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Background: Cardiovascular disease (CVD) is an escalating global health crisis,
contributing significantly to worldwide mortality and morbidity. Dyslipidemia
stands as a critical risk factor for CVD. Vascular endothelial growth factor A
(VEGFA) is pivotal in angiogenesis and represents a clinical target for CVD
intervention. However, the impact of genetic modulation of VEGFA on lipid
levels and the subsequent risk of cardiovascular events remains unclear.
Methods: We used LDpred2 to calculate genetic scores for lipid levels based on
VEGFA variation, serving as instrumental variables to simulate the effect of
VEGFA inhibitors. We then assessed the associations between genetic risk for
lipid levels and CVD risk by conducting One-sample Mendelian randomization.
Results: Our results indicated that low-density lipoprotein cholesterol [LDL-C;
odds ratio (OR) = 1.09, 95% CI: 1.06–1.11], remnant cholesterol (RC; OR = 1.24,
95% CI: 1.13–1.36), and triglycerides (TG; OR = 1.14, 95% CI: 1.07–1.22) were
positively associated with the incidence of CVD. In contrast, high-density
lipoprotein cholesterol (HDL-C) was inversely associated with the incidence of
CVD (OR= 0.80, 95% CI: 0.76–0.86). When considering the genetic score for
LDL-C constructed based on VEGFA, the group with a high genetic score
demonstrated an elevated CVD risk (OR = 1.11, 95% CI: 1.04–1.19) compared to
those with a low genetic score. Notably, One-sample Mendelian randomization
results provided evidence of a causal relationship between LDL-C and CVD
(p= 8.4×10−3) when using genetic variation in VEGFA as an instrumental variable.
Conclusions: Genetic variation mimicking the effect of VEGFA inhibition, which
lowers LDL-C levels, was causally associated with a reduced risk of
cardiovascular events. These findings offer insight into the potential therapeutic
relevance of modulating VEGFA-mediated lipid changes in the prevention and
management of CVD.
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1. Introduction

Cardiovascular disease (CVD) persists as the leading cause of mortality worldwide,

exerting a substantial toll on public health and healthcare expenditures (1). Among the

myriad risk factors associated with CVD, dyslipidemia stands out as one of the most

prevalent. Prolonged exposure to elevated levels of low-density lipoprotein cholesterol

(LDL-C) has been shown to escalate the relative risk of CVD mortality by 50%–80% (2).

Individuals characterized by primary low high-density lipoprotein cholesterol (HDL-C)

are at an elevated risk of developing CVD compared to those exhibiting optimal lipid
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profiles (3). Notably, low-density lipoprotein-triglyceride (LDL-

TG) presents itself as a potential marker for perturbed residual

lipoprotein metabolism, significantly correlated with an increased

risk of CVD (4). Furthermore, extant research underscores a

causal relationship between lipid metabolism-related parameters

and CVD (5, 6).

However, the association between various lipid constituents

and the risk of CVD continues to exhibit variability due to

variances in study populations. For instance, large-scale

prospective cohort studies have illuminated that heightened levels

of traditional lipid metrics, including total cholesterol (TC), LDL-

C, and triglycerides (TG), in conjunction with diminished HDL-

C levels, are connected to an augmented risk of CVD (7, 8).

Nevertheless, the relationships between TC, HDL-C, LDL-C and

the risk of mortality from CVD do not exhibit consistent trends

and may manifest a “U” or “J” pattern (9, 10). A Swedish cohort

study has even unveiled an association between elevated TC and

LDL-C levels and a reduced risk of atrial fibrillation (11).

Furthermore, multiple studies have challenged the notion that

high LDL-C invariably leads to CVD (12–14). Discrepancies in

these findings may be attributed to population-specific variations

in lipid profiles across different regions. Moreover, investigations

in developed nations have encountered challenges in discerning

the adverse effects of small increases in lipid levels on CVD

incidence. Consequently, further research is imperative to

elucidate the factors contributing to lipid dysregulation and the

onset of CVD. Additionally, exploring the potential therapeutic

applications of these factors assumes paramount importance.

The vascular endothelial growth factors (VEGFs), a family of

secreted signaling polypeptides, play critical roles in stimulating

angiogenesis, promoting lymphopoiesis, regulating inflammation,

and modulating lipid metabolism. VEGFA, the most potent

angiogenic-stimulant member of the VEGF superfamily, which

can be produced by a variety of cell types, including endothelial

cells, platelets, macrophages, and tumor cells, has gained

significant attention for its crucial role in dynamic homeostasis

and pathological processes (15, 16). VEGFA stimulates

endothelial cell mitosis and migration, enhances microvascular

permeability, and promotes angiogenesis by interacting with

VEGF receptors (VEGFRs) that belong to the tyrosine kinase

receptor family (17–19). While it is true that other VEGF family

members, such as VEGFB, VEGFC, and VEGFD, also contribute

to the regulation of angiogenesis, lymphangiogenesis, and lipid

metabolism (20–24), it’s important to emphasize that VEGFA

remains a crucial focus of research in the context of

cardiovascular diseases and lipid regulation. It is reported that

the function of VEGFB in improving metabolic dysfunction and

inducing the browning of white adipose tissue is also dependent

on VEGFA (25). VEGFA can enhance plasma lipids by inhibiting

lipoprotein lipase activity (26), and the bioavailability of VEGFA

is related to intestinal chylomicron absorption (27). Furthermore,

VEGFA has promising potential as a therapeutic target for CVD.

For instance, a novel mRNA-based drug AZD8601, functioning

as a “secreted protein” to deliver VEGFA, has been developed to

promote vascular regeneration and treat heart failure (28). In

addition, sequential VEGFA/S1p administration with engineered
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bone marrow (BM) cells improves vascularization and reduces

unfavorable cardiac remodeling following myocardial infarction

in mice (29). However, the effect of regulating lipid levels by

inhibiting VEGFA on the reduction of cardiovascular event risk

remains unclear.

A shared genetic regulation mechanism may exist between

VEGFA and cholesterol homeostasis molecules since a common

variant highly associated with plasma VEGFA levels also

contributes to the variation of both LDL-C and HDL-C (30).

VEGFA expression can be promoted by oxidized low-density

lipoprotein (ox-LDL), thereby inducing endothelial dysfunction in

human aortic endothelial cells (31). VEGFA can influence the

change of lipoprotein profiles and increase the proportion of

triglyceride in large very low-density lipoprotein (VLDL) particles

(26). Although a Mendelian randomization study did not provide

substantial evidence to support the positive effect of VEGF on

ischemic heart disease (IHD), it cannot eliminate the possibility

that some specific types of VEGF might still have a role in the

pathology (32). Angiogenesis, mediated by VEGFA, may be

involved in plaque instability and thromboembolic events (33).

Moreover, VEGFA levels are elevated in the serum and plasma of

coronary artery disease (CAD) patients (34). Therefore, an

accurate assessment of the role of VEGFA in CVD is crucial for

the precise prevention and management of these diseases.

Targeting VEGFA in lipid metabolism could be an effective

strategy for reducing the risk of cardiovascular events. Our study

seeks to leverage individual genetic data to investigate the

influence of genetic variation within the VEGFA gene on changes

in lipid levels and its subsequent impact on susceptibility to CVD.

This will provide valuable epidemiological evidence to support the

implementation of precision medicine in the context of CVD.
2. Materials and methods

2.1. Study population

The study cohort comprised 502,469 participants, including

71,318 individuals with cardiovascular events, who were sourced

from the UK Biobank (https://www.ukbiobank.ac.uk). The UK

Biobank is a comprehensive biomedical database and research

resource that provides in-depth phenotypic and genomic data.

Participants aged between 40 and 70 years were recruited

between 2006 and 2010 from 22 assessment centers in the UK.

Data on the participants’ health and genetic information were

obtained through questionnaires, interviews, physical

measurements, and biospecimen analysis, with all participants

providing written informed consent.
2.2. Genetic data

The genetic data of the study cohort underwent single

nucleotide polymorphism (SNP) genotyping, imputation, and

quality control by the UK Biobank team. The first 50,000

participants were genotyped using the Affymetrix UK BiLEVE
frontiersin.org
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Axiom chip (35), while the remaining participants were genotyped

using the Affymetrix UKB Axiom array (36). Genetic imputation

utilized a combined panel of UK10K and 1,000 Genomes phase

3 reference panels. Further information on these processes is

available at: http://www.ukbiobank.ac.uk/scientists-3/genetic-data/.
2.3. Assessment of CVD

Individuals who have reported experiencing a heart attack,

angina, ischemic stroke, or transient ischemic attack (UKB codes

1075, 1074, 1082, 1583 in field 20002; codes 1, 2, 3 in field

6150), undergone cardiovascular procedures (UKB codes 1070,

1071, 1105, 1109, 1095, and 1514 in field 20004), Hospital

Episode Statistics database and records of cardiovascular

procedures in hospitals (OPCS-4 codes K40-K46, K47.1, K49-

K50, K75) and participants who received a hospital diagnosis of

CVD (ICD-10 codes G45, I20-I25, I63-I64 or the corresponding

ICD-9 codes 410-414, 434, 436 and 42979).
2.4. Genetic instruments

LDpred2 method (37), which used summary statistics and a

linkage disequilibrium matrix, was utilized to calculate genetic

scores (38). This method integrates prior information and

genotype data, enhancing the precision of genetic risk prediction.

In the analysis of large-scale genetic data, we utilized the R

packages “bigstatsr” (https://privefl.github.io/bigstatsr/) and

“bigsnpr” (https://privefl.github.io/bigsnpr/).

Firstly, we sourced 7,114 SNPs from the VEGFA gene in the

NCBI database (https://www.ncbi.nlm.nih.gov/snp/?term=VEGFA)

and cross-referenced them with the SNPs derived from the GWAS

meta-analysis data concerning HDL-C, LDL-C, remnant

cholesterol (RC), total cholesterol (TC), and triglycerides (TG)

from the Global Lipids Genetics Consortium (GLGC) (http://csg.

sph.umich.edu/willer/public/lipids2013/) (39). We selected the

variants that displayed association with the five cholesterol levels

(Hardy-Weinberg Equilibrium (HWE) p-value >1 × 10−6 and

minor allele frequency (MAF) >0.01) for further analysis

(Supplementary Figure 1). The preliminary analysis of genetic

variants in VEGFA associated with the levels of these five lipids is

presented in Supplementary Tables 1–S5. Subsequently, we

utilized LDpred2 to calculate the genetic risk score (GRS) for each

participant within the UK Biobank population based on the

selected SNPs from each lipid GWAS dataset. The participants

were categorized into three groups based on the tertile of their

GRS for each of the five lipids (Supplementary Figure 2). Finally,

GRS calculated based on VEGFA variation was used to evaluate

the association between lipid levels and CVD risk.
2.5. One-sample Mendelian randomization

One-sample Mendelian randomization (MR) was employed to

elucidate the potential causal associations between lipid levels based
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on VEGFA GRS and the risk of CVD. MR is a robust statistical

methodology that leverages genetic variation as an instrumental

variable to estimate the impact of specific exposure or risk factors

on clinically relevant outcomes (40). The framework of MR is

illustrated in Supplementary Figure 3. We adopted the Two-stage

least squares (TSLS) to perform Mendelian randomization

inference in the UK Biobank population. In the first stage, we

conducted a regression analysis, wherein the exposure of interest

(lipid level) was regressed against the instrumental variable

(VEGFA variation). This initial stage provided us with the

estimated effect of these genetic variants on the exposure,

effectively serving as an instrumental variable estimation. In the

subsequent second stage, we performed another regression analysis,

focusing on the outcome of interest (CVD). We regressed the

outcome on the predicted value of the exposure (lipid level), which

was derived from the first-stage analysis. The regression coefficient

obtained from this stage represented the causal estimate, shedding

light on the potential impact of lipid levels on CVD risk, guided by

the genetic instrumental variable. A range of covariates for

adjustment, including age, sex, ethnicity, body mass index (BMI),

cholesterol-lowering medicine, genotyping batch, and PC1-PC10,

were made to control for potential confounding factors and

enhance the robustness of our causal inference.
2.6. Statistical analysis

The statistical analyses were conducted using SAS version 9.4

and R version 4.1.1. Baseline characteristics were reported as

means and standard deviations for continuous variables and

percentages for categorical variables. Logistic regression was

employed to investigate the association between phenotypic lipid

profiles and the incidence of CVD and to explore the

relationship between lipid levels determined by VEGFA genetic

variations and CVD risk. The covariates adjusted for in our

analyses included age, sex, ethnicity, assessment center,

Townsend index, alcohol frequency, smoking status, BMI, and

cholesterol-lowering medication. Odds ratios (ORs) with 95%

confidence intervals (CIs) were reported to present the results.

We applied the Benjaminiand-Hochberg (BH) p-value correction

to account for multiple testing (41). Statistical significance was

considered at a 2-sided α threshold of p < 0.05.
3. Results

3.1. Participants characteristics

Baseline demographics and characteristics from 502,469

participants [229,117 women (54.41%); mean (SD) age, 56.63

(8.09) years] were analyzed and summarized in Table 1. Among

them, 71,318 individuals (14.19%) had pre-existing CVD. The

mean (SD) of BMI was 27.43 (4.80) kg/m2. The participants’

mean (SD) lipid levels were as follows: LDL-C, 3.56 (0.87) mmol/

L; HDL-C, 1.45 (0.38) mmol/L; RC, 1.55 (0.42) mmol/L; TC, 4.56

(0.94) mmol/L; and TG, 1.30 (0.57) mmol/L.
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TABLE 1 Baseline characteristics of the population.

All
participants
(N = 502,469)

Prevalent CVD

Yes
(N = 71,318)

No
(N = 4,31,151)

Age years 56.63 ± 8.09 60.85 ± 6.65 55.82 ± 8.09

Sex (female%) 229,117 (54.41%) 25,860 (36.26%) 180,232 (57.40%)

Townsend deprivation
index

−1.29 ± 3.10 −0.88 ± 3.30 −1.36 ± 3.05

Body mass indexa, kg/m2 27.43 ± 4.80 28.81 ± 5.00 27.21 ± 4.73

Cholesterol medication
(Yes, %)

86,878 (17.29%) 34,895 (48.93%) 51,983 (12.06%)

FH (Yes, %) 70,976 (14.09%) 1,960 (2.75%) 11,823 (2.74%)

Ethnicity (%)
White 472,611 (94.06%) 67,017 (93.97%) 405,594 (94.07%)

Asian 11,452 (2.28%) 2,061 (2.89%) 9,391 (2.18%)

Black 8,058 (1.60%) 885 (1.24%) 7,173 (1.66%)

Mixed 2,954 (0.59%) 312 (0.44%) 2,642 (0.57%)

Other 4,557 (0.91%) 555 (0.78%) 6,406 (0.93%)

Alcohol frequency (%)
Never 40,627 (8.09%) 7,996 (11.21%) 32,631 (7.57%)

Daily or almost daily 101,753 (20.25%) 14,589 (20.46%) 87,164 (20.22%)

Three or four times a
week

115,422 (22.97%) 14,355 (20.13%) 101,067 (23.44%)

Once or twice a week 129,270 (25.73%) 17,308 (24.27%) 111,962 (25.97%)

One to three times a
month

55,840 (11.11%) 7,369 (10.33%) 48,471 (11.24%)

Special occasions only 57,996 (11.54%) 9,419 (13.21%) 48,577 (11.27%)

Smoke status (%)
Never 273,475 (54.42%) 30,539 (42.82%) 242,936 (56.35%)

Previous 173,023 (34.43%) 30,574 (42.87%) 142,449 (33.04%)

Current 52,962 (10.54%) 9,608 (13.47%) 43,354 (10.06%)

Lipids, mmol/L
LDL-C 3.56 ± 0.87 3.26 ± 0.96 3.60 ± 0.85

HDL-C 1.45 ± 0.38 1.31 ± 0.36 1.47 ± 0.38

RC 1.55 ± 0.42 1.41 ± 0.44 1.57 ± 0.41

TC 4.56 ± 0.94 4.16 ± 1.00 4.63 ± 0.91

TG 1.30 ± 0.57 1.36 ± 0.60 1.28 ± 0.57

Plus-minus values are means ± SD. CVD, Cardiovascular disease; FH, familial

hypercholesterolemia; LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-

density lipoprotein-cholesterol; RC, remnant cholesterol; TC, total cholesterol;

TG, triglycerides.
aThe body-mass index is the weight (kilograms) divided by the square of the height

(meters).

TABLE 2 Association results between the incidence of CVD and
circulating lipid profiles.

Adjusted
demographicsa

p p.adjusted
b

OR 95% CI
LDL-C 1.09 1.06–1.11 5.7 × 10−13 2.85 × 10−12

HDL-C 0.80 0.76–0.86 4.9 × 10−12 1.23 × 10−11

RC 1.24 1.13–1.36 8.0 × 10−6 1.33 × 10−5

TC 1.04 1.00–1.09 0.047 4.7 × 10−2

TG 1.14 1.07–1.22 2.6 × 10−5 3.25 × 10−5

LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-density lipoprotein-

cholesterol; RC, remnant cholesterol; TC, total cholesterol; TG, triglycerides; OR,

odds ratio; Cl, confidence interval.
aAdjusted for age, sex, ethnicity, assessment center, Townsend index, alcohol

frequency, smoke status, BMI, and cholesterol-lowering medicine.
bThe adjusted p was calculated by controlling the BH.

Chen et al. 10.3389/fcvm.2023.1240288
3.2. Associations between phenotypic lipid
profiles and CVD

Our observational study in UK Biobank (Table 2) showed that

LDL-C, RC, and TG levels were positively associated with the

incidence of CVD (OR = 1.09, 95% CI: 1.06–1.11; OR = 1.24, 95%

CI: 1.13–1.36; OR = 1.14, 95% CI: 1.07–1.22, respectively

Conversely, HDL-C emerged as a protective factor against CVD

(OR = 0.80, 95% CI: 0.76–0.86). However, no significant

association was found between TC levels and the incidence of

CVD in UK Biobank participants (OR = 1.04, 95% CI: 1.00–

1.09). The significance of the findings remained unaltered after

the application of multiple corrections for the p-values.

Additionally, after adjusting for the effects of known pathogenic

FH variants within the LDLR, APOB, and PCSK9 genes (42), the
Frontiers in Cardiovascular Medicine 04
observational findings remained consistent (Supplementary

Table 6).
3.3. VEGFA GRS and cardiovascular events

GRS was calculated based on VEGFA variants to reflect LDL-C

and TC levels. Subsequently, we assessed the relationship between

GRS and cardiovascular risks. Compared with the high VEGFA

score, the lower VEGFA score showed an 11% (OR = 1.11, 95%

CI: 1.04–1.19) reduced risk of CVD, p = 3.00×10−4 (Figure 1A);

likewise, the lower VEGFA score for TC was associated with a

12% (OR = 1.12, 95% CI: 1.05–1.20) decreased the risk of CVD,

p = 6.00×10−4 (Figure 1B). A dose-response stratified analysis

showed a stepwise decrease in LDL-C and TC levels (calculated

based on VEGFA variants) with a corresponding decrease in the

risk of CVD (Figures 1A,B).
3.4. One-Sample Mendelian randomization

We used GRS of VEGFA genetic variants as instrumental

variables in one-sample MR analysis. In the first stage, the F

statistics for instrumental variables (VEGFA variation) was 20.76

(p = 5.2×10−6), suggesting weak instrumental variable bias was

avoided. In the second stage, the predicted LDL-C level produced

from the first stage was significantly associated with the risk of

CVD (OR = 1.06, 95% CI: 1.02–1.11, p = 8.4×10−3). These results

together suggested that LDL-C level, determined by VEGFA

genetic variants, was casually associated with CVD. However,

since the GRS of VEGFA genetic variants was not associated

(p > 0.05) with TC level, we could not infer the causal

relationship between TC and CVD risk.
3.5. Sensitivity analysis

Sensitivity analyses confirmed the robustness of the

observational findings. We reanalyzed the association between

the five lipid levels and CVD by excluding participants who
frontiersin.org
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FIGURE 1

Effect of VEGFA genetic score on the risk of cardiovascular disease (CVD). A weighted genetic score was calculated for VEGFA for each study participant.
(A) The genetic risk contributions to the CVD of SNPs on VEGFA associated with low-density lipoprotein (LDL) cholesterol and (B) total cholesterol (TC)
(Unit: millimoles per liter) levels were calculated using the Ldpred2 method, respectively. OR: odds ratio; Boxes represent point estimates of effect. Lines
represent 95% confidence intervals (CIs). *The genetic score was classified into three subgroups based on tertiles to determine genetic risk. A low genetic
score indicates low genetic risk, and vice versa. #Represents the difference between each group’s mean lipid (LDL-C/TC) level and the mean lipid level of
the reference group. †Adjusted for age, sex, ethnicity, assessment center, Townsend index, alcohol frequency, smoke status, BMI, and cholesterol-
lowering medicine.
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experienced a CVD event within two years of the initial follow-up.

We observed no significant alterations in the results. Specifically,

LDL-C, RC, and TG remained positively associated with the

incidence of CVD, whereas HDL-C remained a protective factor

against CVD (Supplementary Table 7).
4. Discussion

In the UK Biobank population, our investigation revealed a

correlation between VEGFA variation and alternations in blood

lipoprotein profiles. The increased risk of cardiovascular events

could be attributed to the elevated LDL-C level reflected by the

VEGFA genetic risk. These findings mimic the effects achieved

by VEGFA inhibition in reducing LDL-C levels, underscoring the

potential of VEGFA suppression as a viable genetic target for

therapeutic interventions.

CVD is a multifaceted and heritable condition that results from

a combination of genetic and environmental factors. Dyslipidemia,

a common lipid abnormality, is an established risk factor for CVD.

Several prospective cohort studies and meta-analyses have shown

that maintaining optimal levels of LDL-C could reduce the

lifetime risk of atherosclerosis, while high levels of HDL-C may

protect against CVD (43–45). Our observational study unveiled

associations between elevated LDL-C, RC, and TG levels with

CVD. However, the relationship between TC and CVD remains

uncertain. In alignment with our findings, other studies have

demonstrated either a positive association (44, 46, 47) or a weak

or nonexistent connection (48–50). Hence, it is crucial to
Frontiers in Cardiovascular Medicine 05
perform additional research to enhance our comprehension of

the factors that influence the prevention and susceptibility to CVD.

We developed the GRS based on genetic variants in VEGFA by

utilizing GWAS summary data from the GLGC. Our GRS is

designed to mimic the lifetime exposure of lipids. SNP

association tests in GWAS are typically conducted one SNP at a

time, leading to strong linkage disequilibrium (LD) across the

genome and biased estimates of independent effect (51). We

used the LDpred2 method to construct the VEGFA GRS to

overcome this issue. LDpred2 is an updated and powerful tool

that derives multi-gene scores based solely on summary statistics

and LD matrices. Unlike other gene scoring methods that rely on

marker pruning with LD and applying p-value thresholds to

association statistics, LDpred2 retains more information to

improve prediction accuracy (38) and solves the problem of

model specification errors while improving computational

efficiency. It has been used in assessing the risk of numerous

diseases and has significantly enhanced the performance and

reliability of risk prediction in recent years (52–55).

Stratifying populations by different VEGFA genetic risks, we

have found that individuals with higher VEGFA genetic risk have

an increased risk of CVD, which aligns with previous studies. Li

et al. identified VEGF gene polymorphisms rs699947 and

haplotypes as potential genetic markers for coronary heart

disease pathogenesis (56). Another meta-analysis demonstrated

that VEGFA rs699947 C>A, rs3025039 C>T, and rs2010963 G>C

polymorphisms are risk factors for coronary heart disease (57).

Animal studies have also shown that overexpression of VEGFA

increases the likelihood of atherosclerosis in ApoE-deficient mice

(26). Clinical research also supports controlling angiogenesis and
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VEGFA to improve the quality of life and life expectancy among

cardiac patients (58). In addition, a marginal elevation in LDL-C

levels was observed across low-, moderate- to high-genetic-risk

subgroups; however, the clinical implications of this result

remain uncertain. Firstly, owing to the multifactorial nature of

CVD and the complexities of lipid profiles, neither LDL-C levels

nor VEGFA variations act in isolation. This, in part, elucidates

the rationale behind the marginal LDL-C increases observed in

our study. Secondly, the clinical paradigm of LDL-C reduction

has evolved as a cornerstone in CVD prevention and

management. Recent guidelines for blood lipid management

emphasize the regular monitoring of treatment efficacy and the

surveillance of potential adverse reactions. These guidelines

advocate flexible treatment plans to ensure sustained adherence

to lipid standards. Furthermore, studies have established a

correlation between cumulative LDL-C exposure, lipid-lowering

treatment, and the risk of atherosclerotic cardiovascular disease

(ASCVD) (59, 60). Therefore, from a collective perspective,

meticulous attention should be directed toward achieving early,

sustained, and stable attainment of LDL-C targets. Lastly,

precision medicine seeks to tailor medical decisions and

interventions to individual characteristics. Our findings, although

showing marginal changes, may contribute to more precise risk

prediction. In the context of precision medicine, identifying

subgroups with even minor increases in LDL-C levels can help

guide targeted interventions and preventive strategies.

Given VEGFA’s pivotal role in vascular angiogenesis across

diverse physiological and pathological contexts, as well as its

significant contribution to vascular homeostasis (61, 62), a

previous study has revealed a robust association between

common genetic variations linked to VEGFA and both HDL-C

and LDL-C (30). Furthermore, Dabravolski et al. have proposed

the potential of the VEGF family as a therapeutic target for

atherosclerosis (63). Thus, by utilizing a lipid genetic score

constructed from genetic variations associated with VEGFA, our

study extended its inquiry, shedding light on a causal link

between lipid metabolism and CVD risk. Previous research has

firmly established the additional CVD risk associated with

pathogenic FH variations (64–66). Currently, statins, ezetimibe,

bile acid sequestrants, and PCSK9 inhibitors are used as standard

agents for lipid-lowering interventions. However, whether

administered individually or in combination, these treatments

often engender intolerable side effects, necessitating the

exploration of novel drug targets and clinical trials (67).

Mechanistic investigations into the interplay between VEGFA

and lipid metabolism suggest that VEGFA may downregulate

lipoprotein lipase activity, leading to the accumulation of TC

within large lipoprotein particles, including chylomicrons and

VLDL, thereby fostering atherogenic changes (26). Clinical

studies further report that lipid levels in the bloodstream can

modulate VEGFA expression and influence biological activity

(68). In addition, molecular mechanistic studies have shown that

elevated LDL level impairs angiogenesis via disrupting an

endothelial cell-autonomous signaling network (TNFα/NF-κB/

HIF/VEGF) that governs angiogenesis in hypoxic responses (69).

This may represent a mechanistic link through which lipid levels
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impact the onset and progression of CVD. Our genetic findings

underscore that VEGFA variations accounting for elevated LDL-

C levels correlate with an increased risk of cardiovascular events,

thus establishing a causal connection between LDL-C and CVD.

This genetic evidence lends support to the proposition of VEGFA

as a promising therapeutic target.

It is important to note that our study has several limitations.

Firstly, despite extensive evidence of VEGFA’s role in lipid

regulation and CVD treatment (60, 63, 70), there is currently a

lack of effective agents capable of targeting VEGFA to modulate

lipid levels in either experimental or clinical settings. Predicting

or investigating the effects of genetic variants that mimic

therapeutic actions and assessing their population-specific

specificity can be inherently challenging. Secondly, in alignment

with all MR studies, we must acknowledge our inability to

validate our instrumental variable hypothesis empirically. Our

estimates are susceptible to biases stemming from pleiotropy or

confounding factors. Therefore, where conditions allow, it

becomes imperative to bolster causal inferences through more

robust randomized controlled trials. Thirdly, given the polygenic

underpinnings of lipid expression profiles and CVD risk, our

investigation concentrated solely on evaluating the impact of a

single genetic variation within the VEGFA gene on CVD

susceptibility. It is worth noting that while numerous studies in

the field of lipid metabolism and its association with CVD have

historically focused on variations in single genes, such as PCSK9,

HMGCR, and ACLY (5, 71), VEGFA may only represent a single

node in this complex network. Thus, further research endeavors

aimed at elucidating interactions between VEGFA and other

genes and exploring VEGFA’s integration into the broader

polygenic context are warranted to bridge the gap between

monogenic insights and polygenic complexities. Lastly, it is

essential to acknowledge that, due to database limitations, the

population included in the MR study only consisted of

individuals from the UK Biobank. Subsequent research should

expand data collection to encompass diverse populations,

ensuring the generalizability of research findings.

In conclusion, within the UK Biobank population, we have

observed a statistical association between LDL-C levels influenced

by VEGFA variations and susceptibility to cardiovascular events.

Our findings suggest the potential importance of VEGFA

inhibition in addressing CVD caused by lipid dysregulation.

While our discovery highlights VEGFA as a promising

therapeutic target in cardiovascular research, it’s essential to

recognize that additional experimental and clinical validation is

warranted to firmly establish its application and significance in

CVD prevention and precision treatment.
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