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Long COVID is characterized by persistent signs and symptoms that continue or
develop for more than 4 weeks after acute COVID-19 infection. Patients with Long
COVID experience a cardiovascular autonomic imbalance known as dysautonomia.
However, the underlying autonomic pathophysiological mechanisms behind this
remain unclear. Current hypotheses include neurotropism, cytokine storms, and
inflammatory persistence. Certain immunological factors indicate autoimmune
dysfunction, which can be used to identify patients at a higher risk of Long COVID.
Heart rate variability can indicate autonomic imbalances in individuals suffering from
Long COVID, and measurement is a non-invasive and low-cost method for assessing
cardiovascular autonomic modulation. Additionally, biochemical inflammatory
markers are used for diagnosing and monitoring Long COVID. These inflammatory
markers can be used to improve the understanding of the mechanisms driving the
inflammatory response and its effects on the sympathetic and parasympathetic
pathways of the autonomic nervous system. Autonomic imbalances in patients with
Long COVID may result in lower heart rate variability, impaired vagal activity, and
substantial sympathovagal imbalance. New research on this subject must be
encouraged to enhance the understanding of the long-term risks that cardiovascular
autonomic imbalances can cause in individuals with Long COVID.
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1. Introduction

LongCOVIDSyndrome, know as LongCOVID, can be described as the persistence signs and

symptoms that continue or develop for more than 4 weeks after acute COVID-19 infection (1).

During clinical evaluation, differential diagnosis and the identification of associated pathologies

unrelated to SARS-CoV-2 infection are essential (2). Manifestations of Long COVID occur in

approximately 50%–80% of previously symptomatic patients with COVID-19 who have

recovered (3). Cardiovascular autonomic dysfunction or dysautonomia involves inadequate

autonomic nervous system (ANS) function, resulting in various cardiovascular symptoms.

Dysautonomia can be acute, chronic, progressive, irreversible, or variable and can accompany

infectious or non-infectious diseases. Cardiovascular autonomic dysfunction can be assessed by

measuring heart rate variability (HRV) using linear (time or frequency domain) and non-
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linear methods (4). HRV measures RR interval variation, autonomic

function and neurocardiac (5) from simple bedside analysis to more

sophisticated markers (6), in patients with cardiac or non-cardiac

diseases (7) with analysis of vagal function (8). The cardiovascular

autonomic pathophysiology of Long COVID is unclear, but

neurotropism, hypoxia, or viral-mediated pathways may be

associated with this condition. The symptoms of cardiovascular

autonomic dysfunction include orthostatic intolerance, chest pain,

palpitations, reduced exercise tolerance, and “brain fog” (9, 10).

According to Raveendran et al. (2021) (10), the symptoms of

Long COVID occur due to chronic inflammatory persistence or

immune responses related to antibody production. Individuals

with altered immunity or those who are reinfected may develop

viraemia (11). To better understand Long COVID, investigating

whether elevated levels of inflammatory markers are present

long-term is necessary, potentially improving the prognostic

stratification of this disease (12–16).

Autonomic tests can be used to analyse the possible causal

relationships of dysautonomia (17) in individuals with Long

COVID. Associations between HRV and various inflammatory

markers appear to alter cardiovascular autonomic modulation.

HRV monitoring may also result in better disease stratification in

patients with Long COVID. The objective of this review was to

provide information on long-term cardiovascular autonomic

dysfunction in patients with Long COVID and its impact on

morbidity and mortality in this patient population.
2. Autonomic pathophysiology of long
COVID

The persistent neurological complications observed in Long

COVID likely result from damage to the central nervous system

(CNS) and peripheral nervous system (PNS). This may involve a

complex pathophysiology, including direct viral neuronal

damage, neuroinflammation, disruption of the blood-brain

barrier (BBB), microvasculitis, and hypoxia (18). Through the

angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 (the

causative agent of COVID-19) binds to nervous system (NS) cells

in the brain, the choroid plexus, and the ventral posterior

nucleus of the thalamus. SARS-CoV-2 also binds to α7 nicotinic

acetylcholine receptors (α7 nAChRs) (19). Limited data are

available on the SARS-CoV-2 neuroinvasive routes and NS

infection (20); however, neuroinflammation with substantial

immune infiltration has been observed (21).

After direct infection by SARS-CoV-2, neurotropic effects play

a considerable role in the pathogenesis of Long COVID. SARS-

CoV-2 may use ACE2 to enter CNS and PNS cells through

haematogenous or transsynaptic pathways (22). Although the

neurotropic pathways are unclear, the virus is likely to cross the

BBB or directly or indirectly damage it. The SARS-CoV-2 spike

protein (S12) can also damage the integrity of the BBB, either

independently or in conjunction with other cell mediators (23).

Indirect damage occurs through endothelial cells and pericytes or

activation of the autoimmune response (24).
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ACE2 may enhance the cytokine storm immune response

through chemokine and pro-inflammatory cytokine expressions

(25). These may activate adaptive immune cells (CD4 + and

CD8 + T cells) and recruit innate immune cells (neutrophils,

monocytes, macrophages, and natural killer cells) (26).

The long-term inflammatory persistence of Long COVID may be

explained by the presence of residual SARS-CoV-2 antigens, resulting

from low adaptive immune responses. Persistent activation of SARS-

CoV-2-specific T cells has been observed at the beginning of infection

and 6 months post-infection. Patients with Long COVID have a

specific increase in CD4 + T and CD8 + T cells at the end of their

recovery (27). According to Galán et al. (2022) (28), individuals

with Long COVID have lasting cytotoxic persistence as indicated

by high levels of CD8 + T and CD4 + T cells and PD-1 exhaustion

markers on CD3 + . This may explain why this population

develops a potent memory response against SARS-CoV-2.

The innate immune response is highly activated in patients

with Long COVID, and this activation persists for 8 months after

initial infection by SARS-CoV-2. This results in the increased

expression of type I interferon (IFN-β) and type III interferon

(IFN-β, -λ1) cytokines, T lymphocyte types CD38, CD86, CD14

+, and CD16+, as well as monocytes. Immunological profiles of

the patients revealed a chronic inflammatory response (29).

Patients with Long COVID are likely to be in a state of

autoimmunity conferred by a significant increase in interleukin

(IL)-9-mediated Th9 cells. Autoinflammation and autoimmunity

may also be maintained through IL-6 dysregulation (30).

Neuronal nicotinic acetylcholine receptors (nAChRs) are

primarily found in the CNS and PNS. α7 nAChRs are found in

the immune system of patients with COVID-19 and may persist

long-term in various immune cells, such as macrophages, B cells,

T cells, and dendritic cells. Activation of α7 nAChRs in the

cholinergic anti-inflammatory pathway inhibits the production of

pro-inflammatory cytokines (19). α7 nAChRs are present in

neuronal and non-neuronal cells; a decrease in their levels would

cause tissue damage and overproduction of cytokines. The Y674-

R685 region of protein S can bind to α7 nAChRs and regulate

ACE2. α7 nAChR expression ligands may affect SARS-CoV-2

infectivity and COVID-19 progression (31).

α7 nAChR deficiency causes immune and neuronal deficits. The

SARS-CoV-2 spike protein (S12) facilitates viral cell entry. At a

cellular level, S12 can suppress α7 nAChR. The S12

immunoreaction suggests a contribution to the onset of

cardiovascular diseases independent of viral infection (23). In the

ANS autoimmune imbalance, disparities autoantibodies at the G

protein-coupled receptors contribute to the development of clinical

and autonomic symptoms in patients with Long COVID (32, 33).

The α7 nAChR subtype is overexpressed in the hippocampus and

is the most important mediator of the anti-inflammatory properties of

the cholinergic system; dysregulation in this system could potentially

cause the uncontrolled inflammatory response observed in COVID-

19 (34). At the end of the inflammatory response, α7-nAChR is

activated by acetylcholine, a neurotransmitter used by the

parasympathetic nervous system (PSNS) (35).

After an inflammatory response, afferent signals are

conducted through the vagus nerve (the primary nerve of the
frontiersin.org
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PSNS) to the nucleus tractus solitarius. Posteriorly, the vagus

nerve is responsible for a reflex action called the cholinergic

anti-inflammatory pathway(CAP) (36). This inflammatory reflex

is dynamic, and immune responses can be influenced by the

sympathetic nervous system (SNS). The SNS is connected to

different central circuits and works as a protective neural

system, performing tissue repair and global recovery through

interactions between the immune system and the brain. The

brain receives immune signals through cytokines and modulates

immune system reactivity through the SNS and possibly the

sympatho-adrenal and hypothalamic-pituitary-adrenal systems.

During inflammation, cytokines are involved in nociceptor

sensitisation in SNS fibres (37).

The ANS controls inflammation through the CAP (32). ANS

and the immune system interact with invading pathogens.

Acetylcholine and noradrenaline regulate cytokine release, and

cholinergic signals from the efferent vagus nerve and α7 nAChR

have anti-inflammatory functions. Intracellular signals interrupt

NF-κB and activation of JAK2/STAT3 cascades, and

inflammasome-mediated cholinergic signals using α7 nAChR

stop the production of TNF, IL-1β, and other pro-inflammatory
FIGURE 1

Autonomic Pathophysiology of Long COVID (Created with BioRender.com)
angiotensin-converting enzyme 2; S12, SARS-CoV-2 spike protein; α7 nACh
PNS, peripheral nervous system; PSNS, parasympathetic nervous system; SN
lymphocyte CD8+; type III interferon (IFN-β, -γ1), T lymphocyte types: CD
autonomic nervous system.
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cytokines. The resolution of inflammation occurs through the

synchronized action of protective mechanisms, lipoxins and

eguasins, and increased activity of neutrophils and macrophages.

The vagus nerve acts as an integrator during anti-inflammatory

control (38).

Other mechanisms leading to Long COVID may include an

association between immune-mediated vascular dysfunction,

thromboembolism, and NS dysfunction. A relationship between

the activation of the SNS and an increase in catecholamines

accompanied by a cytokine storm and impairment mediated by

ANS inflammation is likely to be established (39). Autonomic

dysfunction in Long COVID can be caused by the direct viral

action of SARS-CoV-2 or by the immune response impacting the

ANS (40).

Additionally, prolonged inflammatory persistence and cellular

damage from fibrotic changes can reduce cell adhesion and lead

to arrhythmias (palpitations) such as coagulopathies and postural

orthostatic tachycardia syndrome (POTS) (41). According to

Glynne et al. (2022) (42), patients with Long COVID may report

improvements in symptoms, but symptoms of dysautonomia

may persist (Figure 1).
. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; ACE2,
Rs, α7 nicotinic acetylcholine receptors; CNS, central nervous system;
S, sympathetic nervous system; CD4+, T lymphocyte CD4+; CD8+, T
38, CD86, CD14α, CD16α; IL-9, interleukin 9; IL-6, interleukin 6; ANS,
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3. HRV and inflammatory markers

In the meta-analysis performed by Williams et al. (2019), the

link between HRV and inflammation was clarified. Higher HRV

(all indices), particularly vagal HRV, was associated with lower

levels of inflammation. Over time, the SDNN index proved to be

the most consistent, while the high-frequency HRV (HF-HRV)

was the strongest when examining frequency; these data support

the involvement of the CAP. Examining the vagal index, both

HF-HRV and RMSSD were related to inflammation. The

inflammatory markers C-reactive protein (c-RP) and white blood

cell (WBC) count exhibited negative associations with different

levels of HRV (36).

According to Sotak (2022), inflammatory biochemical markers

can be used to support and monitor infection diagnosis and

treatment efficacy (43). Studies evaluating inflammatory markers

and HRV in Long COVID are scarce, although Aeschbacher

et al. (2017) (44) reported that the inflammatory parameters c-

RP, leukocytes, and leukocyte subtypes may be associated with

increased heart rate (HR) and decreased HRV (SDNN). These

results suggest an association between inflammation and the

ANS as well as increased cardiovascular morbidity and mortality.

Autonomic dysfunction may put individuals with elevated

inflammatory biomarkers at increased cardiovascular injury risk.

Elevated c-RP levels are associated with a chronic inflammatory

state that functions as a peripheral marker in clinical research and

may be associated with disease complications (45, 46). According

to Pasini et al. (2021) (47), patients with Long COVID have high

levels of c-RP and lactate dehydrogenase, resulting in cell damage

and persistent inflammation.

HRV has the potential to aid in early inflammatory response

detection and tracking. However, further HRV studies are

required to study chronic inflammation states (48). The PSNS

participates in inflammatory processes through HF-HRV and is

inversely associated with IL-6, c-RP, and fibrinogen levels. This

suggests that parasympathetic modulation of inflammation by the

vagus nerve may act on specific inflammatory molecules. Similar

inverse associations were observed between low frequency HRV

(LF-HRV) and IL6 and c-RP (49).

The inverse association between HRV and the inflammatory

markers IL-6 and c-RP in healthy individuals and those with

cardiovascular disease (CVD) was reported by Haensel et al.

(2008) (50). This indicated that HRV is associated with

inflammation. The CAP driven by the vagus nerve is well

described, and sympathetic and parasympathetic modulation

substantially contribute to the modulation of cytokine production

(51).

As in the study by Wegeberg et al. (2020) (52) pointing out the

inflammation associated with HRV involving the SNS and PSNS.

A cohort study (1,255 participants) conducted by Cooper et al.

(2015) (53) found that LF-HRV was inversely associated with

IL-6, c-RP, and fibrinogen levels, whereas HF-HRV was

inversely associated with c-RP and fibrinogen. Vagal activity

regulates systemic inflammation and prevents damage from

excessive inflammatory responses (Figure 2). Implementing
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HRV monitoring associated with the monitoring of

inflammatory markers could substantially contribute to reducing

the severity of infectious events through early detection and

reductions in mortality (54) (Figure 2).
4. Cardiovascular autonomic
dysautonomia in long COVID

The negative and positive feedback mechanisms of the heart

and vessels are regulated through the balance of inhibition and

activation of sympathetic and parasympathetic afferent and

efferent neurons of the Intrinsic Cardiac Nervous System.

Cardiac neural regulation interacts reflexively to modulate heart

rate and blood pressure. Stimulation of cardiac sympathetic

afferents reflexively increase sympathetic efferents and inhibits

efferent vagal cardiac fibers, generating an increase in HR and

blood pressure (BP). While the parasympathetic cardiomotor

function helps to reduce HR, blood pressure. Baroreceptor

controls also reflect HR and BP fluctuations, wich convey

responses for sympathetic and parasympathetic modulation

(55, 56).

Long COVID may involve cardiovascular dysautonomia. POTS

is the most prevalent type of CVD, defined as a persistent HR

increase of at least 30 beats per minute when standing (upright).

It may be associated with palpitations, chest pain, and exercise or

orthostatic intolerance. POTS is more prevalent in women (80%)

and can be precipitated by viral illnesses or serious infections

(57, 58).

Eldokla et al. (2022) reported autonomic dysfunction in 332

individuals with Long COVID (59). The authors found a high

prevalence of dysautonomia symptoms (76.7%) when using the

Composite Autonomic Symptom Score 31 questionnaire

(COMPASS-31). The high score (>16.4) found suggested that

autonomic dysfunction was initially associated with a longer

duration of Long COVID symptoms.

A high prevalence of dysautonomia (66%) was also reported by

Larsen et al. (2022) (60) when using the COMPASS-31

questionnaire to evaluate 2,314 individuals with Long COVID;

they observed moderate-to-severe autonomic scores. However,

according to Hovaguimian (2023) (61), whether Long COVID is

directly involved in autonomic impairment, causes POTS

symptoms, or orthostatic intolerance through previously

identified chronic disease mechanisms remains unclear.

Heart rate recovery provides a surrogate measure of autonomic

health in patients with Long COVID. Long COVID POTS patients

may benefit from conservative treatments to recovery HR and

dysautonomia symptoms (62, 63), treatment may involve graded

exercise, use of compression stockings, control of high fluid and

sodium intake, and cognitive-behavioral therapy (57).

Dysautonomia was also reported by a cohort in a study by

Zanin et al. (2023) performing a battery of autonomic tests on

patients with Long COVID. Patients in this study had disabling

symptoms and severe COVID-19. The authors showed more

evident parasympathetic dysfunctions than sympathetic
frontiersin.org
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FIGURE 2

Association of heart rate variability and inflammatory markers (created with BioRender.com). HRV, heart rate variability; LDH, lactate dehydrogenase; ANS,
autonomic nervous system; PNS, peripheral nervous system; PSNS, parasympathetic nervous system; SNS, sympathetic nervous system; HF-HRV, high-
frequency HRV; LF-HRV, low-frequency HRV.
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dysfunctions with fluctuating and polymorphic symptoms. Among

the battery of tests, sympathetic and parasympathetic autonomic

tests, neuropathy scores (Kale Score), and autonomic severity

(evaluated using the Composite Autonomic Severity Score) were

used. They found that 37.5% of patients had at least one

abnormal test result, which was associated with mild autonomic

failure in 83% and moderate autonomic failure in 16%. The

cardiovascular system and sudomotor function were the most

affected (64).

Dysautonomia can persist for almost a year due to symptom

heterogeneity, and monitoring of cardiovascular autonomic

dysfunction in patients with Long COVID is challenging. The

impairment of these functions decreases the quality of life of

patients, affecting their daily activities and hampering their

ability to return to work (65).

The physical inactivity and at rest result in cardiovascular

deconditioning and impair cardiovascular neural control (55, 66).

HRV feedback training aims to increase vagal tone by

metronomic breathing (5). Post-COVID-19 rehabilitation with an

aerobic and resistance training program can provide important

cardiorespiratory, cardiovascular, functional and autonomic

responses (67).
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5. Association of ANS and HRV

HRV measurement assesses the ANS with its interconnected

sympathetic and parasympathetic branches (68). Heart rate and

rhythm are considerably influenced by the ANS; parasympathetic

activity decreases HR through the vagus nerve and sympathetic

resolution by activating β-adrenergic receptors. HRV can be

measured using either linear or nonlinear methods. High HRV

or one that is reduced are linked to sympathetic (“escape”) and

parasympathetic activation (“recovery”), respectively (69).

In general, autonomic imbalances refer to the inappropriate

ability of the autonomic system to respond physiologically to

stimuli, either by increased or decreased modulation of one of

the two branches. Inappropriate increased or decreased of vagal

or sympathetic modulation can be detrimental (7, 70, 71), and

generate clinical implications (72). The dysautonomia can be

found due to prolonged bed rest, so early initiation of

rehabilitation can combat its symptoms (5). Physically inactive

people (mild to moderate infection) have greater autonomic

dysfunctions (increased sympathetic activity—LF) compared to

physically active controls (increased parasympathetic activity—

HF) (73).
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With HRV reduction, neuroautonomic disconnections or a

decrease in baroreflex sensitivity can be observed. HRV reduction

can be estimated by reductions in time-related factors (DNN,

RMSSD, and pNN50) or frequency (LF/HF ratio reductions or

LF increases). Infectious diseases can reduce HRV, and ANS

imbalances can reduce the vagal tone and compromise

physiology by uncoupling distinct mechanisms (74).

A high HRV indicates a sympathovagal balance and good ANS

adaptability. A reduced HRV may indicate abnormal ANS control

(75). Activation of the inflammatory reflex has been proposed to

interfere with vagal modulation of the HR as inflammation in

the acute and chronic phases modifies cardiac function through

changes in HRV (76).

The vagus nerve contributes to inflammation control through

its afferent and efferent pathways, playing a dual anti-

inflammatory role. Low vagal tone, visualised by HRV, is a

marker of sympathovagal balance (77). A wide range of

symptoms are observed in the population with Long COVID.

Therefore, autonomic testing, including checking blood

pressure, heart rate, and HRV by long-term Holter monitoring

(24 h) or short-term heart rate monitoring (5–15 min) is

imperative. These tests can be adopted in clinical practice

(65, 78, 79) (Figure 3).
FIGURE 3

Autonomic nervous system and heart rate variability in Long COVID (cr
parasympathetic nervous system; HRV, heart rate variability; HR, heart rate.

Frontiers in Cardiovascular Medicine 06
6. Heart rate variability in long COVID

HRV is considered an indirect biomarker of cardiac autonomic

control. A reduced HRV can be observed in cardiac and non-

cardiac patients and is related to a worse prognosis (80). During

viral infections, changes in long-term autonomic control and

individual responses to HRV can be observed (81).

HRV can indicate cardiovascular dysautonomia in individuals

suffering from Long COVID. These patients may have reduced

HRV compared with healthy individuals. Data predicting

autonomic dysfunction in patients that have recovered from

SARS-CoV-2 infection are limited (82, 83). Dysautonomia was

also reported by Liviero et al. (2023) in paucisymptomatic patients

that had recovered from acute COVID-19. With analysis of HRV

frequency and time, persistent sympathetic activity (increase in LF

and LF/HF) and decreases in vagal activity due to decreases in HF

were observed, in addition to reductions in SDNN and RMSSD.

Patients in the acute phase of COVID-19 with autonomic

dysregulation can progress to Long COVID; HRV works as a

marker of worsening clinical condition in the long term (84).

To verify dysautonomia, Acanfora et al. (2022) examined HRV

in 30 individuals with Long COVID and found impaired vagal

activity and sympathovagal imbalances. The authors found lower
eated with BioRender.com). SNS, sympathetic nervous system; PSNS,
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SDNN, SDANN, and SDNNi values in patients with Long COVID.

Examining frequency, patients presented lower total power for VLF

and HF components. When stratifying patients with Long COVID

and controls, the SDNN parameter was lower in Long COVID,

whereas the LF/HF ratio, D-dimer, NT-Pro-BNP, and IL-6 were

significantly higher (85).

Vagal dysfunction and sympathovagal alterations identified

through HRV can be visualised by changes in HF components

and LF/HF ratio. Persistent parasympathetic activity has been

reported in individuals with Long COVID by Menezes Júnior

et al. (2022). Patients with Long COVID showed lower HF values

than healthy individuals but had LF increases. The authors

discussed that increases in parasympathetic activity (for example,

in RMSSD) might be related to symptoms of Long COVID and

inflammatory marker increases (brain natriuretic peptide, D-

dimer, and c-RP) (86).

An increase in parasympathetic tone initially overcome by an

increase in sympathetic tone was visualised in 60 patients with

Long COVID (>12 weeks post-COVID) in a study by Asarcikli

et al. (2022). In comparison to healthy controls, the Long

COVID group showed a significant increase in SDNN, RMSSD,

and HF when examined using by the VFC in the domain of time

and frequency. Prolonged parasympathetic activity may be

responsible for the varied symptoms seen in Long COVID (87).

However, it is noteworthy that in this study the authors excluded

asymptomatic patients or with severe COVID-19 infection, as

well as patients with depression, renal failure, morbid obesity

diabetes, obstructive sleep apnoea and overt cardiovascular

diseases (all known to have a reduced vagal tone), such exclusion

criteria were not considered, which may generate selection bias

since their result can only be applied to a small category of Long

COVID patients, but ultimately not to all patients with Long

COVID.

Shah et al. (2022) analysed cardiovascular dysautonomia in 92

patients that had recovered from COVID-19 by examining HRV

over time. They found that patients had significantly reduced

HRV and higher levels of inflammatory markers than controls.

Reduced HRV negatively correlated with RMSSD in relation to

the c-RP and IL-6 markers. The HRV time domain (RMSSD)

was the most relevant measure for short-term ANS analysis (83).

Lampsas et al. (2022) evaluated patients with Long COVID

who had autonomic dysfunction and were hospitalised (88).

These patients experienced decreases in overall SDNN-HRV

when evaluated with 24-hour ambulatory Holter analysis. The

SDNN improved within 6 months of hospitalisation,

corroborating the association between autonomic dysfunction

and Long COVID. In contrast, Kurtoğlu et al. (2022) examined

50 patients with Long COVID with cardiovascular autonomic

dysfunction who were not hospitalised (89). They found that

cardiovascular autonomic dysfunction was associated with a

decrease in RMSSD parameters, pNN50, HF, and LF, as well as a

decrease in signal complexity seen by approximate and sample

entropies.

Many authors have reported a loss of autonomic function due

to SARS-CoV-2 infection; Freire et al. (2023) (90) reported that

seven immunised (full immunisation) young adult patients with
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Long COVID experienced restoration of their autonomic

function over approximately 5 months after mild to moderate

infection. The improvement in autonomic function should be

further investigated to follow the progression of SARS-CoV-2

infection and enhance the understanding of its long-term effects

on the ANS.
7. Importance of HRV for long COVID

For better long-term management, physicians should be aware

that patients with mild to severe symptoms of COVID-19, as well

as asymptomatic people, can develop symptoms of Long COVID

regardless of their health status (91). Long COVID symptoms

can last for weeks, months, or even years after the acute phase of

the illness. Melatonin is a neuroprotective drug that has shown

promise in aiding Long COVID recovery as it helps combat

cytokine reactions and advancing symptom severity, helps

prevent neurological disorders, and controls cognitive

deterioration (“brain fog”) (92).

HRV is influenced by the circadian rhythm; it can decrease

throughout the day with higher morning values, with RMSSD

and SDNN being higher during the day. The cardiovagal

response to stress generates higher HRV at rest, and cardiovagal

control is essential to reduce chronic disease symptoms (93).

Patients with Long COVID often have insomnia and circadian

rhythm problems (94), and treatment with melatonin can

substantially combat these deficits in addition to decreasing

dysautonomia and increasing HRV (95).

Different HRV responses are observed in patients with

Long COVID. Karakayali et al. (2023) examined patients with

Long COVID (mild to moderate COVID-19) that were

symptomatic or asymptomatic; symptomatic patients had higher

parasympathetic tone (RMSSD, SDNN, SD1, and SD2). The

parasympathetic system increases HRV, whereas vagal

dysfunction reduces it (96).

HRV monitoring results in better stratification in patients with

Long COVID. HRV can be used to monitor Long COVID

(symptomatic), post-COVID-19 (asymptomatic), and uncertain

Long COVID (unclear) individuals (97). Long COVID can range

in severity from mild to severely debilitating (98). HRV

monitoring in these groups should identify early diagnosis of

autonomic changes, predict the severity of Long COVID, limit

disease progression, improve clinical outcomes, and lead to new

therapeutic strategies.

Analyses of complex and simple HRV markers over time and

frequency have been performed to detect early changes in

autonomic involvement. Patients with low HRV are at risk of

arrhythmia and sudden death (6); furthermore, reduced HRV

can be considered predictive of malignant arrhythmias (99).

Different clinical groups of patients with Long COVID were

analysed by Marques et al. (2022) using HRV measurement with

linear and non-linear methods. They found increased

sympathetic activity (LF, LF/HF) at rest and reduced

parasympathetic tone (RMSSD, SDNN, SD1, and HF). These

alterations can lead to increases in heart rate and blood pressure,
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predisposing patients to cardiovascular complications, chronic

diseases, and sudden death (78).

Owing to its affordability, HRV monitoring can be adopted

into evaluation protocols to monitor therapies and the

improvement of patients with Long COVID who have autonomic

dysfunction (100). Severely ill patients who do not show

improvements in long-term HRV require a longer follow-up

period to eliminate the virus. HRV markers can be associated

with clinical disease severity, acting as non-invasive monitoring

resources and predictors of clinical outcomes (101).

HRV is the most appropriate tool for diagnosing patients with

Long COVID who have cardiovascular autonomic dysfunction as it

generates a quantitative score independent of cognitive function. In

addition, HRV can be used as a predictor of inflammatory and

autonomous states using diagnostic and predictive methods for

cardiovascular function (102). This provides further information

on the vagal anti-inflammatory role (53), indicators of

cardiovascular health, and the mortality prognosis for the Long

COVID population (103, 104).

Neurocognitive “brain fog” symptoms can remain elevated up

to 2 years after SARS-CoV-2 infection, as described in a cohort

of a retrospective study of nearly 1.3 million patients (105).

Autonomic dysfunction can also occur with the presence of

persistent dyspnoea, and 60% of patients with Long COVID

progress without improvement (106). Monitoring HRV from the

initial clinical diagnosis to full recovery may be fundamental for

understanding the autonomic balance of patients with Long

COVID.
8. Future research

Future studies are needed to clarify the changes in

cardiovascular autonomic modulation seen in the Long COVID

population. Although proposals for pathophysiological

mechanisms have been discussed, the data in the literature

remain unclear. It is necessary to identify whether there is a

relationship between inflammatory markers and an autonomic

origin related to the cardiovascular system.
9. Conclusions

Dysautonomia in patients with Long COVID is multifactorial,

and many of the autonomic symptoms can be understood by vagal

dysfunction; the parasympathetic and sympathetic interactions

involved still need to be extensively studied. Understanding

cardiovascular autonomic dysfunction and the importance of

association with inflammatory biomarkers in patients with Long

COVID can contribute to more accurate diagnoses, better

knowledge of the clinical presentation of the ANS pathway when

reacting to an infectious disease, and better prognoses. Future
Frontiers in Cardiovascular Medicine 08
studies are needed to understand how the recovery of the

autonomic pathway occurs in patients with Long COVID.
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