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Ex vivomachine perfusion (EVMP) is an emerging technique for preserving explanted
solid organs with primary application in allogeneic organ transplantation. EVMP has
been established as an alternative to the standard of care static-cold preservation,
allowing for prolonged preservation and real-time monitoring of organ quality while
reducing/preventing ischemia–reperfusion injury. Moreover, it has paved the way to
involve expanded criteria donors, e.g., after circulatory death, thus expanding the
donor organ pool. Ongoing improvements in EVMP protocols, especially expanding
the duration of preservation, paved the way for its broader application, in particular
for reconditioning and modification of diseased organs and tumor and infection
therapies and regenerative approaches. Moreover, implementing EVMP for in vivo-
like preclinical studies improving disease modeling raises significant interest, while
providing an ideal interface for bioengineering and genetic manipulation. These
approaches can be applied not only in an allogeneic and xenogeneic transplant
setting but also in an autologous setting, where patients can be on temporary organ
support while the diseased organs are treated ex vivo, followed by reimplantation of
the cured organ. This review provides a comprehensive overview of the differences
and similarities in abdominal (kidney and liver) and thoracic (lung and heart) EVMP,
focusing on the organ-specific components and preservation techniques,
specifically on the composition of perfusion solutions and their supplements
and perfusion temperatures and flow conditions. Novel treatment opportunities
beyond organ transplantation and limitations of abdominal and thoracic EVMP are
delineated to identify complementary interdisciplinary approaches for the
application and development of this technique.
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1. Introduction

The initial idea of isolated organ perfusion was first described in

1812. However, the potential clinical use was only investigated in

detail after the introduction of solid organ transplantation to

reduce ischemia–reperfusion injury (IRI) caused by the gold

standard static-cold organ preservation (SCP). Nowadays, ex vivo

machine perfusion (EVMP) enables organ perfusion with

nutrition- and oxygen-enriched perfusion solutions in

hypothermic to normothermic temperature conditions. These

protocols led to significantly prolonged preservation times allowing

for extended evaluation and potential reconditioning prior to

transplantation. Moreover, EVMP dampened IRI associated with a

reduction of alloimmune responses (1) (Figure 1). Several (pre-)
FIGURE 1

Protective effects of EVMP against ischemia–reperfusion injury. EVMP constit
that have focused on dampening IRI. Various (A) anti-inflammatory drugs an
inflammation both experimentally as well as in human studies. (C) Moreove
inhibit graft infiltration with ambiguous results. (D) Cellular therapies invo
dampening IRI during experimental EVMP. (E) Gene therapies targeting anti-
of IRI during lung EVMP. (F) Gaseous supplementation during EVMP aims to
microcirculation of perfused organs. (G) Mitochondrial transplantation cons
settings for all organs used for transplant. (H) EVMP itself has been delineat
warming of the organs and perfusion-derived anti-inflammatory effects.
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clinical studies in abdominal and thoracic organ transplantation

confirmed the significant benefits of EVMP over SCP, finally

improving graft function and outcomes after transplantation (2–4).

In addition, EVMP application resulted in significantly higher

graft utilization rates due to an expansion of the procurement area

by enabling long-distance organ transport (5) and the

improvement of otherwise non-utilized marginal donor organs,

particularly those retrieved from donors after circulatory death

(DCD) and extended criteria donors (ECD) (6). These positive

experiences paved the way for the continued implementation of

EVMP as a daily routine and standard preservation technique for

thoracic and abdominal organ transplantation.

In recent years, major efforts have been made to improve

preservation strategies throughout all disciplines, employing
utes an interface to administer a broad range of therapeutic components
d (B) antioxidants have been recruited to sufficiently dampen IRI-derived
r, a leukocyte filter can be recruited to deplete inflammatory cells and
lving mesenchymal stroma cells have delivered promising results on
inflammatory pathways such as IL-10 have led to a significant reduction
promote vasodilation and compromise adverse physical effects on the
titutes a novel approach with beneficial effects on IRI in experimental
ed to ameliorate IRI by reducing ischemic times, allowing for graduated
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EVMP not only for transplantation but also for a broadened field of

applications. These developments focused on the extension of the

organ-specific preservation time by optimized preservation

protocols, including the improvement of perfusion solutions with

the ideal composition of components (e.g., oxygen, nutrition,

antibiotics), the perfusion temperature, and flow conditions (e.g.,

continuous vs. pulsatile) (7). Furthermore, standardized and

validated tools for the assessment of organ function during

EVMP were established and are currently the subject of

investigation to enable the measurement of treatment success and

predict post-perfusion outcomes (6). Based on these

achievements, EVMP became available for novel treatment

concepts, such as the reconditioning and modification of diseased

organs ex vivo, and for specific tumor and infection therapies

during surgical procedures. Furthermore, regenerative approaches

in autologous settings are being explored, where patients are on

temporary organ support while the diseased organs are being

treated ex vivo, followed by reimplantation of the cured organ

(8–10). In addition, EVMP has emerged as an important tool

for preclinical research enabling in vivo-like preclinical

pharmacological studies with the potential to accelerate the

clinical transition of novel therapeutic approaches.

This review provides an interdisciplinary overview of the

current abdominal and thoracic EVMP systems and their organ-

specific preservation protocols followed by a summary of the

relevant EVMP applications beyond organ preservation for

allogeneic transplantation. The interdisciplinary application of

this new technique may pave the way for researchers to go

beyond the boundaries of their own professional discipline, learn

from each other, and introduce new ideas in research and

clinical practice for the benefit of the patients.

Finally, the authors are aware that a shift of paradigm is

currently performed concerning the formerly used term ex vivo,

which should nowadays only be used when talking about organs

from living organisms, e.g., in the case of autologous

reimplantation of ex vivo cured organs. In the context of

allogeneic transplantation, ex situ should be used instead, as the

organs are recruited from brain-dead or circulatory dead donors.

Nevertheless, for better readability, the authors agreed to

continuously use ex vivo throughout the manuscript.
2. Ex situ machine perfusion

2.1. General components and technique

Starting from the simple isolated and research-oriented organ

perfusion in the 19th century, the continuous development of

medical technology nowadays facilitates the routine application

of ex vivo perfusion for solid allogeneic organ transplantation.

Although a broad range of preservation protocols involving

EVMP for different organs have been developed, all ex vivo

perfusion systems consist of overlapping, general components.

These components are combined harmoniously with each other

but can be monitored separately to secure the base circulation

providing a “near-physiological” condition.
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The organ chamber contains the respective organs connected

by vascular ports to the perfusion system. The organ is perfused

by an integrated centrifugal or roller pump that ensures either a

continuous or pulsatile blood flow via the arterial inflow cannula

while blood is drained via the venous outflow tract. The

downstream reservoir collects the circulating perfusion solution,

also facilitating the optical control of a sufficient level of liquid to

avoid air aspiration. Through the heater/cooler system, the

perfusion solution is constantly tempered hypo-, subnormo-, or

rather normotherm, depending on the underlying perfusion

protocol. The supplement-enriched perfusate guarantees a

nutrition supply, while the oxygenator provides the required

oxygenation and decarboxylation of the perfusate as a

prerequisite for sufficient cell metabolism. To compromise IRI

and alloimmune responses and allow removal of accumulating

toxic metabolites during ex vivo perfusion, the integration of

leukocyte filters has been tested for several organs. However, its

efficacy remains unclear as no differences in proinflammatory

cytokines and leukocytes or clinical outcome parameters could be

observed, probably due to rapid saturation of the filter with

donor leukocytes as examined in porcine lung EVMP (11).

Although all ex vivo perfusion systems operate as closed systems,

ports at various locations are incorporated for additive supply

and perfusate replacement or sample collection. Finally, a

monitoring unit controls not only general (e.g., venoarterial

pressures) but also organ-specific features (e.g., heart rate).
2.2. Organ-specific perfusion systems

To fulfill the “near-physiological” environment for the

respective ex vivo perfused organ, distinct additional components

are included in the basic circulation and are realized in various

organ-specific ex vivo perfusion systems, which are explained

below and summarized in Table 1.

2.2.1. Kidney systems
In general, a urine reservoir, ports to extract perfusate or urine

for assessing graft function, and special cannulas for potential

abnormal kidney vasculature are organ-specific components for

kidney machine perfusion devices. After the first clinical

feasibility study demonstrated safe and promising outcomes in

ECD using an EVMP system with a pediatric cardiopulmonary

bypass technology (Medtronic) (12), several kidney EVMP

systems have been developed, which are currently in clinical

use. These involve the LifePort Kidney Transporter (Organ

Recovery Systems), Waters RM3 (Waters Medical Systems),

Kidney Assist (XVIVO Perfusion), and WAVES System

(IGL Group). Although several perfusion solutions are under

investigation, the only clinically proven fluid for kidney

hypothermic machine perfusion (HMP) is Kidney Perfusion

Solution-1 (KPS-1®).

The LifePort Kidney Transporter can be used for both pulsatile

and non-pulsatile perfusion at 1°C–5°C and is portable with the

possibility of unaccompanied transport, thus reducing logistical

efforts and costs. It can be used with any certified machine
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TABLE 1 Established EVMP systems for experimental and clinical use for each organ.

Organ System Application Perfusate
solution

Perfusion
temperature

Pros Parameters for ex vivo
monitoring

Kidney LifePort Kidney
Transporter (Organ
Recovery Systems)

In clinical and
experimental use

KPS-1® HMP Lightweight, portable, continuous
monitoring, unaccompanied
transport, ultrasonic detector to
prevent air from entering the
vasculature, SCS backup, pressure-
controlled pump

Perfusion pressures, renal blood
flow, temperature, vascular
resistance

Waters RM3
(Waters Medical
Systems)

In clinical and
experimental use

Any certified
machine perfusion
preservation solution
eligible for pulsatile
flow

HMP Pulsatile perfusion, dual perfusion
possible

Perfusion pressures, renal blood
flow, temperature

Kidney Assist
(XVIVO Perfusion)

In clinical and
experimental use

Any certified
machine perfusion
preservation solution

NMP, SNMP,
HMP

Pulsatile perfusion, choice of setting
the preferred perfusion temperature

Perfusion pressure, renal blood flow,
temperature, reservoir temperature,
vascular resistance

WAVES System
(Groupe-IGL)

In clinical and
experimental use

WATERS IGL®

Pulsatile Perfusion
Solution

HMP Lightweight, portable, pulsatile
perfusion, unaccompanied transport

Perfusion pressure, renal blood flow,
temperature, vascular resistance

Liver Organ Care
SystemTM Liver
(TransMedics, Inc.)

In clinical and
experimental use

OCS solution with
RBC

NMP Portable, approved for DBD and
DCD livers

Hepatic artery flow (HAF), portal
vein flow (PVF), oxygen saturation
(SvO2), hematocrit (HCT),
temperature, Hepatic Artery
Pressure (HAP), and Portal Vein
Pressure (PVP)

Metra® (OrganOx) In clinical and
experimental use

Any certified
perfusion solution
compatible with
OrganOx guidelines

NMP Portable, allows perfusion for up to
24 h and a “back-to-base”-mode
(NMP following initial SCP)

HAF, PVF, pH, lactate clearance,
bile production

Liver Assist (Organ
Assist)

In clinical and
experimental use

Any certified
machine perfusion
preservation solution

NMP
HMP/HOPE/D-
HOPE

Enables perfusion at every
temperature between hypothermic
and normothermic, pulsatile arterial
and continuous venous flow,
automatically adjusts the flow to the
natural resistance of the graft

Perfusion time, flow, pressure,
temperature, reservoir temperature,
vascular resistance
Cf-miRNAs from perfusate and bile
samples have been used to assess
graft viability and function

Medtronic Portable
Bypass System
(PBS®)

In clinical and
experimental use

Vasosol machine
perfusion solution

HMP Already established in
cardiopulmonary bypass and
extracorporeal membrane
oxygenation

Perfusion time, flow, pressure,
temperature, reservoir temperature,
vascular resistance

Lung Organ Care
SystemTM Lung
(TransMedics, Inc.)

In clinical and
experimental use

OCS solution with
RBC

NMP Portable, potential use for split lung
preservation, and ex vivo surgery,
pulsatile flow, oxygenator can also be
used to deoxygenize the perfusate and
thus evaluate the oxygenation
capacity of the graft

Flow (PF), pressure (PAP), VR,
temperature, SaO2, SvO2, HCT,
PAWP, PEEP, RR, TV

XPSTM (XVIVO
Perfusion)

In clinical and
experimental use

STEEN SolutionTM NMP X-ray and CT-scan possibilities, in-
line gases with real-time tracking
(pO2, pH), separate sterile area and
perfusionist non-sterile area

PA and LA pressure, temperature,
flow, pH, pCO2, pump speed

Lung AssistTM

(Organ Assist)
In clinical and
experimental use

Any certified
machine perfusion
preservation solution

NMP Evaluation in hypothermic and
normothermic conditions, compatible
with any ventilators, enables
perfusion at every temperature
between hypothermic and
normothermic, portable

Perfusion time, flow, pressure,
temperature, reservoir temperature,
vascular resistance

Heart Organ Care
SystemTM Heart
(TransMedics, Inc.)

In clinical and
experimental use

OCS solution with
RBC

NMP Portable, allows for DCD donations,
accepting marginal hearts

Flow (pump, AOF), flow (CF),
temperature (temp), pressure (AOP,
PAP), heart rate, hematocrit (HCT),
saturation (SvO2)

Heart Box (XVIVO
Perfusion)

In clinical and
experimental use

XVIVO Perfusion
Solution

HMP Non-ischemic heart preservation
(NIHP), used in experimental and
clinical xenotransplants

Flow (CF), pressure (AOP, PAP)

Iske et al. 10.3389/fcvm.2023.1272945
perfusion solution eligible for HMP. Investigating the clinical

benefits of the system, a reduced risk of delayed graft function,

and an improved graft survival in the first posttransplant year
Frontiers in Cardiovascular Medicine 04
when compared to SCS were shown (13). As of today, the

LifePort Kidney Transporter is the most used perfusion device

for clinical kidney HMP.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1272945
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Iske et al. 10.3389/fcvm.2023.1272945
The Waters RM3, in turn, is a portable system that provides

pulsatile flow for HMP at temperatures between 3°C and 8°C

and can be used with any certified perfusion solution eligible for

pulsatile flow. In addition to single kidney perfusion,

simultaneous perfusion of two explanted kidneys is possible, and

the system comes with trident adapters for the cannulation of

grafts with anatomical anomalies, such as multiple renal arteries.

Experimental dog studies comparing the flow-driven RM3 with

the pressure-driven LifePort found no significant differences in

transplant outcomes (14).

Another device for kidney EVMP, i.e., the Kidney Assist

(XVIVO Perfusion), allows for pulsatile perfusion at a flexible

temperature range (12°C–37°C), thus representing the only

device capable of kidney normothermic perfusion (NMP). It is

FDA-approved and can be used with any certified machine

preservation solution, but it is non-portable. Clinical feasibility

and safety have been shown with comparable outcomes for both

oxygenated and non-oxygenated perfusion (15).

At least, the WAVES System (IGL Group) provides pulsatile

HMP (2°C–8°C) using the WATERS IGL® Pulsatile Perfusion

Solution. It is portable and designed for unaccompanied

transport. Clinical safety has been reported with improved

functional outcomes of machine-perfused kidney grafts (16, 17).

Of note, it can also be used for combined kidney–pancreas

preservation.
2.2.2. Liver systems
Organ-specific modifications of liver perfusion systems include

a bile reservoir and a second influx cannula for portal vein

perfusion. Currently, three distinct EVMP devices for liver

preservation are available for clinical use, namely, Liver Assist

(Organ Assist), Organ Care SystemTM Liver (TransMedics, Inc.),

and Medtronic Portable Bypass System (PBS®).

The Liver Assist (XVIVO Perfusions) is the most used EVMP

device for liver perfusion that is compatible with any certified

machine preservation solution. Providing pulsatile flow at

temperatures between 12°C and 37°C, it represents the only

currently available device capable of liver HMP or hypothermic

oxygenated machine perfusion (HOPE). However, it is non-

portable, thus requiring a combinatorial approach with other

preservation strategies. Several clinical studies have shown

improved transplant outcomes and reduced graft injury in

HOPE-treated DCD (18–20) and ECD (21) organs and beneficial

effects of NMP and combinatorial approaches (22, 23). The

portable OrganOx Metra® allows for extended preservation times

of up to 24 h during NMP. The biggest RCT on NMP

demonstrated a 50% reduction in discard rates and a 50% lower

level of graft injury when compared to CSP (24).

The Organ Care SystemTM Liver (TransMedics, Inc.) is also

portable and uses OCS solution with red blood cells (RBCs) for

pulsatile NMP at 34°C. The recent PROTECT trial comparing

OCS preservation with SCS found reduced posttransplant

allograft dysfunction and biliary complications and an increased

use of DCD organs in the OCS group (25). It is FDA-approved

for both DCD and DBD donor livers.
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The PBS® (Medtronic), originally designed for cardiopulmonary

bypass or extracorporeal membrane oxygenation, has also been used

for clinical liver HMP (4°C–6°C). It provides pulsatile flow while

utilizing Vasosol Organ Perfusion Solution. Clinical studies on the

PBS demonstrated a reduction of proinflammatory cytokine

production (26). However, there is a lack of recent experimental

or clinical data.
2.2.3. Lung systems
For lung EVMP, specific components include a respirator

for lung ventilation during machine perfusion, enabling also for

different ventilation modes, and an additional port allowing

for bronchoscopy. This is based on experimental evidence that

has shown the beneficial effects of continuous mechanical

ventilation during machine perfusion. In porcine experimental

animal models, mechanical airway pressure release ventilation

following donation after circulatory death has been shown to

reduce lung injury with improved oxygenation and compliance

(27) while flow-controlled ventilation preserved alveolar

recruitment (28). Moreover, preclinical data show that EVMP

can also be used conversely in this setting to deoxygenate the

perfusate, thereby assessing the oxygenation capacity of the lungs

(29). Other experimental approaches such as airway pressure

release ventilation and negative pressure ventilation have also

been studied in experimental lung EVMP and were associated

with improved pulmonary function (27) and reduced lung

injury (30), respectively.

Currently, there are three systems for clinical lung EVMP

available including the Organ Care SystemTM Lung

(TransMedics, Inc.), XPSTM (XVIVO Perfusion), and Lung

AssistTM (Organ Assist). Although all systems use NMP for graft

preservation in clinical settings, they differ in some technical

parameters and the utilized perfusate.

The Organ Care SystemTM Lung uses an OCS solution

containing RBCs with an open left atrium (LA) and is the only

portable device. It uses pulsatile perfusion for NMP at 34°C–37°C.

Clinical safety and non-inferiority compared to SCS have been

proven in the INSPIRE trial (5). Moreover, the OCS LungTM has

been evaluated for split lung preservation and ex vivo surgery (31).

FDA approval has been granted for both standard criteria donor

and ECD lung preservation, thereby including both DBD and

DCD organs.

The XPSTM system (XVIVO) is non-portable and operates with

STEENTM solution and a closed LA while providing continuous

NMP at 35°C–37°C. The NOVEL trial demonstrated the clinical

safety and efficacy of the system (32). Of note, the XPSTM has

been designed to allow radiographic imaging, thus facilitating x-

rays and CT scans of the graft during perfusion (33).

The Lung AssistTM device is compatible with any certified

machine preservation solution and operates with the LA being

closed. It is also non-portable and provides pulsatile flow. Of

additional interest, it allows for isolated in and ex vivo perfusion

in both hypothermic and normothermic conditions (12°C–37°C).

The ventilator is not included in the device, yet any pre-existing

ventilator is compatible for use.
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2.2.4. Heart systems
In addition to other organs, heart EVMP also demands for

organ-specific modifications of the machine perfusion system

including cables for defibrillation or pacing. Two machine

perfusion systems for the heart are currently in clinical use

including the Organ Care SystemTM Heart (TransMedics, Inc.)

and the Heart Box (XVIVO Perfusion).

The Organ Care SystemTM Heart is portable, uses NMP at

34°C–37°C, and provides pulsatile flow to the graft while being

perfused with OCS solution containing RBC and donor blood. In

2015, a non-inferiority study showed non-inferiority compared to

SCS preservation and paved the way for clinical application (34).

Moreover, clinical studies revealed that the OCS enables heart

transplantation from extended criteria DBD (35) and DCD

(36, 37) donors. In 2021, FDA approval was granted for organs

from DBD donors and, most recently, also for DCD organs,

making it the currently only FDA-approved device.

The Heart Box (XVIVO Perfusion), in contrast, uses HMP at a

temperature of 8°C and perfuses the heart with an oxygenated

cardioplegic nutrition–hormone solution and ABO-compatible

packed red cells. It is portable and provides continuous flow. The

first-in-human study published demonstrated the feasibility and

safety of this preservation technique in clinical heart

transplantation (38) and a multicenter clinical trial that started in

2020 (NCT03991923). Of note, the Heart Box has most recently

been used in the first xenogeneic pig-to-human xenotransplant (39).
2.3. Perfusion solution

Under (sub)normothermic conditions, perfusion solutions

enable the preservation of organs in a pseudo-physiological

environment with adequate oxygen, nutrients, and metabolic

supply. Perfusates are required to balance cellular hydration and

electrolyte homeostasis for edema prevention and also to reduce

free radical peroxide scavengers to minimize oxidate injury (40).

However, to date, the optimal perfusion characteristics and

perfusate compositions for EVMP modes remain undefined and

therefore lack standardization. This vagueness is mainly due to

the variability of EVMP system application, duration,

temperature, and flow conditions. Accordingly, a broad spectrum

of solutions with different cellular compositions and additives is

available.
2.3.1. Base perfusion solutions
Perfusates are categorized into extracellular (i.e., high-sodium

and low-potassium composition) and intracellular (low-sodium

and high-potassium formula) solutions. Both variants have been

successfully tested in EVMP studies, with their superiority

seemingly depending on the case- and organ-specific conditions

(41). Of additional importance, the composition of base

perfusion solutions may fluctuate depending on the set

temperature. Therefore, it is important to ensure correct

temperature levels during the entire perfusion process (42).

Although the safety and feasibility of extracellular-like Ringer’s
Frontiers in Cardiovascular Medicine 06
lactate have been demonstrated in human clinical trials of EVMP

(43), the University of Wisconsin (UW) intracellular-type

solution also has its raison d’être in organ preservation. When

using these solutions clinically, perfusion temperatures were

maintained at 34°C and 21°C, respectively (8, 44). More recently,

the Institut Georges Lopez (IGL-1) solution emerged as an

alternative to UW, featuring lower viscosity and potassium levels

and replacing hydroxyethyl starch (HES) with polyethylene glycol

(PEG) as an oncotic agent. This solution was used at a

temperature of 4°C–6°C (45) (NCT01317342).

The XVIVO Göteborg STEEN Solution is a buffered

extracellular solution with well-documented value in the field of

lung and liver EVMP and is used at a temperature of 37°C (46).

It includes human serum albumin and dextran to provide strong

osmotic pressure and coat the endothelium from leucocyte

interaction. As such, STEEN perfusion and circuitry have been

found to maintain organ stability and functionality—even during

prolonged EVMP (46). Notably, this solution can be

supplemented with RBCs or remain acellular (41). The

armamentarium of perfusates furthermore involves a wide array

of modifications, such as the Custodiol-MP histidine–

tryptophan–ketoglutarate (HTK) solution with high-flow, low-

potassium, and anti-nitrosative/oxidant properties designed for

oxygenated EVMP at 4°C (47), the cellular Organ Care System

solution with a low-potassium dextran formula (at 37°C) (48),

Perfadex as an extracellular and dextran-based electrolyte

preservation solution (at 37°C–38°C) (49), or the Celsior solution

as a colloid-free extracellular-type solution (at 2°C–8°C) (50).

Next to the abovementioned preservation solutions, various

others have been described (8, 51, 52).

2.3.2. Cellular and gaseous composition
While hypothermic MP can be conducted with or without active

oxygenation, in normothermic MP, adequate oxygenation remains

vital and can be delivered either by RBCs, synthetic oxygen

carriers, or diffused oxygen by carbogen gas mixtures (53). Since

whole blood-based perfusates may exert pathogenic effects

deriving from hemolysis and residual blood components including

cells, complement, and inflammatory factors (54) while also being

associated with logistic hurdles and limited supply (55),

leukocyte-/thrombocyte-depleted and plasma-free perfusates have

gained popularity in preclinical and clinical studies (12, 56–58).

In most studies, red blood cell-based perfusion solutions have

been used. Such perfusates are known to efficiently transport

oxygen while their constant flow can mitigate shear stress (59).

However, blood-based solutions inherently harbor the risk of

infection transmission and transfusion-related incidents including

hemolysis. Therefore, a variety of alternatives have been proposed

ranging from artificial oxygen carriers such as polymerized

bovine hemoglobin-based oxygen carriers and pyridoxylated

bovine hemoglobin to acellular oxygen-carrying media such as

STEEN (60, 61). These modern solutions also offer the advantage

of convenient storage and transport—at similar effectiveness and

rheological-hemodynamic characteristics (62, 63).

Uniquely, cell-free perfusates allow for gradual rewarming of

the graft from hypothermia to normothermic conditions. This
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advantage is significant since the increase in metabolic rate, which

is associated with the abrupt restoration of normothermia, is

postulated to be a secondary cause of IRI (64, 65). While

mixtures with supraphysiological concentrations of oxygen are

commonly implemented in EVMP protocols, hyperoxemia and

varying oxygen tensions warrant further investigations,

particularly when combined with acellular perfusates (41).

Interestingly, hydrogen sulfide has been identified as a potential

additive to induce a hypometabolic state and reduce oxygen

consumption, thereby paving the way for the use of normoxic

mixtures (66). Further gaseous supplementation may involve

carbon monoxide, which was found to promote vasodilation and

reduce IRI (67, 68), or argon, which is currently being

investigated (69).

2.3.3. Supplementary substrates
A potpourri of supplementary and modifiable components can

be blended into the perfusion solutions, to mimic normal

metabolism and recreate a near-physiological milieu. Additives

that have been investigated include metabolic substrates, buffers,

oncotic agents, anticoagulants, vasodilators, antioxidants, anti-

inflammatory molecules, and hormones. Substrates for energy

metabolism and nutrients, for example, are essential to

perpetuate cellular metabolism during perfusion, thus enhancing

cell viability. Additives such as glucose 5% or insulin are popular

for all types of EVMP. In addition, pyruvate has been

investigated as a metabolic substrate in cardiac EVMP and was

found to enhance myocardial metabolism (70). Moreover,

buffering agents are essential to maintain near-to physiological

pH levels, since variations have been observed to adversely affect

other physiological parameters such as pCO2 and HCO3−(71).

Sodium bicarbonate and calcium gluconate, for example, may

serve as universal pH and calcium buffers. Oncotic agents are

included in various organ preservation solutions with the

rationale of limiting tissue edema and subsequent cell death.

Molecules such as HES and PEG have been used and could have

further beneficial effects such as mitochondrial and glycocalyx

protection (72). In addition, mannitol 10% is a well-established

cross-organ applicable ingredient to elevate osmolality (41).

Blood-based perfusates are readily supplemented with

anticoagulants to prevent clotting within the tubing lumen and

decrease the thrombosis risk. For this purpose, the perfusate is

usually heparinized or mesh-filtered (8, 41, 73, 74). Furthermore,

nitric oxide (NO) levels are reduced during reperfusion, causing

vasoconstriction and ultimately leading to prolonged cellular

ischemia and aggravated necrosis (75). For this reason,

vasodilators such as verapamil or prostacyclin can be applied to

offset the transient vessel constriction upon reperfusion (76). Of

note, the value of such medication [i.e., smooth blood (micro)

circulation and organ perfusion] in acellular perfusates is yet to

be defined (41, 77). Interestingly, in cell-free solutions, the

biopolysaccharide dextran has emerged as an essential ingredient,

preventing pathological leukocyte–endothelial interaction via

antithrombotic properties and protecting the integrity of

endothelium-rich organs. Thus, the addition of dextran to the

perfusate may contribute to healthy vasculature and stable organ
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functionality (55). Antioxidants and anti-inflammatory molecules

have also been under extensive investigation as supplements

since they scavenge reactive oxygen species (ROS) arising from

IRI and dampen the immunological response (78). As such,

various agents including vitamin C, quercetin, and resveratrol

have shown beneficial effects (79, 80). In addition, it is worth

mentioning that vitamin C also improves microcirculation and

reduces inflammation during EVMP. However, clinical benefits

remain controversial (81). Hormones represent another group of

potential additives with wide-ranging functional properties (82).

In experimental liver NMP, for example, melatonin has been

found to prevent oxidative stress and improve vascular

conductivity (83). Moreover, dopamine reduced histological signs

of damage and improved bile production (84). Other hormones

investigated include erythropoietin and glucagon (82, 85, 86).

Furthermore, EVMP provides a potential avenue for the

administration of therapeutic drugs including chemotherapeutics

or antibiotics, antivirals, and antimycotics, to decrease the

microbial, bacterial, viral, and fungal load of infected organs and/

or in the sense of prophylactic treatment (87). It is worth

mentioning that the published protocols reveal a wide variance

regarding the additives used. The supplements listed herein,

therefore, represent only a selection.
2.4. Perfusion temperature

EVMP techniques can be classified according to the

temperature applied during preservation roughly distinguished

into cold, subnormothermic, and NMP that have found different

implementations in the clinics depending on the organ of

interest (Table 2).

2.4.1. Hypothermic preservation
Hypothermic preservation at temperatures between 4°C and

10°C allows for the elimination of debris, toxic metabolites, and

free radicals produced during hypothermia that would otherwise

accumulate during cold static storage (88). First applied in

kidney and liver preservation, the hemodynamic stimulation of

the graft vasculature was found to compromise endothelial

damage while pulsatile flow promoted vascular stress exerting

beneficial effects on endothelial gene expression and function.

Thus, HMP in both kidney (89) and liver (90) preservation has

been found to enhance endothelial NO synthase (eNOS)

phosphorylation, thereby preventing vasospasm while promoting

NO-dependent vasodilatation at reperfusion.

However, due to the hypothermic state, the metabolic

activity of the organ is dramatically impeded during perfusion

restricting functional organ assessments (91). More importantly,

hypothermically preserved grafts still sustain a cold ischemic

injury through the inactivation of Na+/K+ pumps (92, 93). In

kidney grafts, for instance, functional declines following HMP

due to mitochondrial perturbations, decreased cell survival, and

endothelial activation have been observed (94, 95). It is

noteworthy that marginal donor organs from ECD and DCD

donors have been delineated to be even more sensitive to cold
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TABLE 2 Different preservation strategies.

HMP SNMP NMP
Temperature (°C) 4–10 20–32 37

Oxygenation Both Yes Yes

Advantages Elimination of debris, toxic metabolites, and free
radicals
Reduced endothelial damage, especially with pulsatile
perfusion
Collection of waste products

Damage from the cold is reduced
Possible use as a resuscitation platform
Drug administration is possible but inferior
to NMP
No need for oxygen carriers
Collection of waste products

Metabolically active state
No damage from the cold
Superior for DCD and ECD grafts
Ex situ graft assessment possible
Novel interface for ex vivo drug therapies and
bioengineering
Longer preservation times are possible
Collection of waste products

Disadvantages Damage of the cold
Reduced metabolism limits functional assessment
Mitochondrial perturbations and endothelial
activation
Lower compliance in lung HMP
Less suitable for DCD and ECD organs
Ex vivo therapeutic interventions restricted

Metabolic activity is dampened
Does not fully protect from reperfusion
injury
Less investigated

Higher costs and logistical effort
High level of ATP depletion
Risk of infection

Iske et al. 10.3389/fcvm.2023.1272945
ischemia (96, 97), particularly if the cold ischemic time (CIT) is

prolonged (98). Therefore, the utilization of marginal kidneys

remains limited while a significant prolongation of HMP

preservation times is not feasible (99, 100). Supporting the

evidence from kidney HMP, hypothermic preservation during

lung EVMP was also associated with impaired metabolism and

lower lung compliance (101). The application of ex vivo therapies

as a promising approach during EVMP is thus restricted due to

diminished exposure times of the graft during HMP and

compromised pharmacodynamics at low temperatures. This may

in contrast also promote the accumulation of the agent with

harmful effects following reperfusion.

2.4.2. Subnormothermic perfusion
Subnormothermic machine perfusion (SNMP) involves the

preservation of explanted organs at 20°C–32°C and is currently

undergoing experimental evaluation. In comparison with HMP,

cold-induced graft injury is significantly reduced, while the

augmentation of metabolic activity occurring during NMP is

dampened at the same time. Thus, a metabolic state requiring

additional oxygen carriers for adequate oxygenation is not

reached (102). In experimental studies, the beneficial effects of

SNMP on DCD grafts have been demonstrated (103). In kidney

EVMP, for instance, subnormothermic perfusion at 22°C

significantly reduced histological kidney damage and

proinflammatory responses (103). Using SNMP in an

experimental model of porcine liver EVMP improved endothelial

cell function and bile duct injury (104), whereas oxygenated

SNMP on human livers preserved liver function with minimal

damage and sustained hepatobiliary parameters (44). In a rat

DCD model of lung EVMP, subnormothermic perfusion at 28°C

was associated with decreased proinflammatory cytokine

expression and improved biochemical parameters such as

compromised lactate and potassium levels and higher ATP and

carbonylated protein levels (29). However, clinical data on the

translational relevance of this procedure are sparse, and the

Kidney Assist is the only commercially available device for SNMP.
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2.4.3. NMP
NMP allows organ tissue to remain metabolically active and

precludes exposure to the cold, thus minimizing CITs. Graft

preservation thereby enables normal cellular metabolism and

recovery of ATP production in almost physiological conditions

(58), whereas graft metabolites can be flushed, nutrient supply

can be optimized, and microvascular circulation can be

maintained. Therefore, NMP is considered the treatment of

choice for marginal donor organs with successful clinical studies

on the liver, lung, and heart (105–107), including DCD and ECD

organs. Moreover, NMP of marginal kidneys has shown

beneficial effects in porcine experimental models (108).

Furthermore, NMP is the only form of machine perfusion that

enables pretransplant ex vivo assessment of the organ that could

both alleviate decision-making in graft utilization and allow graft

assessment during ex vivo therapy (109). Therefore, a broad

range of viability criteria, such as lactate clearance, bile

production, perfusate pH, glucose metabolism, flow rates, and

perfusate transaminases, has been evaluated in liver EVMP (22,

110, 111). However, none of these parameters has been

established as clinical guidelines because most studies are

invariably based on small series with low case numbers despite

being randomized or blinded. Larger collaborative studies that

aim to confirm the potential biomarkers or shared databases

allowing for the collation of obtained data are necessary and may

support clinical translation.

Of further interest, previous studies on heart EVMP

demonstrated the feasibility of utilizing solid-phase microextraction

(SPME) microprobes with subsequent metabolomic profiling to

uncover dynamic metabolic changes associated with organ injury

and recovery (112), which may expand the range of parameters

monitored during EVMP in future studies.

In addition to functional assessment, NMP constitutes a novel

interface for ex situ therapies as pharmacokinetics and

pharmacodynamics of drugs should not be altered by low

temperature during HMP. Most relevantly, NMP has enabled a

significant prolongation of preservation times throughout all
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organ types with 24 h in kidney (113), 1 week in liver (114), 3 days

in lung (115), 24 h in heart (116) EVMP. Prolonged preservation

times, in turn, provide the opportunity to perform ex vivo

therapies that demand long application times including gene

therapies and bioengineering and ex vivo surgery.

Of note, approaches combining NMP with HMP have also

been tested in livers and demonstrated improved functional

results (117).
2.5. Flow conditions

Flow conditions are crucial parameters of EVMP as they

regulate graft supply with oxygen and nutrients and clearance of

CO2 and metabolic products. In addition, flow conditions have

been shown to influence the organ protective effects of perfusion

solutions and mediate the occurrence of graft edema (8).

Considering the form of flow, pulsatile and continuous

flow applications can be distinguished. Pulsatile flow during

cardiopulmonary bypass, for instance, has been found to

significantly improve vital organ recovery throughout several types

of animal models associated with a preserved microcirculation

when compared to continuous flow (118, 119). The pulsatile flow,

in turn, generates vascular shear stress, which has been considered

to influence endothelial gene expression and function (5, 38).

Indeed, pulsatile pressure can enhance renal flow in isolated

kidney perfusion, improving vascular conductivity that translates

into increased clearance of creatinine, sodium reabsorption, and

reduced tubular cell injury (120). Mechanistically, better vascular

conductance upon pulsatile perfusion in kidneys could be

attributed to improved endothelial release of NO and reduced

secretion of endothelin-1 (121). However, studies comparing

continuous to pulsatile perfusion in kidney pairs found no

significant differences in graft survival and kidney function (7). In

addition, an experimental study on porcine lungs reported no

significant improvement in lung function parameters upon

integration of a modified roller pump generating pulsatile flow

(122). Taken together, clinically applicable evidence is scarce, and

more research on flow forms is needed, especially considering

temperature, perfusate, and the respective organ perfused.

Although clinical studies in cardiopulmonary bypass patients

indicate beneficial effects of pulsatile perfusion (118), it remains to

be elucidated whether this also applies to clinical EVMP.

In addition to the form of flow application, the flow rate

constitutes another important parameter for organ protective

perfusion that has been mainly studied in lung EVMP. Several

protocols using different percentages of the donor cardiac output

or fixed flow rates exist including the Lund protocol (100% of

cardiac output) (123), the Toronto protocol (40% of cardiac

output) (124), and the OCS protocol (2–2.5 L/min) for lung

EVMP (5). Since all studies investigating these protocols compare

outcomes to SCS, no direct comparison between protocols can be

made. Moreover, differences in study design, lung transplant

type, and patient characteristics do not allow for statistically

significant comparisons between these protocols (125).

Noteworthy, experimental studies have also investigated lower
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flow rates comparing EVMP flows of 40%–20% in porcine DCD

lungs. Intriguingly, improved lung function, reduced edema, and

attenuated inflammation after transplant were observed when

using flow targets of 20% (126). Supporting clinical evidence

derives from studies comparing high-flow cellular to low-flow

acellular machine perfusion, demonstrating higher transplant

suitability, higher wet-to-dry ratio change, and decreased

histological lung injury in the low-flow group (127).
3. Potential of EVMP beyond ordinary
graft preservation

With a broad range of EVMP systems being available for both

clinical as well as experimental applications, novel treatment

concepts for both the allo- and xenogeneic environment are

being explored. Of translational interest, significant efforts are

also being made to investigate innovative approaches for the

autologous setting, where the diseased organ will be treated ex

vivo, while the patient is subjected to temporary organ support

followed by replantation of the cured organ. In the meantime,

the patient is subjected to temporary organ support such as

hemodialysis for the kidney or the molecular adsorbent

recirculating system for liver compensation and extracorporeal

membrane oxygenation for mechanical heart–lung support

(Table 1). Most notably, this procedure precludes complications

deriving from disproportional organ size and the detrimental

side effects of immunosuppression associated with allo- and

xenogeneic transplantation while being timely limited only by the

ex vivo preservation times.
3.1. Ultima-ratio drug therapies

As EVMP enables isolated ex vivo perfusion of the explanted

organs, it provides a novel interface to treat them by high-dosage

medication without the otherwise significant disadvantage of

dose-limiting systemic side effects, resulting in more effective

therapeutic success. In this context, EVMP has been established

as a therapeutic platform to administer ultima-ratio therapies of

failing organs in patients with otherwise poor prognoses and

non-tolerable contraindications for systemic administration.

This is of particular relevance for the lungs, as severe bacterial

lung infections are one of the most frequent reasons for hospital

mortality due to sepsis and systemic organ failure (128).

Numerous competing factors in critically ill patients have been

characterized to impede effective antimicrobial drug dosing

required to eliminate pathogens including increased or decreased

renal blood flow, renal and hepatic dysfunction, changing volume

of distribution, and initiation of mechanical support devices such

as continuous renal replacement therapy or extracorporeal

membrane oxygenation (129). Thus, high-dosage antimicrobial

agents during EVMP with subsequent re-transplantation could

provide an option to achieve augmented in-organ doses of

antimicrobial agents while sparing systemic side effects.

Strikingly, subjecting explanted lungs infected with incurable,
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multidrug-resistant pseudomonas aeruginosa to a high dosage of

colistin during EVMP enhanced overall survival in a porcine

lung autotransplant model (130). Of note, colistin has been

shown to exert tremendous side effects causing renal and

neurological toxicity with higher cumulative doses, therefore

limiting its effective in vivo application (131). Consistent with

this study, a high dosage of empiric antimicrobial agents added

to the EVMP perfusate of marginal donor lungs caused an

effective reduction in microbial burden (132), improving

pulmonary lung function with increased oxygenation, better

pulmonary compliance, and reduced PVR (133). Moreover,

isolating the infected organ from the organism for EVMP

treatment concomitantly removes the source of infection

restricting septicemia and associated systemic immune responses,

which otherwise have been associated with accelerated multi-

organ dysfunction, compromised antimicrobial drug efficiency,

and death (134, 135). In order to further attenuate infectious

organ injury during EVMP, novel cellular therapies involving

mesenchymal stem cells (MSCs) are currently evaluated in
FIGURE 2

Potential of EVMP beyond transplantation. (A) Ultima-ratio therapies involving a
severe embolism. (C) Isolated chemotherapy allowing for high dosing of
chemotherapy efficiency through recruitment of hyperthermic preservatio
Bioengineering approaches involving decellularization and recellularization. (
and vascular reconstructive interventions. (H) Providing a preclinical research
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preclinical and clinical trials. Thus, tracheal instillation of MSCs

during EVMP of E. coli-injured human lungs increased bacterial

clearance and dampened inflammatory infiltration and

proinflammatory cytokine production while improving alveolar

fluid clearance (136) (Figure 2A).

Allowing for isolated, high-dosage therapy without systemic

distribution of thrombolytic drugs, EVMP may furthermore

display an alternative treatment approach to surgical pulmonary

embolectomy in patients with large-scale pulmonary embolism

and significant contraindications for fibrinolysis. In support, a

recent case report demonstrated the feasibility of thrombolysis

during EVMP in a donor lung affected by dispersed embolization

with improved paO2, dynamic compliance, and less pulmonary

edema allowing for subsequent, successful transplantation (137)

(Figure 2B).

High-dose application of therapeutic agents such as antibiotic

drugs during EVMP demands biomonitoring tools to assess the

tissue concentration of the drug. Therefore, novel methods such

as ex vivo SPME coupled to liquid chromatography/mass
ntimicrobial treatment for severe infections and (B) thrombolytic drugs for
chemotherapeutic drugs despite systemic side effects. (D) Improving
n or (E) anti-inflammatory therapies or hypothermic preservation. (F)
G) Ex vivo surgery facilitating tumor resection, pulmonary embolectomy,
interface for in vivo-like drug testing.
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spectrometry allowed for rapid quantification of doxorubicin in

porcine lung tissue by inserting a microfiber for 20 min (138).

Considering that many agents with potential for EVMP

application display short lifespans, further investigation to define

the ideal time point and duration of therapy administration is

required. Notably, a recent report demonstrated the utilization of

anti-CD31 to enhance the delivery of nanoparticles to explanted

human kidney endothelium during EVMP, which can serve as

depots for long-term drug release ensuring organ-specific therapy

continuation following reimplantation (139). Finally, EVMP

could augment the potential of novel gene therapies. Although

approved by the FDA within the recent decade, they are

associated with a significant economic burden, often requiring

multiple applications due to insufficient delivery (140, 141).

Here, EVMP could uphold drug levels by isolated target organ

perfusion without systemic drug distribution, which would

significantly reduce costs and could lead to a more optimized

therapeutic effect. Concomitantly, drugs that have shown

promising effects, but whose clinical implementation had been

hindered due to systemic side effects (142), could find new

upwind through EVMP sparing systemic exposure.
3.2. Improved effectiveness of
chemotherapy

At this point, EVMP usage focuses exclusively on the

autologous setting, where organs will be treated ex vivo, while

the patients are on temporary organ support, followed by

the autologous replantation of the cured organ. In addition

to the aforementioned high-dosage application of various

medications, chemotherapeutics, hyperthermic conditions, and

attenuated local organ inflammation may enhance the

effectiveness of the chemotherapy.

3.2.1. Improving chemotherapy efficiency by
increased drug doses

Chemotherapeutic drugs display a dose-dependent efficacy on

tumor cells in a broad range of cancer types. Thus, platinum-

based chemotherapeutics, for instance, that are frequently

administered in small-cell lung cancer, have been shown to

achieve a significantly higher complete response rate, overall

survival, and the number of 2-year survivors when applied at

high dosages including cisplatin and carboplatin in contrast to

carboplatin alone (143). However, side effects arising from high

doses of chemotherapeutic regimens limit their efficacy, thus

compromising outcomes of this therapy (144–146). In

particular, platin doses are limited by kidney damage arising

from acute tubular necrosis and proximal tubule apoptosis (147)

and liver toxicity due to hepatocyte necrosis and perisinusoidal

fibrosis (148). These systemic side effects could be spared

during EVMP, while the lungs could benefit from high-dosage

application with significantly improved therapeutic efficiency,

thus providing an option for end-stage cancer patients. As a

proof of concept, high dosing irinotecan with 20 times higher

concentration (2,000 mg/L) than the concentration for systemic
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application, which engenders strong neutropenia and

gastrointestinal toxicity in patients (149), did not induce drug-

dependent reperfusion edema or toxic injury to the lung

parenchyma (150) (Figure 2C).

Moreover, the tumor microenvironment has been shown to

exhibit an unbalanced starling mechanism in addition to

increased vascular permeability as well as a malfunctional

lymphatic system inside the tumor mass, leading to an increased

tumor interstitial fluid pressure (TIFP), which in turn impedes

drug distribution in many tumors. A significant increase in the

composition of the extracellular matrix furthermore

compromises drug delivery. Administering additional drugs to

the perfusion solution of EVMP to lower the TIFP or augment

convection may allow an additional improvement of

chemotherapeutic efficacy. Indeed, the angiotensin inhibitor

losartan has been shown to reduce stromal collagen and

hyaluronan production, therefore reducing TIFP and resulting in

increased vascular perfusion potentiating chemotherapy (151).

Moreover, blocking the VEGF receptor type 3 was found to

decrease lymphatic drainage, thus compromising TIFP and

consequent drug removal (152, 153).

3.2.2. Improving chemotherapy efficiency by
hyperthermic conditions

A complete explantation of the target organ with subsequent

implantation into an EVMP system appears detrimental;

however, unique features of modern EVMP systems may improve

adjuvant therapies due to the opportunity to influence

preservation parameters and the application of therapeutic agents

to the perfusate solution. In particular, EVMP enables fine-tuned

regulation of the perfusate temperature that could exert beneficial

effects during cancer therapy. Indeed, hyperthermia has shown

significant antitumor effects by affecting tumor growth directly

and improving chemotherapy efficacy (42). Thus, hyperthermic

treatment of cancer cells has been shown to induce the DNA

damage response by promoting DNA strand breaks, histone

g-H2AX foci formation, and ATM phosphorylation, while

decelerating DNA replication and repair through downregulated

DNA polymerase and topoisomerase activity (154). In the

clinics, hyperthermia is already frequently combined with

chemotherapeutic regimens leading to higher fluidity of the

phospholipid bilayer in tumor cells, thus augmenting drug

permeability. Consequently, cisplatin has been shown to exhibit

synergistic effects with hyperthermia at 43°C on cell growth

inhibition (155). During EVMP, hyperthermia can be easily

induced and applied locally targeted to the preserved organ

facilitating synergistic cancer treatment with chemotherapeutic

drugs and hyperthermia. Further supporting this concept,

local hyperthermia in addition to neoadjuvant chemotherapy

augmented the effect of the etoposide, ifosfamide, and

doxorubicin regimen on soft tissue sarcoma with higher

treatment response rate, compromised local progression, and

overall improved survival (156). In addition, regional inductive

hyperthermia in patients with liver metastasis deriving from

breast cancer increased the overall treatment efficacy with a

33.9% higher regression rate (157) (Figure 2D).
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3.2.3. Improving chemotherapeutic efficiency by
dampening local organ inflammation

A broad range of chemotherapeutics including platin, taxanes,

5-FU, and doxorubicin have been delineated to promote a

prominent proinflammatory tissue response with the expression

of IL-6, IL-8, TNF-α, and INF-β, which in back turn impedes

their efficiency and enables metastasis formation (158). Paclitaxel,

for instance, induces augmented cytokine production including

IL-6, which was mediated via TLR-4 in breast cancer cells.

TLR4- expression, in turn, was correlated with conferring

resistance to the drug by promoting anti-apoptotic proteins

(159), while IL-6 was found to endorse tumor progression

inducing angiogenesis and proliferation via the STAT-3 pathway

(160). Inhibiting chemotherapy-derived inflammatory signaling

has been shown to compromise drug resistance. Neutralizing

IL-6 with antibodies, for instance, sensitized multiple tumor types

toward distinct chemotherapeutic regimens (161, 162). Since

EVMP provides an interface to administer anti-inflammatory

agents, utilizing EVMP during ex vivo chemotherapy could

restrain chemotherapy-derived organ inflammation, thus

augmenting therapy efficiency. In support of this approach, the

administration of various anti-inflammatory reagents has been

tested in clinical EVMP studies showing significant amelioration of

donor organ inflammation with compromised inflammatory

cytokine expression including IL-6 which ultimately translated into

improved function. In lung transplantation, for instance, inhibiting

adenosine signaling with A2AR agonists during EVMP inhibited

TNF-α, IL-1, and IL-6 expression (163). Similarly, IL-6 receptor

blockade with tocilizumab (164), as well as melatonin

administration (165) during EVMP, inhibited IL-6-derived IRI in

cardiac transplantation. Moreover, in liver transplantation,

administration of an anti-inflammatory cocktail comprising

alprostadil, n-acetylcysteine, and carbon monoxide in addition to

subnormothermic temperature during EVMP restrained TNF-α

and IL-6 expression following transplantation (68). At least, the

integration of a cytokine filter during lung (166) and kidney

perfusion (167) reduced overall proinflammatory cytokine

expression with diminished edema formation and improved blood

flow, respectively.

In addition to compromising chemotherapy efficiency, the

inflammatory response induced by chemotherapeutic drugs

furthermore aggravates the function of the target organ. Cisplatin

is commonly recruited to treat biliary cancer both in a

neoadjuvant as well as palliative setting, thus co-exposing the

liver to its toxicity. Notably, platin-based chemotherapeutics have

been delineated to promote hepatic injury via oxidative stress

and augmented inflammation leading to cellular necrosis

(168–170) and organ fibrosis. In contrast, EVMP has been

demonstrated to reduce oxidative stress and inflammation in

preserved organs, which may in turn dampen chemotherapy-

derived organ injury. Metabolomic profiling during liver EVMP,

for example, revealed increased ATP levels as well as higher

NADPH/NADP ratios associated with reduced lactate levels in

liver tissue in the kinetics of 3 h of liver perfusion (171), which

may also diminish platin therapy-related oxidative stress.
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Furthermore, administration of enkephalin, an δ-opioid agonist

with antioxidative properties, during liver perfusion

compromised oxidative stress and prevented mitochondrial

dysfunction, resulting in higher ATP and glutathione in addition

to lower AST and malondialdehyde levels in a rat liver EVMP

model (172) (Figure 2E).
3.3. Bioengineering and organ modification

Bioengineering is considered an innovative and promising

future approach with the potential to recondition diseased organs

(173). Hereby, EVMP is proposed as a promising interface to

deliver cellular products exclusively to the target organ.

Strikingly, a recent study reported for the first time the successful

engraftment of cholangiocyte organoids into the intrahepatic

biliary tree during EVMP, while providing proof of concept that

these organoids can repair injured bile ducts. In detail, red

fluorescent protein (RFP)-expressing cholangiocyte organoids

were injected into the terminal branch of the intrahepatic duct of

human, ischemic injured livers at the start of EVMP.

Subsequently, organoids exhibited expression of key biliary

markers (KRT7, KRT1×9, CFTR, GGT) and improved bile

production with increased pH and higher volume despite

showing no trans-differentiation into other hepatic lineages (174).

In addition to treating diseased organs during EVMP with

subsequent reimplantation, bioengineering is furthermore

envisioned to enable the recreation of tissue parts for

subsequent implantation as an alternative strategy to organ

transplantation. Therefore, EVMP has been proposed as an

interface for the decellularization and the recellularization of

bioartificial organs under physiological conditions with

subsequent implantation (175, 176). In general,

decellularization was achieved in a broad range of organs

during EVMP with preserved organ architecture and ECM

components in addition to low levels of DNA and physiological

abundance of glycosaminoglycans and chemical and mechanical

components of the ECMs (177). Moreover, administration of

human placenta-derived endothelial progenitor cells (EPCs)

during EVMP was shown to induce successful recellularization

with proliferative EPCs repopulating kidneys, lungs, and hind

limb vascular intimae. Of note, a vascular chimerism with

human EPCs lining the luminal surface of rat blood vessels,

alongside rat cells within the tunica media and beyond,

artificially generating vascular chimerism (176). In addition,

various studies have demonstrated the effective decellularization

of organs from different animals preserving extracellular matrix

composition and architecture to engineer bioartificial organs via

repopulation with human cell lines (173). Notably, infusing

human endothelial cells ex vivo through the renal artery and

vein of decellularized rat kidneys resulted in homogenous

distribution in the vasculature compartments with site-specific

endothelial specialization (178). Similarly, administering human

perivascular and endothelial cells through the pulmonary artery

and pulmonary vein in isolated and decellularized rat lungs and
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human lung lobes resulted in successful endothelial cell coverage

with functional vascular lumen structures being detected (179).

Underscoring the clinical feasibility of bioengineering, this

study also examined the transplantation of the recellularized

lungs into rats showing the formation of continuous, polarized

vascular lumens that remained perfusable 3 days after

transplantation (179). Similarly, transplanting clinically scaled

porcine liver scaffold with human umbilical endothelial cells

(HUVECs) revealed HUVECs localization within sinusoidal

regions in addition to expression of a liver sinusoidal

endothelial cell-like phenotype. Strikingly, subsequent

heterotopic transplantation into immunosuppressed porcine

recipients resulted in 15 days of continuous in vivo perfusion of

the revascularized bioengineered liver (rBEL) (180) (Figure 2F).

Mitochondrial transplantation constitutes an additional and

very novel approach to modify tissue homeostasis and diseased

organs, which may be of translational relevance for EVMP-

based regenerative therapies (181). Indeed, mitochondrial

transfer has been demonstrated to improve IRI in a broad

range of organs while also ameliorating pathological tissue

dysfunction. Injecting mitochondria into the hearts of diabetic

rats following IRI, for instance, resulted in the recovery of left

ventricular function and a reduction of infarct size (182).

Likewise, mitochondrial transplantation into the spleen

improved liver function while administration via pulmonary

artery vascular delivery or tracheal aerosol delivery improved

lung mechanics and reduced lung tissue damage following IRI

(183). Similar effects had been observed when performing

mitochondrial transplantation through renal arteries with

protective effects against renal IRI (184). Noteworthy, the effects

of mitochondrial transplantation on organ reconditioning have

also been delineated with isolated mitochondria of HepG2 cells

injected into high-fat diet-fed mice, effectively improving non-

alcoholic fatty liver disease (185).

Of relevance, most studies have indicated that the therapeutic

effects of a single administration of mitochondria may be

transient. Therefore, EVMP may allow higher doses and

prolonged exposure to mitochondrial-carrying vectors while

providing an interface to determine the time point and route of

administration as well as the impact of repetitive cycles (186).

Bioengineering approaches using EVMP are also recruited to

create immunotolerance to effectively counteract both the lifelong

intake of immunosuppressive drugs and the risk of chronic

rejection. One approach focused on the genetic modification of

the MHC complex and the minor histocompatibility antigens

(mHag) of the vascular endothelium. Notably, administration of

short hairpin56 RNAs targeting beta-2 microglobulin and class II

transactivator transcripts using lentiviral vectors during EVMP

resulted in durable MHC I and II complex suppression without

affecting cell viability or tissue integrity (187–189). Another

approach utilized adenoviral vectors to induce IL-10 expression

in donor lungs to prevent the development of primary graft

dysfunction in a large animal survival model. Indeed, this

approach was shown to be safe, to improve lung function, and to

have an immunological advantage in both innate and adaptive

immune responses (190).
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3.4. Ex vivo surgery

Allowing for increasingly prolonged ex vivo preservation of

organs, EVMP has paved the way for surgical ex vivo procedures.

Utilizing stained perfusion solutions (e.g., methylene blue) in

addition to altering flow conditions hereby allows for

visualization and therefore suturing of even smaller leakages

avoiding significant blood loss over time. Moreover, enabling the

visualization and access to all organ sites and a prolonged period

of time for accurate tissue preparation and reconstruction, this

technique has raised significant interest throughout all disciplines

utilizing EVMP.

For surgical management of renovascular diseases, ex vivo

surgery is associated with significant technical advantages

allowing for vascular reconstructive interventions. Thus,

laparoscopic nephrectomy with subsequent autotransplantation

was successfully utilized for renal artery aneurysms affecting

distal vascular branches (191) and for nephron-sparing resection

in the case of a large renal tumor (192). Integration of an EVMP

system for ex vivo vascular kidney surgery, in turn, was

associated with improved assessment of the perfusion

characteristics of the remodeled kidney, in a study performing ex

vivo surgery in patients with a solitary kidney and either

dysplastic aneurysm, Takayasu disease, or fibrodysplasia lesions

(193), thus preventing nephrectomy and lifelong dialysis.

Liver and intrahepatic bile duct cancers and hepatic metastases

deriving from other extrahepatic tumors account for the most

prevalent tumors in humans (194). Surgical resection hereby

displays the gold standard therapy for most of these pathologies.

However, compromised liver function and lesions at difficult

anatomic sites, for instance, with the involvement of larger

vessels constitute a contraindication for curative surgery. Since

then, various studies utilizing ex vivo surgery to resect

complicated hepatic malignancies including hepatocellular

carcinoma, cholangiocellular carcinoma, and focal nodular

hyperplasia and hepatic metastasis, achieving significant R0

resection rates (93,4%, CI: 81.0%–97.9%). However, these

interventions had been associated with high 30-day mortality

(9.5% CI: 5.9%–14.9%) (195). Integrating EVMP during ex vivo

surgery could enable a prolonged preparation and aftercare

during the operation in addition to ameliorated IRI upon

reimplantation. Moreover, recruiting hyperthermia and ex vivo

chemotherapy during surgery may further adjuvate tumor

elimination. Of note, ex vivo liver resection has also been

introduced as a curative approach for non-resectable, end-stage

hepatic alveolar echinococcosis (HAE) associated with

dissemination into the intrahepatic conduits and adjacent

structures. Thus, a recent study reported a curative treatment in

29 of 31 patients with long-term recovery and no HAE

recurrence (196).

The feasibility of EVMP-supported operations in thoracic

surgery has been demonstrated in porcine models of large

tracheobronchial leakage with successful implantation of a

pericardial patch and replacement of the distal trachea with an

aortic graft using the OCS (197). Moreover, EVMP has already

been applied in the clinical setting with successful lung
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autotransplantation for centrally located and locally advanced lung

cancer to spare lung parenchyma by avoiding pneumonectomy,

which underscores the potential of this procedure (198).

Noteworthy, integrating an EVMP system could furthermore

enable the application of topical, high-dosage therapeutic drugs

avoiding systemic side effects, which is of particular interest in

supporting the long-lasting success of ex vivo tumor resections in

lungs (199). Moreover, surgical procedures can be performed

in the absence of ventilation improving surgical accuracy, which

otherwise is hardly possible during in-human surgery, in

particular in patients with threatening decreased lung function.

Exploiting the improved access routes to critically located

tumors, various case studies in cardiac surgery have reported

successful ex vivo resections of cardiac sarcoma (200), complex

atrial myofibroblastic tumors (201), and giant large atria

following chronic mitral valve disease on an ex vivo beating heart

(202). Moreover, single centers also have reported on larger case

numbers of cardiac autotransplantation with ex vivo tumor

resection for malignant complex primary left heart tumors (203)

(Figure 2G).
3.5. Preclinical in-human research

Being able to preserve solid organs in a perfused, physiological

environment enables a new field for in vivo-like preclinical studies

with the potential to accelerate the clinical transition of novel

therapeutic approaches. Therefore, a large choice of animal

models for kidney, liver, and thoracic organ EVMP have been

developed, which simultaneously facilitate the investigation of

therapeutic regimens for diverse disease models. However,

multiple differences, for example, between rodent and human

perfusion models restrict the translational relevance of these

studies due to lower EVMP perfusion flow in rat models (204)

and hypersensitivity toward dextran-based perfusion solutions,

which does not occur in humans (205). Moreover, a broad range

of diseases, in particular various malign tumor animal models,

are still lacking substantial transferability with regard to the

strong heterogeneity of tumorigenesis (206).

Utilizing organs from deceased patients in contrast enables the

opportunity to test novel pharmacotherapeutic therapies in

relevant human disease models and allows for more precise

prediction of therapy efficacy when compared to animal models.

For lungs, acute respiratory distress syndrome (ARDS), for

instance, represents an acute life-threatening pathology frequently

deriving from severe infection, which evolves rapidly and confers

high mortality on the afflicted (207). Advances in clinical care

have significantly improved ARDS outcomes (208); however, no

appropriate pharmacotherapy has emerged. A wide range of

anti-inflammatory agents (e.g., corticosteroids, prostaglandins,

n-acetylcysteine) had provided promising results in both rodent

and large animal models, however without translational

relevance, as clinical trials failed to achieve significant benefit for

patients (209). In contrast, a recent study applied EVMP in

human donor lungs, which were not acceptable for

transplantation, to successfully establish a model of endotoxemia-
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derived lung injury via lipopolysaccharide (LPS) instillation into

the pulmonary artery (210). Tightly reflecting the clinical setting,

this approach resulted in a robust cytokine response, along with

decreased pulmonary venous oxygen content over five hours as

seen during ARDS. Supporting the concept of early

pharmacological studies using EVMP, evaluating a novel small

molecule, BC1215, which suppresses NF-κB signaling, in the

ARDS model resulted in reduced induction of IL-1, IL-6, and

IL-10 as measured by ELISA of BALF. RNA sequencing

furthermore revealed that BC1215 administration after LPS

exposure significantly blunted the NF-κB transcriptional response

and preserved venous partial oxygen pressure (210).

In addition to evaluating the efficiency of pharmacotherapies,

EVMP could furthermore support clinical phase 1 and 2 studies

allowing for the delineation of organ-specific side effects, which

are of crucial relevance for clinical transition. Commonly used

animal models to test the hepatotoxicity of novel drugs, for

example, display significant discrepancies from the human setting

due to differences in drug metabolism and mostly homogeneous

environmental and genetic conditions in inbred animal strains.

In contrast, an EVMP model investigating the impact of

acetaminophen-induced liver injury utilized human liver tissue

from partial liver resections to mimic the clinical setting.

Notably, the EVMP system allowed for hourly perfusate sampling

and live assessment of clinical parameters showing compromised

liver function during APAP poisoning with lower glucose

consumption and lactate production rates while hepatocyte

synthesis capacity had been preserved (211). Of note, evaluating

liver function by clearance of indocyanine green revealed stable

hepatocellular function during the entire perfusion period

indicating a clinically relevant setting (211).

Finally, the utilization of EVMP models to initiate clinical trials

could lower the ethical burdens of testing novel pharmacological

drugs, thus accelerating the transition of promising candidates

into the clinics (Figure 1H).
4. Outlook and limitations

EVMP—primarily applied in allogeneic organ transplantation

—concomitantly provides an interface to investigate perfused

organs in an almost physiological setting but with improved

accessibility, which was the basic requirement to transfer and test

out this technique in a broader spectrum. Applying ex vivo

therapies to regenerate or cure diseased organs constitutes a

feasible approach, which will be further expanded in the future

for selected clinical indications thus having the potential to

minimize the gap between demand and supply in organ

transplantation. This can be implemented on the one hand by

the improvement of otherwise discarded, marginal donor organs,

in particular from donors after DCD and those retrieved from

ECD (6). On the other hand, treating diseased organs ex vivo

followed by autologous replantation of the cured organ may

reduce the number of patients in need of organ transplantation

(8–10). This autologous application should be limited to clinics

that display profound experience in the field of temporary organ
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support systems and organ transplantation. It is noteworthy that, at

the current state, the broad majority of studies investigating ex vivo

supported organ reconditioning are still executed on a purely

experimental level and derive from small study series.

Overall, there are two main factors to further advance this

innovative research field in the future. At first, further

improvements in preservation protocols enabling >24 h ex vivo

perfusion or even more without significant organ damage need

to be established. On the other hand, interdisciplinary exchange

and cooperation need to look beyond the boundaries of the own

professional discipline to learn and pick up ideas from related

ones. The translation into the own clinical or research-associated

area may enhance the welfare of patients, true to the saying “You

dońt have to reinvent the wheel.”
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