

is of similar composition but also includes laminin α1 on

arterioles (2, 35). Unlike capillaries where the endothelial-

pericyte basement membranes are continuous, basement

membranes on arterioles ensheath each cell layer and are

interconnected to one another through an interstitial matrix

made up of fibrillar collagen type I and III (35). The elastin layer

is sandwiched between smooth muscle cells and endothelial cells

on arterioles, and importantly provides the flexibility necessary

for the dynamic diameter changes (36, 37). PVFs are embedded

in the outer basement membrane adjacent to the astrocytic

endfeet basement membrane layer (9). Through focal adhesions

with their underlying ECM, fibroblasts can modulate tension of

the basement membrane in response to stimuli (38, 39). Thus, it

is possible that PVFs create tone within the outer basement

membrane that confines the contractility and dilatory actions of

mural cells when modulating blood flow. However, this

possibility has yet to be tested.
Progenitor role for perivascular
fibroblasts

On non-CNS vessels in zebrafish, PVFs arise at earlier stages

than pericytes and act as progenitors giving rise to pericyte

populations (40). The CNS vasculature in zebrafish develops

similar BBB properties as mammals with endothelial tight

junctions, pericytes, and radial glial contacts that resemble

astrocytes (41). To date, PVF coverage on CNS vessels in

zebrafish has not been described. Although given that zebrafish

and mammals share many of the same brain vascular properties,

it is possible PVFs also reside on CNS vessels in zebrafish and

give rise to brain pericytes in a similar manner. However, in

contrast to zebrafish, smooth muscle cell and pericyte

populations are initially established in the brain during

embryonic stages in mice, prior to the postnatal arrival of PVFs

(8, 42). This does not completely rule out the possibility that

PVFs can modulate mural cell populations in later developmental

stages, or diseases where mural cell degeneration occurs. Lineage

tracing approaches to test this possibility in mammalian models

have not been performed to our knowledge.
Contribution of perivascular fibroblasts
to the vascular wall

The outer basement membrane and interstitial matrix of

arteries, arterioles, venules, and veins where PVFs are embedded,

is critical for providing integrity, facilitating the integration of

multiple perivascular cells, and allowing for mechano-physical
Frontiers in Cardiovascular Medicine 04
control of vessel dynamics (9, 34). Due to high expression of

many ECM genes in brain fibroblasts, it is hypothesized that they

contribute to production and maintenance of this basement

membrane and the interstitial matrix (2, 31). These include

fibrillar collagens (Col1a1, Col1a2, Col3a1, Col5a1, Col5a2, and

Col5a3) and non-fibrillar collagens (Col6a1, Col6a2, Col6a3,

Col8a1, Col8a2, Col11a1, Col12a1, Col13a1, Col15a1, Col16a1,

Col23a1, Col26a1). Brain fibroblasts also express the collagen-

modifying enzymes (i.e., lysyl oxidases) and organizers such as

lumican (Lum) and decorin (Dcn). Recent work has

demonstrated that PVFs can be further differentiated from pial

fibroblasts for their enriched expression of Col15a1, Col12a1,

Col4a1, Col14a2, and Spp1 (31). To our knowledge, only Col1a1

and laminin-ɑ1 are exclusively around arterioles and venules in

the brain, but it is unknown if these ECM proteins are solely

PVF-derived (2, 31, 43). In zebrafish, PVFs deposit Col1a2 along

the vasculature and loss of PVFs results in dysmorphic vessels

(40). This demonstrates that PVFs are likely crucial for the

vascular integrity of dynamic vessels by supplying ECM proteins

like Col1a2 (44).
Profibrotic role for perivascular
fibroblasts in the central nervous
system

PVFs gained attention for their profibrotic response following

spinal cord injury in studies by Soderblom et al. (1). In these

studies, spinal cord injury was induced without puncturing the

surrounding fibroblast-rich meninges resulting in a proliferative

and fibrotic response by PVFs, which secreted collagen I in

place of the damaged, dying tissue, ultimately creating the

fibrotic scar. Participation of PVFs along with meningeal

fibroblasts in creating the fibrotic scar is now known to be a

common phenomenon following stroke, neuroinflammation, and

intracerebral hemorrhage (43, 45–48). Interestingly, fibroblasts

assist in BBB repair following stroke and intracerebral

hemorrhage (48, 49). However, the fibrotic scar is not permissive

to axonal regeneration and remyelination following spinal cord

injury (46, 47, 50). Blocking the proliferation of profibrotic cells

improved axonal sensorimotor recovery. However, this also

prevented complete sealing of spinal cord lesions (32). Together,

these studies suggest that fibroblasts, including PVFs, may have

some protective roles for brain vascular repair but their fibrotic

activity likely prevents neuroregeneration.

A perivascular origin for pro-fibrotic, collagen producing cells

has also been described following injury of peripheral organs such

as the skin, skeletal muscle, heart, kidney, liver, and lung (51).

Similar to the brain, PVFs in these peripheral tissues also reside

on large diameter vessels like arteries, arterioles, venules and

veins and express Pdgfrα under homeostatic conditions. In the

adventitia of large peripheral arteries, fibroblasts deposit collagen

among other ECM proteins to maintain the structural integrity

and functionality of these large vessels (52). However, fibroblasts

in the periphery and brain, are quite heterogenous and thus a

shared marker for PVFs among all the organs has yet to be
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identified (31, 53). Identifying better markers will help us

understand the differences and commonalities of PVFs in the

CNS and periphery in health, injury, and disease.
Thickening of the vascular basement
membrane in AD

Thickening of the vascular basement membranes is commonly

observed along the vasculature in Alzheimer’s Disease (AD)

(34, 54) (Figure 1C). Studies have reported increased deposition

of collagen IV, fibronectin, and the heparan sulfate proteoglycans,

agrin and perlecan (55–60). Other than collagen I, which was

increased in proteomic studies on the brain microvasculature

from AD patients, very little is known about PVF-specific ECM

gene changes (34, 54). Nonetheless, it is hypothesized that

disorganization, thickening, and altered deposition of ECM

components affects brain waste clearance and leads to excessive

vascular accumulation of amyloid-β (Aβ), particularly within the

ECM of arteries and arterioles (61–63). Build-up of Aβ along the

brain vasculature is a major characteristic of cerebral amyloid

angiopathy (CAA) and is associated with smooth muscle cell

degeneration and poor vasomotor activity (64) (Figure 1C). The

fate of PVFs in AD and CAA, and whether they play a part in

these pathological events has not been well explored. Single cell

transcriptomic studies have shown that PVF populations are

reduced in postmortem AD tissue, along with a reduction in

endothelial and mural cells, with the remaining PVF populations

exhibiting heightened interferon and SMAD signaling (65). It is

possible that the PVF layer undergoes some degeneration, and

that aberrant signaling in the remaining population results in

thickening of the basement membrane. This could affect the

compliance of the vascular wall. Thus, understanding the role

and timing of PVF influence in AD and CAA pathology could be

of importance in devising ways to improve vascular function in

patients with AD.
A role for perivascular fibroblasts in the
enlargement of the perivascular space
in disease

Enlargement of the PVS has been associated with a range of

nervous system diseases and cognitive decline (66, 67). Notably,

enlargement of the PVS and activation of PVFs was recently

observed in mouse models and postmortem tissue from patients

afflicted with Amyotrophic Lateral Sclerosis (ALS) (68). In these

studies, PVFs increased expression of Col6a1 and Spp1, a protein

involved in bone mineralization, prior to ALS symptom onset.

This suggests that PVFs become activated early in ALS, and

biomarkers such as Spp1 could be an indicator of ALS

progression. Enlargement of the PVS is also a feature of cerebral

small vessel disease (CSVD) which, in addition to other vascular

pathologies, is implicated in both vascular dementia and AD

(66). CSVD, which includes CAA, is associated with vascular

stiffening, inflammation, protein deposits (such as Aβ), loss of
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mural cells, and disruption of the BBB. Collectively, these

features are hypothesized to drive PVS enlargement due to poor

vasomotor oscillations and stalling of CSF flow, thus creating a

vicious cycle that hinders PVS waste clearance and neurovascular

regulation (67, 69) (Figure 1C). In particular, PVS enlargement

is regularly observed along cortical arterioles in white matter

regions, correlating with vascular Aβ deposition and reduced

smooth muscle cell coverage (70). PVS enlargement was also

associated with heightened tau and Aβ pathology as well as

cognitive decline, suggesting enlargement of the PVS exacerbates

AD progression (71–73). It is plausible that aberrant signaling

or degeneration of PVFs in neurodegenerative diseases is

involved in the enlargement of the PVS through various

mechanisms in AD, such as smooth muscle cell degeneration

and/or thickening of the vascular ECM ultimately attenuating

vasomotion and CSF movement. However, more thorough

studies are needed to understand the relationship between PVFs

and PVS enlargement.
Conclusion

We have discussed the characteristics and potential roles of

PVFs in supporting the brain vasculature. We have highlighted

how PVFs are likely derived from the pia during postnatal

development, and along with PVMs, may play a role in creating

and maintaining the functionality of the PVS. We noted a

potential role for PVFs in regulation of cerebral blood flow

through signaling interactions with astrocytic endfeet and SMCs,

in addition to regulating the tone of the arteriole wall. Further,

the high expression of various ECM proteins and regulators in

PVFs points to their probable role in maintaining the integrity of

the vascular wall. Thus, abnormal function or density of PVFs

may be involved in thickening of the vascular basement

membranes and enlargement of PVSs that is observed in AD,

CAA, and other neurodegenerative diseases. Future studies aimed

at uncovering the role of PVFs in health and disease will be

instrumental for understanding how these elusive cells contribute

to vascular homeostasis and pathology.
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