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Introduction: Mitochondria are central energy generators for the heart, producing
adenosine triphosphate (ATP) through the oxidative phosphorylation (OXPHOS)
system. However, mitochondria also guide critical cell decisions and responses to
the environmental stressors.
Methods: This study evaluated whether prolonged electromagnetic stress affects the
mitochondrial OXPHOS system and structural modifications of the myocardium. To
induce prolonged electromagnetic stress, mice were exposed to 915 MHz
electromagnetic fields (EMFs) for 28 days.
Results: Analysis of mitochondrial OXPHOS capacity in EMF-exposed mice pointed
to a significant increase in cardiac protein expression of the Complex I, II, III and IV
subunits, while expression level of α-subunit of ATP synthase (Complex V) was stable
among groups. Furthermore, measurement of respiratory function in isolated cardiac
mitochondria using the Seahorse XF24 analyzer demonstrated that prolonged
electromagnetic stress modifies the mitochondrial respiratory capacity. However,
the plasma level of malondialdehyde, an indicator of oxidative stress, and
myocardial expression of mitochondria-resident antioxidant enzyme superoxide
dismutase 2 remained unchanged in EMF-exposed mice as compared to controls.
At the structural and functional state of left ventricles, no abnormalities were
identified in the heart of mice subjected to electromagnetic stress.
Discussion: Taken together, these data suggest that prolonged exposure to EMFs
could affect mitochondrial oxidative metabolism through modulating cardiac
OXPHOS system.
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oxygen species; SAR, specific absorption rate; SOD2, superoxide dismutase 2; TGFβ-1, transforming growth
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1. Introduction

Mitochondria are exuberantly present in cardiac muscle and

serve as the capital source of energy production. In cardiac cells,

the primary function of the mitochondria is to federate the high

energy requirement of the beating heart by generating energy in

the form of adenosine triphosphate (ATP) through oxidative

phosphorylation (OXPHOS) machinery (1, 2). The OXPHOS

system requires an orchestrated transfer of electrons via five

multi-subunit enzymes: Complex I (NADH dehydrogenase or

NADH: ubiquinone oxidoreductase), Complex II (succinate

dehydrogenase or succinate:ubiquinone oxidoreductase),

Complex III (the bc1 complex or ubiquinone: cytochrome c

oxidoreductase), Complex IV (cytochrome c oxidase,

cyclooxygenase or reduced cytochrome c: oxygen

oxidoreductase), and Complex V (ATP synthase), which are

localized on the inner mitochondrial membrane (3–5).

Furthermore, OXPHOS machinery also comprises two electron

transport carriers, ubiquinone or coenzyme Q10 and cytochrome

c (6, 7). In the course of electron transport, Complexes I, III, and

IV affiliate protons from the mitochondrial matrix to the

intermembrane space culminating in enhanced membrane

potential (8). In the presence of adenosine diphosphate (ADP),

Complex V favors flow of protons to the matrix culminating in

ATP formation (3, 4). Mitochondrial OXPHOS complexes are

not only responsible for energy generation but also connected to

the multifaceted cell events, including reactive oxygen species

(ROS) formation, inflammation, and apoptosis (9, 10). Therefore,

the defects in the OXPHOS system, originating from genetic or

environmental factors, have been reported in multiple diseases

including heart failure, arrhythmia, and hypertension (10).

Electromagnetic fields (EMFs) depict one of the most prevalent

growing environmental counterinfluences on biological systems.

The exceeding common exposure to EMFs occurs from

telecommunications networks, public broadcast infrastructure,

wireless technologies such as Wi-Fi, and the operation of mobile

devices. Several sources of EMFs are also used in medical and

industrial applications and security scanning equipment.

Therefore, exposure to EMFs, particularly those emitted by

mobile communications transmitting at 900 MHz, remain a

much controversial topic, which is related to their potential

effects on human health. Both elevated cardiovascular risk and

marked cardioprotection have been attributed to EMF exposure

(11, 12). It has been reported that these effects are mediated by

mitochondrial ROS, which are involved in vital cell decisions and

can be capital or excessively toxic to cellular homeostasis (13).

To alleviate ROS-mediated cellular damage, living organisms

have anti-oxidative mechanisms including superoxide dismutase

(SOD), glutathione peroxidase, and catalase (14). Previous

research has mainly concerned the short-term biological effects

of EMFs on oxidative stress and antioxidant mechanisms;

however, long-term impact of EMFs has been a relatively minor

focus.

Considering the central place of mitochondrial metabolism in

the acquisition and maintenance of cardiac cell integrity, in this

study, we examined the prolonged exposure to 915 MHz EMFs
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on mitochondrial respiratory function and oxidative stress status

in relation to structural integrity of the myocardium.
2. Materials and methods

2.1. Animal studies

Animal experiments were performed in accordance with the

guidelines established by the European Communities Council

Directive (2010/63/EU Council Directive Decree) and approved

by the local ethical committee (project N 20/1048/14/02, national

agreement 2020072717253128). Adult Swiss Webster male mice 9

months old were used for these investigations (Envigo RMS,

France). Animals were given free access to standard food and

water under controlled conditions. Two days prior to

experiments, mice were adapted to new environmental conditions

(light was on a 12 h light–12 h dark cycle) as previously

described (15). Mobile communication technology operates at

900 MHz frequency; thus, we focus on the effects of frequency

close to 900 MHz. Mice were randomly divided into two groups:

control sham (n = 7) and EMFs (n = 8) groups, respectively. The

mice from EMF group were exposed to a 915 MHz EMFs for

28 days (9 h/day). Control groups of animals did not exposure of

EMF. Animals were sacrificed and hearts were removed and

rinsed in 4°C phosphate-buffered saline (PBS). Heart weight and

body weight were measured the day of sacrifice. Heart weight to

body weight ratio in grams was calculated by dividing the weight

of the heart by the weight of the whole animal. Harvested tissues

were divided into three parts: (1) embedded into optimal cutting

temperature compound (OCT) (Sigma-Aldrich, Saint-Quentin-

Fallavier, France) under ice-cold 2-methylbutane for cryo-section,

(2) for Western blot, and (3) the remaining portion was used for

quantitative polymerase chain reaction (qRT-PCR).
2.2. Radio frequency approach to an in vivo
model

To induce electromagnetic stress, in vivo experiments were

performed in a Giga-TEM (GTEM) cell. For animal adaptation,

24 h prior to tests mice were placed in the GTEM cell. A solid-

state radiofrequency generator with a fixed frequency of 915 MHz

(WSPS-915–1000) (Chengdu Wattsine Electronics Technology,

Chengdu, Sichuan, China) was used for in vivo experiments. The

Webster was modeled by the sphere of equivalent volume in

these simulations. Three spheres were implanted along the wave

propagation axis of the GTEM cell. The relative permittivity value

was 55, the conductivity of 3 S/m were applied for the

experimental protocol. The estimated specific absorption rate

(SAR) values were around 40 W/kg. Using MATLAB codes, the

calculation of whole body SAR was taken by volume integration

of absorption power as previously described (15, 16). In radio

frequency (RF) testing, the input power was 4 W in the high

frequency structure simulator (HFSS) simulation and in the

experimentation, as previously described (15, 16).
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2.3. Western blot

Extraction of proteins from cardiac tissues was performed as

previously described (15, 17). Briefly, for protein extraction, the

RIPA buffer (50 mM Tris–HCl, 150 mM NaCl, 0.1% SDS, 0.5%

sodium deoxycholate, 1% Triton X-100, 1 mM EDTA, completed

with protease and phosphatase inhibitor cocktails) was used. To

determine the proteins concentration of the lysate, we used the

Bio-Rad Protein Assay (Bio-Rad, Hercules, CA, United States).

Equivalent protein amounts were loaded in each lane of gels.

Proteins were loaded in the Laemmli sample buffer, denaturated,

and were resolved by sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE) and Western blotting. Furthermore,

the proteins were separated by electrophoresis and transferred to a

nitrocellulose membrane (Amersham Protran, GE Healthcare,

Germany) using electroblotting apparatus (Bio-Rad, Hercules, CA,

United States). Then, membranes were incubated with 5% bovine

serum albumin (BSA) in Tris-buffered saline tween-20 buffer

(TBST; 25 mM Tris, pH 7.5, 150 mM NaCl, and 0.1% Tween20)

for 1 h to prevent nonspecific binding sites and incubated

overnight at 4°C with the primary antibodies. In final steps,

immunoreactive bands were detected by chemiluminescence with

the Clarity Western ECL Substrate (Bio-Rad, Hercules, CA, United

States) using the ChemiDoc MP Acquisition system (Bio-Rad,

Hercules, CA, United States). The antibodies used in this study

were Anti-SOD2 (ab137037), MitoProfile® Total OXPHOS Rodent

WB Antibody Cocktail (ab110413) and Anti-β-Actin (sc-47778).

For quantification, β-Actin was used as a loading control. The

intensity of the individual bands was evaluated by ImageJ and

normalized to the corresponding input control bands.
2.4. Oxygen consumption rate measurement

To determine mitochondrial respiratory capacity, we measured

the oxygen consumption rate (OCR) using the Seahorse XF24

extracellular flux analyzer. We measured OCR following a

previously established protocol designed for analyzing

mitochondrial oxidative function in frozen tissues (18). Cardiac

tissues were homogenized in a cold MAS buffer containing

70 mM sucrose, 220 mM mannitol, 5 mM KH2PO4, 5 mM

MgCl2, 1 mM EGTA, and 2 mM HEPES, pH 7.4. The

homogenates were centrifuged at 1,000 × g for 5 min at 4°C, and

the supernatants were collected. The supernatants were further

processed for mitochondrial isolation following the protocol by

Osto et al. (18). Protein concentration was then determined

using the Pierce BCA protein assay kit (Thermo Fisher

Scientific). The samples containing 40 μg of total protein were

loaded to each well of a Seahorse XF24 cell culture plate (Agilent).
2.5. Malondialdehyde determination

Blood samples were centrifuged and the plasma was isolated,

aliquoted, and stored at −80°C until further analysis. Plasma level
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of malondialdehyde (MDA) was measured using the thiobarbituric

acid-based procedure described by Wasowicz et al. (19). Briefly,

100 μl of plasma are added to the solution containing 29 mmol/L

thiobarbituric acid in 8.75 mol/L acetic acid. Samples are heated

for 60 min at 95°C and cooled down. The level of MDA was

measured spectrophotometrically at 535 nm and expressed as µM

concentrations using calibrating curves.
2.6. Morphology

The mice were sacrificed after 28 days of experimental protocol.

Briefly, picrosirius red staining of cardiac cryosections (10 µm thick)

was performed according to the standard protocol to visualize

interstitial collagen. In stains for collagen content, we used a 0.1%

solution of Sirius red in saturated aqueous solution of picric acid

for 1 h at room temperature, followed by quickly washing in two

changes of acidified water (0.5% acetic acid in water). Then, slides

were dehydrated in ascending concentrations of ethanol and

cleared in two stages in xylene. The slides were examined using

light microscope equipped with a camera. The quantification of

cardiac fibrosis was performed using ImageJ software.
2.7. Quantitative RT–PCR analysis

The expression level of genes was assessed using qRT-PCR. The

total RNAs were isolated from cardiac muscle using RNeasy mini kit

(Qiagen, Hilden, Germany). Total RNAs (300 ng) were reverse

transcribed as previously described using Superscript II reverse

transcriptase (Invitrogen, Waltham, MA, United States) (15). The

sequences of the primers used are as follow and given in the 5′-3′
orientation: SOD2: GGACAAACCTGAGCCCTAAG (forward)

and CAAAAGACCCAAAGTCACGC (reverse); Collagen type I:

TGTGTGCGATGACGTGCAAT (forward) and GGGTCCCTCGA

CTCCTACA (reverse); Collagen type III: AAGGCGAATTCAA

GGCTGAA (forward) and TGTGTTTAGTACAGCCATCCTCTA

GAA (reverse); transforming growth factor beta-1 (TGFβ-1): GA

GCCCGAAGCGGACTACTA (forward) and CACTGCTT

CCCGAATGTCTGA (reverse); atrial natriuretic peptide (ANP):

AGAGTGGGCAGAGACAGCAAA (forward) and AAGGCCAA

GACGAGGAAGAAG (reverse); brain natriuretic peptide (BNP):

GCACAAGATAGACCGGATCG (forward) and CCCAGGCAGA

GTCAGAAAC (reverse); hypoxanthine phosphorybosyl transferase

(HPRT): TGAAAGACTTGCTCGAGATGTCAT (forward) and

TCCAGCAGGTCAGCAAAGAA (reverse). The validated PCR

parameters were 5 min at 95°C followed by 40 cycles at 95°C for

15 s and 60°C for 1 min. The relative amount of target mRNA

was calculated by the 2-ΔΔCt method and expression of target gene

was normalized to HPRT housekeeping gene expression.
2.8. Statistical analysis

Data were expressed as mean ± standard error of the mean

(SEM). Statistical analysis between experimental groups was
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performed using unpaired Student’s t-test (GraphPad Prism version

9.3.1). A P-value of <0.05 was considered statistically significant.
3. Results

Defects in the mitochondrial OXPHOS system, a terminal

biochemical pathway in energy production, result in deleterious,

frequently multisystem disorders (3, 7). To determine changes in

mitochondrial energy metabolism in conditions of prolonged

electromagnetic stress, we examined the effects of EMFs on the

expression level of OXPHOS proteins after 28 days. Total protein

extracts from heart tissues of mice subjected to 915 MHz frequency

EMFs were subjected to immunoblotting with the Total OXPHOS

Rodent Antibody Cocktail kit to detect all five complexes

simultaneously (Figure 1). The densitometric quantification of the

bands from immunoblots demonstrated a significant increase in

the expression level of Complex I and II subunits in EMF-exposed

mice compared to control animals. Moreover, myocardial

expression of Complex III and Complex IV subunits increased

significantly in mice subjected to electromagnetic stress (Figure 1).

However, the cardiac level of the α-subunit of ATP synthase

(Complex V) remained stable among groups (Figure 1).

To determine if the observed modifications in protein

expression translate into altered mitochondrial function, we next

examined mitochondrial respiration in isolated mitochondria

obtained from control and EMF-exposed mouse hearts using the

Agilent Seahorse XF Cell Mito Stress test. As shown in Figure 2,
FIGURE 1

Myocardial expression of MitoProfile Total OXPHOS in mice exposed to 9
(B) quantification of MitoProfile Total OXPHOS protein expression levels in co
0.05 vs. control, **P < 0.01 vs. control. EMFs, electromagnetic fields; OXPHOS
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no significant changes in mitochondrial basal respiration were

noted between control and EMF-exposed groups; however,

mitochondrial maximal respiration and the spare respiratory

capacity in EMF-challenged mitochondria were significantly

elevated compared to the control group. Because oxygen

consumption can be non-mitochondrial, respiration specific to

the cellular non-mitochondrial component was assessed by

inhibiting mitochondrial Complex I and Complex III with

rotenone and antimycin A. As shown in Figure 2, the

electromagnetic stress also significantly increased the non-

mitochondrial oxygen consumption compared to the control

(Figure 2). However, ATP production and coupling efficiency

were unchanged between control and EMF-challenged mice

(Figure 2). Representative plot showing OCRs of cardiac

mitochondria isolated from control and EMF-exposed mice is

presented in Supplementary Figure S1.

To elucidate whether the elevated state respiration in

EMF-challenged cardiac tissue was associated with the alterations

of antioxidant system, we assessed gene and protein expressions

of SOD2, a key component of the mitochondrial antioxidant

defense. As shown in Figures 3A–C, myocardial expression levels

of mRNA and SOD2 protein expression were unchanged

between control and EMF-exposed mice.

We next measured the plasma level of MDA, a lipid

peroxidation product that is used for the evaluation of oxidative

stress (20, 21). As shown in Figure 3D, no statistical difference

was observed in terms of the MDA levels in EMF-exposed mice

compared to the controls.
15 MHz EMFs for 28 days. (A) Representative Western blot image and
ntrol and EMF-exposed mice. The results present the mean ± SEM. *P <
, oxidative phosphorylation; SEM, standard error of the mean.
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FIGURE 2

Mitochondrial respiratory function in mice exposed to 915 MHz EMFs for 28 days. (A) Basal respiration, (B) maximal respiration, (C) spare respiratory
capacity, (D) non-mitochondrial oxygen consumption, (E) ATP production, and (F) coupling efficiency in control and EMF-exposed mice. The results
present the mean ± SEM. *P < 0.05 vs. control. EMFs, electromagnetic fields; ATP, adenosine triphosphate; SEM, standard error of the mean.
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Mitochondrial metabolism and structural tissue integrity are

critical links in response to stressors. We next examined the total

content of collagen, the most abundant component of

extracellular matrix (ECM) in the heart. As shown in Figure 4,

no statistically significant differences in the total collagen level

were observed in the cardiac tissue between the control and

EMF-exposed groups.

To confirm the histomorphological observation, the gene

expression levels of Collagen I and Collagen III, the major

structural components of the myocardial ECM, were examined

via qRT-PCR. As shown in Figure 4, mRNA expression of

Collagen types I and III were not significantly different between

the control and EMF-exposed groups. We also found that mRNA

expression of TGFβ-1, a cardiac fibrotic factor, was comparable

among control and EMF-challenged mice.

To examine whether EMFs could cause the abnormalities of

left ventricular function and hypertrophy in mice, we next

measured the level of ANP and BNP. As shown in Figures 5A,B,

no statistically significant differences in ANP and BNP levels

were observed in the cardiac tissue between the control and

EMF-challenged groups. In addition, the average heart weight/

body weight ratio was not significantly different between control

and EMF-exposed mice (Figure 5C).
4. Discussion

Mitochondrial metabolic reprogramming is a distinctive

characteristic of cardiac cells and occurs as a consequence of
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adaptation or maladaptation to the environmental stress (22, 23).

In a healthy heart, mitochondrial oxidative metabolism provides

ATP and precursors for macromolecular biosynthesis to meet the

energy requirements for cardiac cell survival (24, 25). The

predominant mechanisms of cardiac damage are the defects in

OXPHOS capacity and oxidative stress. Metabolic reprogramming

enables cardiac cells to adapt and orchestrate oxidative stress

responses (26–28). The precise picture of how electromagnetic

stress calibrates metabolic changes in cardiac tissue via OXPHOS

system is obscure. Here, we demonstrate for the first time that

prolonged exposure to 915 MHz EMFs for 28 days affects the

respiratory capacity of mitochondria without compromising the

structural integrity of the heart. These findings provide new

insights into the essential role of mitochondrial respiration in

cardiac adaptation to prolonged electromagnetic stress.

There is a long-running debate on whether EMFs impact

mitochondrial bioenergetics in living systems. In cardiac tissue,

mitochondrial oxidative metabolism is the principal source of

energy, which underscores the essential role of mitochondria in

heart’s performance (26). Mitochondria compose 30% of

cardiomyocyte volume and supply cardiac energy status through

OXPHOS machinery (29). A healthy heart is metabolically

flexible, as it is able to shift between OXPHOS components to

provide adequate ATP generation in response to stress (30–32).

However, defects in the OXPHOS system can modify metabolic

homeostasis in cardiac cells and contribute to heart failure

(33–35). In the present study, analysis of the mitochondrial

OXPHOS system in EMF-challenged hearts after 28 days pointed

to increased protein level expression of Complex I, the largest
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FIGURE 3

Myocardial expression of SOD2 in mice exposed to 915 MHz EMFs for 28 days. (A) Representative Western blot image, (B) quantification of SOD2 protein
expression levels, (C) qRT-PCR analysis of SOD2 mRNA expression level and (D) plasma MDA level in control and EMF-exposed mice. The results present
the mean ± SEM. EMFs, electromagnetic fields; SOD2, superoxide dismutase 2; qRT-PCR, quantitative polymerase chain reaction; MDA, malondialdehyde;
SEM, standard error of the mean.
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component of the respiratory chain. Mitochondrial Complex I

subunit is capital for maintaining the functional integrity of the

respiratory complexes and to provide efficient transfer of

electrons between electron transport chain (ETC) complexes. In a

failing heart, mitochondrial respiratory Complex I is highly

sensitive to structural and functional damage, which can

contribute to postischemic mitochondrial ETC disorders, decline

in respiratory function, and energy supply deficits (36). We also

demonstrated that cardiac Complex II and III were upregulated

in the group of mice subjected to EMFs for 28 days. Large

quantities of evidence state the respiratory Complex II subunit as

a fondement and calibrator of mitochondrial ROS. Both

functional loss of Complex II and pharmacological inhibition can

result in ROS generation in cardiac cells, with a relevant impact

on the development of pathophysiological manifestations.

Respiratory Complexes I, II, and III are the capital sites for ROS

generation (37). Mitochondrial Complex I inhibition by rotenone

can trigger ROS generation in submitochondrial modifications.

Several studies reported that oxidation of either Complex I or

Complex II substrates in the presence of Complex III suppression

with antimycin A favors ROS formation (38, 39). In myocardial

infarction, rotenone reduces ROS overproduction and limits

mitochondrial damage in the isolated rat heart (38). Recent

evidence points to the respiratory Complex II as a source and

calibrator of mitochondrial ROS. Both pharmacological inhibition

and functional loss of Complex II can lead to ROS formation in
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cardiac cells, with a relevant impact on the development of

pathophysiological conditions including heart disease (37, 40). In

the cardiovascular system, Complex II can contribute notably to

ROS production both directly and indirectly (via reverse electron

transfer), with physiological and pathological impacts (37, 41).

Abnormal mitochondrial ROS generation is involved in cardiac

ischemia-reperfusion (I/R) injury, and Complex II inhibitors

exert protective effects in I/R models by suppressing reverse

electron transport (RET) (42, 43). We found that in mice

exposed to EMFs for 28 days, the cardiac expression level of

Complex IV was upregulated, while Complex V level expression

remained relatively stable. In OXPHOS machinery, Complex IV

catalyzes the mitochondrial ETC and transformation of oxygen to

water, linked to proton translocation (44–46). Recent studies

suggest that mitochondrial Complex IV dysfunction drives cell

adaptive signaling and metabolic perturbations (47). In cancer

cells, dysregulation of mitochondrial Complex IV may stimulate

the metastatic potential and reflect the positive correlation to

metastatic spread of cancer (47–49). Our findings suggest that

prolonged exposure to EMFs alters mitochondrial oxidative

metabolism through modulating the OXPHOS system in the

heart. Furthermore, using the Seahorse Extracellular Flux

Analyzer, we examined mitochondrial respiration in isolated

mitochondria obtained from control and EMF-exposed mouse

hearts. We found that prolonged electromagnetic stress increases

mitochondrial maximal respiration and spare respiratory capacity.
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FIGURE 4

Prolonged effect of EMFs on cardiac collagen content in mice subjected to 915 MHz EMFs for 28 days. (A) Representative image of Sirius red-stained
cardiac sections, (B) quantification of (A), (C) qRT-PCR analysis of mRNA expression levels of Collagen type I, (D) Collagen type III, and (E) TGFβ-1.
The results present the mean ± SEM. EMFs, electromagnetic fields; qRT-PCR, quantitative polymerase chain reaction; TGFβ-1, transforming growth
factor beta-1; SEM, standard error of the mean.
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In addition, we demonstrated the electromagnetic stress also

significantly enhances non-mitochondrial oxygen consumption.

The increased mitochondrial respiration in conditions of

electromagnetic stress may be an adaptive response on the cardiac

level, illustrating a fundamental link between environmental

influence and myocardial energy metabolism. Interestingly, cardiac

adoption of metabolic upregulation of Complexes I, II, III, and IV
FIGURE 5

The effects of prolonged exposure to EMFs on structural integrity of cardiac ti
and (C) ratio of heart weight to body weight in control group and in mice sub
EMFs, electromagnetic fields; qRT-PCR, quantitative polymerase chain react
standard error of the mean.
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was uncoupled to cardiac expression of SOD2, a first-line

component of mitochondrial antioxidant defense against

superoxide produced by respiration. Indeed, we did not observe

significant differences in SOD2 expression among control and

EMF-exposed mice for 28 days. However, further studies are

needed to evaluate the total myocardial antioxidant potential in

cardiac tissue under prolonged electromagnetic stress.
ssue. qRT-PCR analysis of mRNA expression level of ANP (A) and BNP (B),
jected to 915 MHz EMFs for 28 days. The results present the mean ± SEM.
ion; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; SEM,
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In addition, we evaluated the effect of prolonged exposition to

EMFs on the plasma MDA level, one of known indices of oxidative

stress. Free oxygen radicals enhance lipid peroxidation, and MDA

is a lipid peroxidation product that is used for the evaluation of

oxidative stress (50, 51). In our experiments, no significant

difference was found between plasma MDA level in EMF-

exposed and control groups suggesting that prolonged exposure

to electromagnetic stress does not alter lipid peroxidation.

To address the structural and functional state of left ventricles,

we evaluated the myocardial level of ANP and BNP in mice

subjected to prolonged electromagnetic stress. Currently, ANP

and BNP are widely used as significant indicators for the cardiac

dysfunction and clinical diagnosis of heart failure in clinical

medicine (52, 53). Our findings point to a constant level of ANP

and BNP in EMF-challenged hearts isolated from mice subjected

to EMFs for 28 days, suggesting that prolonged electromagnetic

stress does not induce cardiac abnormalities. We have recently

demonstrated that short-term exposure to EMF for 48 and 72 h

in cardiac tissues did not alter the cardiac structural integrity in

terms of collagen deposition, necrotic myofibers, and

cardiomyocyte size (15). In the present study, we also evaluated

the cardiac collagen level, the main structural element forming

the ECM. Analysis of cardiac sections from EMF-exposed mice

exposed for 28 days demonstrated that collagen content was not

affected suggesting that prolonged electromagnetic stress did not

induce cardiac fibrosis. Several studies reported abnormalities in

collagen synthesis and deposition under electromagnetic stress

(54, 55). Soda et al. demonstrated that exposure to low-frequency

EMFs (3 mT, 60 Hz) increases the collagen synthesis in mouse

osteoblasts—like MC3T3-E1 cells (55). A previous study has

demonstrated that EMFs can accelerate collagen production in

bone and cartilage due to effects of K, Ca, and Mg ion transport

(54). In conditions of myofibroblast activation linked to the

diabetic wound healing, Choi et al. reported elevated collagen

fibers in response to electromagnetic stress (56). These

observations clearly suggest a wide variability of EMF-related

effects on the structural components of ECM. Further research

into the mechanisms that regulate ECM integrity in cardiac

tissue under electromagnetic environment is required.
5. Conclusion

The ability of cardiac cells to adjust the mitochondrial

oxidative metabolism in response to environmental stress is a

well-recognized signature of the cardiovascular system.

Persistent metabolic changes may result in tissue abnormalities

or may trigger cell maladaptive responses. Our study points at

notable differences between control and EMF-challenged mice

hearts at the level of mitochondrial respiration after prolonged

EMF exposure. As the mouse heart imitates the mammalian

cardiovascular phenotype, our data suggest that metabolic

oxidative status changes dynamically in response to EMFs in

the myocardium, challenging our quest to better understand

cardiac cell biology under conditions of electromagnetic

environment.
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