
TYPE Original Research
PUBLISHED 17 November 2023| DOI 10.3389/fcvm.2023.1278374
EDITED BY

Gary Schwartz,

Baylor University Medical Center, United States

REVIEWED BY

Sun Kyun Ro,

Hanyang University, Republic of Korea

Sung-Min Cho,

Johns Hopkins Medicine, United States

Gerrit J. Noordergraaf,

Elisabeth-TweeSteden Hospital, Netherlands

*CORRESPONDENCE

Jeong-Am Ryu

lamyud.ryu@samsung.com

RECEIVED 16 August 2023

ACCEPTED 06 November 2023

PUBLISHED 17 November 2023

CITATION

Kim TW, Ahn J and Ryu J-A (2023) Machine

learning-based predictor for neurologic

outcomes in patients undergoing

extracorporeal cardiopulmonary resuscitation.

Front. Cardiovasc. Med. 10:1278374.

doi: 10.3389/fcvm.2023.1278374

COPYRIGHT

© 2023 Kim, Ahn and Ryu. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Cardiovascular Medicine
Machine learning-based predictor
for neurologic outcomes in patients
undergoing extracorporeal
cardiopulmonary resuscitation
Tae Wan Kim1, Joonghyun Ahn2 and Jeong-Am Ryu3,4*
1Department of Pulmonary and Critical Care Medicine, Chung-Ang University Hospital, Chung-Ang
University College of Medicine, Seoul, Republic of Korea, 2Biomedical Statistics Center, Samsung Medical
Center, Data Science Research Institute, Seoul, Republic of Korea, 3Department of Critical Care Medicine,
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Background: We investigated the predictors of poor neurological outcomes in
extracorporeal cardiopulmonary resuscitation (ECPR) patients using machine
learning (ML) approaches.
Methods: This study was a retrospective, single-center, observational study that
included adult patients who underwent ECPR while hospitalized between
January 2010 and December 2020. The primary outcome was neurologic status
at hospital discharge as assessed by the Cerebral Performance Categories (CPC)
score (scores range from 1 to 5). We trained and tested eight ML algorithms for
a binary classification task involving the neurological outcomes of survivors after
ECPR.
Results: During the study period, 330 patients were finally enrolled in this analysis;
143 (43.3%) had favorable neurological outcomes (CPC score 1 and 2) but 187
(56.7%) did not. From the eight ML algorithms initially considered, we refined
our analysis to focus on the three algorithms, eXtreme Gradient Boosting,
random forest, and Stochastic Gradient Boosting, that exhibited the highest
accuracy. eXtreme Gradient Boosting models exhibited the highest accuracy
among all the machine learning algorithms (accuracy: 0.739, area under the
curve: 0.837, Kappa: 0.450, sensitivity: 0.700, specificity: 0.740). Across all three
ML models, mean blood pressure emerged as the most influential variable,
followed by initial serum lactate, and arrest to extracorporeal membrane
oxygenation (ECMO) pump-on-time as important predictors in machine learning
models for poor neurological outcomes following successful ECPR.
Conclusions: In conclusion, machine learning methods showcased outstanding
predictive accuracy for poor neurological outcomes in patients who underwent
ECPR.
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CI, confidence interval; CPR, cardiopulmonary resuscitation; ECMO, extracorporeal membrane oxygenation;
ECPR, extracorporeal cardiopulmonary resuscitation; MBP, mean blood pressure; ML, machine learning;
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Introduction

Neurological prognosis following cardiopulmonary

resuscitation (CPR) remains an issue of critical importance for

survivors (1, 2). It is important to estimate the potential for

normalization of cerebral function in patients after return of

spontaneous circulation. The capacity to accurately forecast

neurological outcomes can significantly impact subsequent

medical management, enabling physicians to make informed

decisions that optimize the balance between quality and quantity

of intensive treatment (2, 3). Recently, the application of

extracorporeal membrane oxygenation (ECMO) as a

supplementary measure to conventional CPR has experienced a

marked increase (4, 5). Concurrently, the estimation of

neurological outcomes for patients subjected to extracorporeal

cardiopulmonary resuscitation (ECPR) has become a critical

aspect of patient management. However, the task of predicting

neurological outcomes post-ECPR is intrinsically complex. It

necessitates the comprehensive integration of a myriad of

patient-specific factors along with unique circumstances

associated with ECPR.

One of the strengths of machine learning (ML) approaches is

their capacity to handle intricate nonlinear relationships between

predictors, leading to more robust and consistent predictions (6).

Harnessing the power of ML could offer a promising solution to

the challenge of predicting neurological outcomes after ECPR.

This approach can effectively analyze a myriad of patient-specific

factors and ECPR-associated circumstances, possibly revealing new

correlations and key variables. Consequently, it can enhance the

accuracy of neurological prognosis predictions, and direct attention

towards the most influential elements impacting patient outcomes

in ECPR. While prior studies have identified associations between

favorable neurological outcomes and predictors following

successful ECPR (7–9), none have explored the potential of

machine learning approaches to predict neurological outcomes in

ECPR patients. In this study, we aim to utilize ML methodologies

to identify critical factors that can influence neurological prognosis

following ECPR. We postulate that this innovative approach will

shed light on the hidden correlations and interactions among the

variables and contribute to a more comprehensive and precise

predictive model for neurological outcomes in ECPR patients.
Methods

Study population

This study was a retrospective, single-center, observational study

that included adult patients who underwent ECPR while hospitalized

between January 2010 and December 2020. The Institutional Review

Board (IRB) of Samsung Medical Center approved this study (IRB

No. 2020-09-082). Informed consent requirements were waived by

the Institutional Review Board (IRB) of Samsung Medical Center,

given the retrospective nature of the study. The study included all

consecutive patients who underwent ECPR during the study
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period, resulting in a total of 389 patients. Of these patients who

under the age of 18, those with inappropriate indications for

ECPR, those with pre-existing severe neurological conditions such

as traumatic brain injury, major stroke, malignant brain tumor, or

severe dementia, those with insufficient medical records, and those

who were transferred from another hospital after undergoing

ECPR were excluded (Figure 1).
Definitions and outcomes

In this study, we retrospectively collected baseline

characteristics, including comorbidities, behavioral risk factors,

intensive care unit management, and laboratory data, utilizing

our center’s dedicated “Clinical Data Warehouse Darwin-C.”

This data warehouse has been specifically designed to facilitate

investigators in searching and retrieving de-identified medical

records from electronic archives. Mean blood pressure (MBP)

was the mean of the values measured in the first 24 h, mainly

based on arterial blood pressure, and patients without ABP used

non-invasive blood pressure instead. Laboratory data was

characterized by the most unfavorable value recorded within the

6 h window immediately preceding ECMO insertion, inclusive of

the period during CPR. In this study, ECPR was defined as both

a successful veno-arterial ECMO implantation and pump-on

with cardiac massage during the index procedure in patients with

cardiac arrest. Importantly, when ROSC occurs during ECMO

cannulation, practitioners generally do not remove the already-

inserted cannula nor do they halt the ECMO pump activation

process, as referenced in studies (1, 10). The term “ECMO

pump-on” was characterized as the cessation of chest

compressions following the successful implantation and

activation of the ECMO device. In this study, ECPR was initiated

under specific criteria: a witnessed arrest was confirmed;

conventional CPR had been administered for a duration

exceeding 10 min without success; and the etiological event

causing the cardiac arrest was deemed reversible (4). Exceptions

to ECPR initiation were cases with: anticipated life expectancy of

less than 6 months; terminal malignancy; an unwitnessed

collapse; limited physical activity; an unprotected airway; or

instances where CPR had been performed for over 60 min at the

time of initial contact. It should be noted that age alone was not

considered a contraindication for the initiation of ECPR (4).

ECPR was defined as use of venoarterial ECMO intended to treat

cardiac arrest and arrest to ECMO pump-on time was defined as

time from collapse to the point of ECMO setup and

administration (11). In patients undergoing ECPR, the process of

extracorporeal circulation, combined with external volume

infusion, has the potential to decrease body temperature. This

reduction in temperature could confer some degree of

neuroprotection via induced hypothermia. It should be noted

that aggressive therapeutic hypothermia might not always be

pursued in cases where the patient exhibits hemodynamic

instability or has complications such as bleeding during ECMO

support. Consequently, in the context of ECPR, the initiation and

extent of surface cooling, as well as the targeted temperature, are
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FIGURE 1

Study flow chart. ECPR, extracorporeal cardiopulmonary resuscitation; CPC, cerebral performance Categories scale.
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individually determined by the attending ICU intensivist. This

decision-making process adheres to the therapeutic hypothermia

protocol established by Samsung Medical Center (12). The

primary outcome was neurologic status at hospital discharge as

assessed by the Glasgow-Pittsburgh Cerebral Performance

Categories (CPC) score (scores range from 1 to 5) (13). CPC

scores of 1 and 2 were classified as favorable neurologic

outcomes; CPC scores of 3, 4, and 5 were considered poor

neurologic outcomes (14, 15). We thoroughly reviewed medical

records and patients were assigned to the CPC scale upon

agreement by two authors (JAR and TWK).
Machine learning (Ml) models

Utilizing Shapley Additive exPlanations, we first identified the

critical variables, which were then incorporated into the ML

analyses. Initially, we trained and tested eight ML algorithms for a

binary classification task involving the neurological outcomes of

survivors after ECPR. The algorithms included logistic regression

(LR), random forest (RF), AdaBoost Classification Trees

(AdaBoost), Bagged CART (Bagging), Stochastic Gradient Boosting

(GBM), eXtreme Gradient Boosting (XGBoost), Multivariate

Adaptive Regression Spline (MARS), and Support Vector Machines

with Radial Basis Function Kernel (SVM). For the final analysis, we

only utilized the top three algorithms with the highest accuracy out

of the aforementioned eight ML algorithms. We divided the dataset

into training and testing sets with an 8:2 ratio. The training set was

used for statistical analysis, feature selection, and model training,

while the independent testing set was employed to evaluate the

trained models. Additionally, we detected a small number of
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missing values in the dataset. To address this issue, we utilized the

k-Nearest Neighbors algorithm for imputation during the ML

analysis (16–18). This technique involved estimating the missing

values by considering the values of their nearest neighbors in the

dataset. By applying this approach, we ensured that the dataset was

complete and ready for further analysis and modeling.

Furthermore, preprocessing procedure entailed scaling and one-hot

encoding. Due to the limited sample size, we opted for the Leave-

One-Out Cross-Validation (LOOCV) methodology. This approach

could minimize bias by assessing the algorithm across the entire

dataset, thereby ensuring more consistent and reproducible results.

Afterwards, we trained each ML algorithm using the best

hyperparameters until convergence was achieved on the training

set. The cutoff threshold for each model was determined based on

the receiver operating characteristic curve and Youden index (19,

20) obtained from the validation set, and this threshold was then

applied to the test set. In order to identify which variables have the

predictive performance, the importance of each variable in the ML

model was evaluated by the permutation score of the test set. This

score is defined as a decrease in model performance (area under the

receiver operating characteristic curve) when all values of a given

variable are randomly mixed (21). The magnitude of the model

performance reduction reflects how dependent the model is on

particular variable. The importance of variables is scaled so that the

maximum value is 100.
Statistical analyses

For continuous variables, we first assessed their distribution for

normality. Variables that followed a normal distribution were
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https://doi.org/10.3389/fcvm.2023.1278374
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Kim et al. 10.3389/fcvm.2023.1278374
presented as means ± standard deviations, while those that did

not were described using medians and interquartile ranges.

Categorical variables are represented as numbers with

subsequent percentages. Data comparison was carried out using

Student’s t-test or Mann-Whitney U test for continuous

variables, whereas the Chi-square test for categorical variables.

Clinically relevant variables, including age, sex, comorbidities,

habitual risk factors, variables associated with ECPR,

classification of arrest subtypes, complications of ECMO, MBP

and ICU management were subjected to multiple logistic

regression analyses to obtain statistically meaningful predictors

associated with poor neurological outcomes. All tests were two-

sided and p values of less than 0.05 were considered statistically

significant. Statistical analyses were performed with R Statistical

Software (version 4.2.0; R Foundation for Statistical Computing,

Vienna, Austria).
TABLE 1 Baseline characteristics of patients.

Favorable neurologic out
(n = 143)

Patient demographics
Age, years 60.0 [49.0–68.0]

Sex, male 103 (72.0)

Comorbidities
Malignancy 20 (14.0)

Hypertension 60 (42.0)

Diabetes mellitus 44 (30.8)

Chronic kidney diseasea 9 (6.3)

Cardiovascular disease 35 (24.5)

Stroke 16 (11.2)

CPR details
Type of cardiac arrest

Out of hospital cardiac arrest 13 (9.1)

In-hospital cardiac arrest 131 (91.6)

First monitored rhythm

Asystole 14 (9.8)

Pulseless electrical activity 71 (49.7)

Shockable rhythm (VT or VF) 57 (39.9)

Arrest to ECMO pump-on time, minutes 23.0 [11.0–35.0]

Cause of CPR
Cardiac cause 109 (76.2)

Acute coronary syndrome 87 (60.8)

Dilated Cardiomyopathy 5 (3.5)

Myocarditis 8 (5.6)

Refractory arrhythmia 4 (2.8)

Stress-induced cardiomyopathy 2 (1.4)

Heart transplant rejection 3 (2.1)

Valvular heart disease 0 (0)

Non-cardiac cause 34 (23.8)

Respiratory failure 6 (4.2)

Pulmonary embolism 5 (3.5)

Aortic syndrome 4 (2.8)

Sepsis 2 (1.4)

Non-traumatic bleeding 2 (1.4)

Trauma 2 (1.4)

Others 13 (9.1)
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Results

Baseline characteristics and clinical
outcomes

During the study period, 330 patients were finally enrolled in

this analysis; 143 (43.3%) had favorable neurological outcomes

but 187 (56.7%) did not. The characteristics of the patients are

shown in Table 1. There was no difference between the two

groups in the age, sex, and comorbidities except for chronic

kidney disease. Compared to the group with poor neurological

outcomes, the group with favorable outcomes exhibited a higher

prevalence of shockable rhythms, ECPR in the coronary

catheterization laboratory, cardiac cause of arrest, and arrest by

acute coronary syndrome. Hemoglobin was also higher in

favorable group than poor group (10.6 ± 2.6 g/dl vs. 9.6 ± 3.0 g/dl,
come Poor neurologic outcome
(n = 187)

P value

62.0 [50.5–72.5] 0.100

131 (70.1) 0.788

37 (19.8) 0.217

94 (50.3) 0.165

65 (34.8) 0.519

28 (15.0) 0.021

43 (23.0) 0.855

12 (6.4) 0.180

0.032

32 (17.1)

155 (82.9)

0.002

38 (20.3)

104 (55.6)

42 (22.5)

35.0 [24.5–49.5] <0.001

97 (51.9) <0.001

72 (38.5)

9 (4.8)

4 (2.1)

3 (1.6)

5 (2.7)

1 (0.5)

3 (1.6)

90 (48.1) 0.003

18 (9.6)

17 (9.1)

9 (4.8)

10 (5.3)

6 (3.2)

4 (2.1)

26 (13.9)

(Continued)
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TABLE 1 Continued

Favorable neurologic outcome
(n = 143)

Poor neurologic outcome
(n = 187)

P value

Location of ECPR 0.006

Intensive care unit 38 (28.1) 52 (28.6)

Emergency department 36 (26.7) 62 (34.1)

Coronary catheterization lab 31 (23.0) 15 (8.2)

General ward 27 (20.0) 48 (26.4)

Operation room 3 (2.2) 5 (2.7)

Anoxic brain injuryb 7 (4.9) 78 (41.7) <0.001

Mean blood pressure 75.1 [67.8–80.9] 64.8 [56.3–76.5] <0.001

Laboratory data
Hemoglobin, g/dl 10.6 ± 2.6 9.6 ± 3.0 0.001

Platelet, ×103 /μl 194.0 [123.0–258.0] 183.0 [103.0–242.0] 0.109

Total bilirubin, mg/dl 0.8 [0.4–1.3] 0.9 [0.5–1.6] 0.162

Blood urea nitrogen, mg/dl 17.2 [12.7–23.4] 23.1 [16.3–34.1] <0.001

Creatinine, mg/dl 1.1 [0.8–1.5] 1.4 [1.0–2.0] <0.001

Troponin I 0.7 [0.1–4.0] 0.9 [0.1–7.2] 0.211

Lactate 7.9 [5.5–12.9] 12.5 [9.2–15.0] <0.001

Arterial blood gas analysis
pH 7.3 [7.2–7.4] 7.3 [7.1–7.4] <0.001

PaO2 89.9 [65.2–119.8] 79.1 [47.5–125.2] 0.049

PaCO2 34.0 [29.0–45.9] 42.4 [32.5–65.7] <0.001

Data are presented as mean ± standard deviation, median (interquartile range), or n (%).

CPR, cardiopulmonary resuscitation; ECMO, extracorporeal membrane oxygenation; ECPR, extracorporeal cardiopulmonary resuscitation; VF, ventricular fibrillation; VT,

ventricular tachycardia.
aChronic kidney disease is defined as either kidney damage or glomerular filtration rate less than 60 ml/min/1.73 m2 for 3 months or longer.
bAnoxic brain injury defined as presence of a marked deduction of the gray-white ratio on brain CT (<1.1) (22)or extensive restriction of diffusion on brain MRI (23).
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p = 0.001), but troponin I was no significant difference between two

groups (0.7 [0.1–4.0] ng/ml vs. 0.9 [0.1–7.2] ng/ml, p = 0.211).

Arrest to ECMO pump-on time (23.0 [11.0–35.0] min vs. 35.0

[24.5–49.5] min, p < 0.001) and serum lactate (7.9 [5.5–12.9]

mmol/L vs. 12.5 [9.2–15.0] mmol/L, p < 0.001) were higher in the

poor neurologic outcome group than in the favorable group.

In multivariate analysis, age (adjusted odds ratio [OR]: 2.18,

95% confidence interval [CI]: 1.56–3.13), chronic kidney disease

(adjusted OR: 1.53, 95% CI: 1.10–2.19), ECPR in the coronary

catheterization laboratory (adjusted OR: 0.61, 95% CI: 0.43–0.85),

cardiac cause of arrest (adjusted OR: 0.56, 95% CI: 0.39–0.78),

arrest to ECMO pump-on time (adjusted OR: 1.59, 95% CI:

1.10–2.41), PaCO2 (adjusted OR: 1.84, 95% CI: 1.25–2.83), initial

hemoglobin (adjusted OR: 0.67, 95% CI: 0.47–0.98), and MBP

(adjusted OR: 0.43, 95% CI: 0.29–0.61) were associated with poor

neurological outcomes.
ML-based predictive performance of poor
neurologic outcome after ECPR

The predictive performances of all algorithms were depicted in

Supplementary Figure S1. After initial analysis using ML models,

LR, AdaBoost, Bagging, MARS, and SVM were excluded in final

analysis because of relatively low predictive power. We only

utilized the top three algorithms, XGBoost, RF, GBM, and with

the highest accuracy from the eight ML algorithms. Predictive

performance of each ML model for poor neurologic outcome was

shown in Figure 2 and Table 2. Overall, all three models
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showcased excellent proficiency in predicting poor neurological

outcomes, with mean accuracy scores ranging between 72.3% and

73.9%. Notably, XGBoost models exhibited the highest accuracy

among all the machine learning algorithms (Table 3). Figure 3

illustrated the top 10 variables that contribute to the predictive

performance of each ML model. Across all three ML models,

MBP emerged as the most influential variable, followed by initial

serum lactate, and arrest to ECMO pump-on-time as important

predictors. Finally, we tested the XGBoost model using the

testing dataset, and it exhibited excellent predictive performance

for poor neurological outcomes (accuracy: 0.712, 95% CI: 0.609–

0.809, Kappa: 0.213, sensitivity: 0.643, specificity: 0.771, positive

predictive value: 0.667, negative predictive value: 0.546).

Additionally, the performance of initial lactate level for

prediction of poor neurologic outcomes was evaluated. The area

under the receiver operating characteristic curve was 0.66 (95%

CI: 0.598–0.724) and the cut-off value was 7.37 with 86.6%

sensitivity and 46.4% specificity.
Discussion

In the present study, we investigated the predictors of poor

neurological outcomes in ECPR patients using ML approaches.

From the eight ML algorithms initially considered, we refined

our analysis to focus on the three algorithms, XGBoost, RF and

GBM, that exhibited the highest accuracy. XGBoost models

exhibited the highest accuracy among all the machine learning

algorithms. In addition, when we tested the XGBoost model
frontiersin.org
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FIGURE 2

Predictive performance of random forest (RF), bagged CART (bagging), and eXtreme gradient boosting (XGBoost) machine learning model for poor
neurologic outcome. Sens, sensitivity; Spec, specificity; ROC, receiver operating characteristic.

TABLE 2 Clinical outcomes according to neurologic outcomes.

Favorable
neurologic
outcome
(n = 143)

Poor
neurologic
outcome
(n = 187)

P
value

ICU management
ECMO duration, hours 61.1 [24.1–123.0] 52.5 [11.0–118.1] 0.117

Targeted temperature
managementa

12 (8.4) 32 (17.1) 0.032

CRRT 42 (29.4) 92 (49.2) <0.001

Intra-aortic balloon pump 10 (7.0) 8 (4.3) 0.406

Mechanical ventilation 109 (76.2%) 149 (79.7%) 0.536

Limb ischemia 8 (5.6) 13 (7.0) 0.785

ECMO site bleeding 16 (11.2) 22 (11.8) 0.999

Stroke after ECPR 7 (4.9) 12 (6.4) 0.727

Gastrointestinal bleeding 1 (0.7) 7 (3.8) 0.167

Sepsis 0 (0.0) 6 (3.2) 0.081

Rhabdomyolysis 6 (4.2) 5 (2.7) 0.650

Clinical outcomes
In-hospital mortality 0 (0.0) 101 (54.0) <0.001

Hospital length of stay,
days

21.0 [12.0–55.5] 4.0 [1.0–13.0] <0.001

Data are presented as mean± standard deviation, median (interquartile range), or n (%).

CRRT, continuous renal replacement therapy; ECMO, extracorporeal membrane

oxygenation; ICU, intensive care unit.
aTargeted temperature management was performed by using surface cooling

device (Arctic Sun).

TABLE 3 Model performance in predicting poor neurologic outcome after ex

Algorithm Accuracy AUC
XGboost 0.739 0.837

RF 0.734 0.860

GBM 0.723 0.807

AUC, area under the curve; GBM, stochastic gradient boosting; RF, random forest; XG

Kim et al. 10.3389/fcvm.2023.1278374
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using the testing dataset, it demonstrated outstanding predictive

accuracy for poor neurological outcomes. Across all three ML

models, MBP emerged as the most influential variable, followed

by initial serum lactate, and arrest to ECMO pump-on-time as

important predictors.

Generally, lactic acid serves as a valuable indicator of tissue

hypoxia (24) and is a reliable predictor of patient outcomes in

cases of circulatory shock (24–26). Previous studies showed that

serum lactic acid levels are associated with neurological outcomes

in survivors after cardiac arrest. Sawamoto et al. demonstrated a

significant difference in serum lactic acid levels between patients

with favorable and poor neurological outcomes who underwent

ECPR (27). Moreover, Christian et al. demonstrated that absolute

serum lactate levels might serve as pertinent markers for

predicting mortality in ECPR patients. Furthermore, lactate

clearance was associated with neurological outcomes in these

patients (28). The findings from this study highlighted that the

serum lactate level served as a prognostic indicator for poor

neurological outcomes in patients treated with ECPR across all

ML models.

Brain recovery hinges on the swift restoration of cerebral blood

flow to meet the brain’s metabolic demands, with MAP being a

principal determinant of this flow (29). The current guideline

recommends circumvention and immediate correction of MAP

less than 65 mmHg in post-resuscitation care (23). However, the
tracorporeal cardiopulmonary resuscitation.

Sensitivity Specificity Kappa
0.700 0.740 0.450

0.600 0.851 0.443

0.750 0.730 0.430

Boost, eXtreme gradient boosting.
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FIGURE 3

The top variables contributing to the predictive performance of each model. The magnitude of the model performance reduction reflects how dependent
the model is on particular variable. The importance of variables is scaled so that the maximum value is 100.

Kim et al. 10.3389/fcvm.2023.1278374
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exact MAP target conducive to optimal outcomes remains

elusive, and several studies have indicated a potential

correlation between higher MAP values and more favorable

neurological results (30, 31). Specifically, Lee et al. found that

average MAP levels were associated with neurological

outcomes in patients undergoing ECPR (32). They suggest that

maintaining an average MAP of approximately 75 mmHg

could be pivotal for neurological recovery after ECPR. Our

study also highlighted that the MAP served as a prognostic

indicator for poor neurological outcomes in patients treated

with ECPR across all ML models.

Given that the brain is the organ most susceptible to hypoxia

and insufficient perfusion, delays in initiating ECMO during

ECPR can lead to significant neurological deficits (33). Several

previous studies have demonstrated that duration of no flow

or low-flow is one of the most important predictors of overall

outcomes after ECPR along with factors such as age, initial

shockable rhythm and lactate level (4, 34, 35). Recently,

Matsuyama et al. analyzed 256 patients undergoing ECPR and

found the probability of favorable neurological outcome

decreased as low-flow duration increased. Similarly, low-flow

time represented by arrest to pump-on time was associated

with poor neurologic outcomes in the present study.

Eventually, enhancing survival and neurological outcomes is

more likely when patients are put on the ECMO pump-on

promptly (4, 34, 36).

In our previous study, factors such as shockable rhythm, initial

hemoglobin levels, cardiac cause of arrest and ECPR conducted at

the cardiac catheterization lab were identified as significantly

associated with poor neurological outcomes (2, 4, 37). Low pre-

ECMO hemoglobin levels might correlate with adverse

neurological results (4, 28). Proactively addressing anemia either

before or during ECMO deployment may improve oxygen

delivery and offer neuroprotection (4). Shockable rhythm was

associated with favorable neurological outcomes after ECPR (2,

38). ECPR conducted in a cardiac catheterization lab resulted in

a reduction of low flow and cannulation time (39). In this study,

most of the patients with cardiac arrest in the catheterization lab

underwent ECPR in the coronary catheterization laboratory.

Reducing “arrest to ECMO pump-on time” would be crucial to

improve clinical outcomes, including neurologic outcomes,

regardless of the location of ECPR.

This study had several limitations. First, this was a

nonrandomized cohort study. Therefore, confounding factors and

selection bias might have affected the results. Second, CPC scale

was retrospectively determined based on medical records. We

excluded patients whose neurological status could not be assessed

because of deterioration followed by death. However, we included

patients who had a diagnosis of brain death. Third, most ECPR

patients had low body temperature caused by extracorporeal

circulation and external volume infusion. Therefore, ECMO itself

could have some degree of neuroprotective effect through

hypothermia. Finally, lactate clearance is associated with

neurological outcomes in ECPR patients, but due to the nature

of retrospective studies, it cannot be provided due to insufficient

data after a specific time following the initial lactic acid test.
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In conclusion, serum lactic acid levels and arrest to ECMO

pump-on time emerged as the most potent predictors in machine

learning models for poor neurological outcomes following

successful ECPR. Furthermore, these machine learning methods

showcased outstanding predictive accuracy for poor neurological

outcomes in patients who underwent ECPR.
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