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Hypertensive heart disease constitutes functional and structural dysfunction and
pathogenesis occurring primarily in the left ventricle, the left atrium and the
coronary arteries due to chronic uncontrolled hypertension. Hypertensive heart
disease is underreported and the mechanisms underlying its correlates and
complications are not well elaborated. In this review, we summarize the current
understanding of hypertensive heart disease, we discuss in detail the
mechanisms associated with development and complications of hypertensive
heart disease especially left ventricular hypertrophy, atrial fibrillation, heart failure
and coronary artery disease. We also briefly highlight the role of dietary salt,
immunity and genetic predisposition in hypertensive heart disease pathogenesis.
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Introduction

Hypertensive heart disease is a term applied to abnormalities of the heart, involving

structure and function of the left ventricle, the left atrium and intramural coronary

arteries due to sustained elevated blood pressure (1). Although the blood pressure cut-off

criteria for the diagnosis of hypertension differs based on the American (2) and European

(3, 4) guidelines, most of the recommendations are similar (5). Moreover, the

complications of chronic hypertension remain the same. Consensus on the criteria for

hypertensive heart disease is not yet universal. However the European criteria as proposed

by Gonzalez-Maqueda et al. from the Spanish Society of Cardiology define and classify

hypertensive heart disease based on the acronym “VIA” referring to alterations of

function and structure occurring in the left ventricle (V), myocardial ischaemia (I), and

atrial fibrillation (6). In general, both the European and American hypertension guidelines

or other international working groups/societies agree that hypertensive heart disease may

involve left ventricular hypertrophy (LVH), left atrial dilatation, systolic and diastolic

dysfunction including some clinical symptoms or manifestations such as arrhythmias,

myocardial ischemia and heart failure (1, 6). LVH is one of the earliest manifestations of

hypertensive heart disease and is thought to be a compensatory mechanism to minimize

the increase in ventricular wall stress and an intermediate pathological change in the

advancement of hypertensive heart disease (7). However, LVH may progress to

complications such as heart failure, arrhythmias, sudden cardiac arrest, ischemic stroke,

end stage renal disease (ESRD) and death (8–10).

Globally, the age-standardized prevalence of hypertension in women and in men was

32% and 34%, respectively (11). The prevalence has been increasing with time (12), by

more than 138% between 1990 and 2019, affecting a total of 20 million (13).
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Among persons with hypertension, LVH prevalence is about

40% (14) and black persons tend to have increased left

ventricular mass and more severe diastolic dysfunction compared

to white persons (1, 15, 16).
Risk factors of hypertensive heart
disease

Hypertension is the most common risk factor for development

of hypertensive heart disease (1). Additional risk factors include

older age, ethnicity, being overweight, physical inactivity, excess

dietary salt intake, smoking, alcohol intake, concomitant diseases

such as diabetes mellitus (17–19). All these factors contribute to

an increased hemodynamic stress on the heart and with

chronicity, the left ventricle of the heart hypertrophies to

compensate for the load, but in the long run this can lead to

heart failure (Figure 1). Obesity is an important risk factor for

the development of hypertensive heart disease due to the

associated increase in renin secretion that is mediated by leptin

production via adipose cells, resulting in blood pressure elevation

and exacerbating already existing hypertension (20). Moreover,

obesity-related increase in sympathetic tone counteracts the

body’s compensatory mechanisms for the abnormally elevated

renin and aldosterone level that induce cardiac fibrosis and

endothelial dysfunction and contribute to the development and

complications of hypertensive heart disease (20, 21). Beside

altering hemodynamics, obesity also contributes to hypertensive

heart disease by inducing inflammation, lipid accumulation in

tissue and dysregulating several intracellular pathways (22–24).

Obesity and hypertension synergize through overlapping

neurohormonal pathways and contribute to hypertensive heart

disease and its complications such as LVH and heart failure (25).

However, the mechanisms are still complex.
Mechanisms of hypertensive heart
disease and its complications

The common complication of hypertensive heart disease is

either diastolic heart failure, systolic failure, or a combination of

the two and individuals with hypertensive heart disease have a

higher risk for development of atrial fibrillation (AFib),

perioperative ischaemia, coronary artery disease,

rehospitalization, kidney disease, heart valve diseases, aortic

dissection, intramural hematoma, and aortic ulcer (26–28).
Left ventricular hypertrophy mechanisms in
hypertensive heart disease

LVH is an early compensatory response to hemodynamic

overload in chronic hypertension (29, 30). LVH can predispose to

cardiovascular events in individuals with hypertension who have

coronary artery calcifications but without symptoms (31) or in

individuals with hypertension independent of treatment and other
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existing cardiovascular risk factors (32). In addition, malignant

LVH characterized by elevated biomarkers of cardiac injury and

hemodynamic stress such as N-terminal prohormone of brain

natriuretic peptide (NT-proBNP) and troponins is associated with

severe adverse outcomes such as heart failure with reduced

ejection fraction, left ventricular dysfunction and cardiovascular

death (33). Thus, high-sensitive cardiac troponin T (hs-cTnT) and

NT-proBNP levels can be used to identify patients who are more

likely to develop adverse outcomes (34). It is also important to

note that malignant LVH and related adverse events may be more

pronounced in black persons compared to white persons (35).

However, intensive therapy to lower blood pressure can prevent

malignant LVH and reduce the risk for adverse events (36). The

pathogenesis and severity of LVH is different by sex. For example,

aortic characteristic impedance, systemic vascular resistance,

augmentation index, and carotid-femoral pulse wave velocity and

proximal aortic compliance are independently associated with

relative wall thickness in women but not in men (37). LVH is

therefore, more often and more pronounced in women compared

to men (38, 39). LVH can be pathological and physiological in

pattern (40, 41). The distinguishing pathological changes include

increased extracellular connective tissue relative to myocytes

without commensurate capillary growth, and myocardial fibrosis

that often manifests as diastolic dysfunction (1, 30, 42). In

Physiological LVH, extracellular matrix and micro-vessel increase

is proportional to the myocyte hypertrophy without deleterious

effects on left ventricular function (42). This physiological pattern

is seen as a normal response to physical exercise (42).

The mechanisms by which chronic hypertension leads to LVH

may involve gap junction lateralization and overexpression of the

fatty acid transporter cluster of differentiation 36 (CD36), redox-

sensitive Protein Kinase C (PKC), increased oxidative stress,

increased matrix metalloproteinase-2 (MMP-2) activity, abnormal

Ca2+ homeostasis, increased activation of the phosphoinositide 3-

kinase (PI3K)/protein kinase B (AKT) pathway, apoptosis, and

abnormal regulation of junctional proteins (7, 43). All these

compensatory changes participate in an orchestrated manner to

compensate for increased stress, metabolic and functional

demand but are likely to also induce decompensated heart failure

when the pathological insult is persistent (7, 44, 45). At cellular

level, LVH is a consequence of an increase in cardiac myocyte

size due to functional demand but chronic blood pressure

elevations may lead to death of cardiomyocytes progressing to

dilated cardiomyopathy, a feature described as a transition from

compensated to decompensated heart failure and mediated by

neurohormonal signaling (45). The whole mark and

characteristic feature of LVH is an increase in cardiomyocyte

with fibrotic changes including medial hypertrophy and

perivascular fibrosis (1). The structural features of LVH can

either take concentric or an eccentric pattern depending on

volume load, genetic factors, specific alterations of the

extracellular matrix, neurohormonal milieu, pressure load

severity, duration, rapidity of onset, concomitant medical

conditions such as cardiovascular disease, metabolic disease such

as diabetes mellitus and demographic factors such as age, race/

ethnicity, gender (1, 46). The ultimate consequence of LVH with
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FIGURE 1

Effect of chronic hemodynamic stress on the heart. Chronic hypertension resulting from various stimuli leads to left ventricular hypertrophy as a
compensation for the hemodynamic stress and metabolic demand on the heart. However, heart failure results when the heart can no longer
withstand the persistent hemodynamic stress. BP, blood pressure.
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continued hemodynamic stress is progression to heart failure with

either a preserved or a reduced left ventricular ejection fraction (47,

48). There is evidence of LVH regression with use of different

classes of antihypertensive medication, however, there is

considerable variability in individual responses including sex

differences (49) owing to variability of pathological changes per

individual and a number of studies have reported failure to

regress LVH even when blood pressure is controlled (49–54).

Several proteins, mediators and cellular responses such as

angiotensin II, cardiac myosin-binding protein C, endothelin-1,

S-thiolated protein, norepinephrine, Rho and Ras proteins, thiols,

oxidative stress, heat shock proteins, Fractalkine/C-X3-C Motif

Chemokine Ligand 1 (CX3CL1), leukotriene-A4 hydrolase,

calcineurin, and some kinases have been implicated in LVH

which is associated with chronic elevated blood pressure (42, 55–

57). The enzymatic cleavage of angiotensinogen by renin

converts angiotensinogen to Angiotensin I and then angiotensin

converting enzyme (ACE) converts Angiotensin I to Angiotensin

II (58, 59). Angiotensin II is the main effector molecule of the

renin angiotensin aldosterone system (RAAS) that serves to

control blood pressure (58). Angiotensin II increases blood

pressure by inducing water and sodium reabsorption, inducing

vasoconstriction and exerting proliferative, pro-inflammatory and

pro-fibrotic activities by binding to angiotensin type 1 and 2

receptors (59, 60) (Figure 2).

Angiotensin II increases blood pressure and induces

pathological features characteristic of hypertensive heart disease

by activating angiotensin II receptors, regulating cardiac

contractility, cardiac remodeling, growth, inflammation, apoptosis

and impulse propagation (59, 61). Angiotensin II activates

extracellular signal-regulated kinase (ERK)/ mitogen-activated

protein kinases (MAPKs) pathways via G protein-coupled

receptors (GPCRs) or growth factor-stimulated tyrosine kinase
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receptors leading to an increase in protein synthesis, extracellular

matrix proteins and activation of endothelin-1 effects which

result in induction of cardiac fibrosis (42). Heat shock proteins

90 (HSP90) mediate cardiac hypertrophy that is induced by

angiotensin II through the stabilization of IкB kinase (IKK)

complex (62). Activation of the Nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) during hemodynamic

stress, inflammation and reactive oxygen species (ROS)

production in cardiac myocytes also contributes to cardiac

hypertrophy in hypertensive heart disease (42).

Another mechanism associated with LVH is activation of

calcineurin and calmodulin kinase II (CaMKII) due to enhanced

sensitivity to calcium resulting in calcineurin binding to and

dephosphorylating nuclear factor of activated T cells (NFAT)(42,

63). This step increases hypertrophic gene expression through

mechanisms that are not yet clear (63). Intergrins have also been

implicated in LVH mediated by RAAS and MAPKs pathways (42).
Mechanisms of heart failure associated with
hypertensive heart disease

LVH progresses to heart failure when the compensatory

mechanisms have failed to meet the functional and metabolic

demands of the myocardium (64). Heart failure is a progressive

clinical syndrome characterized by reduced ability of the heart to

pump blood to meet the body’s metabolic demand (65, 66).

Symptoms include dyspnoea, fatigue, peripheral oedema or

distended jugular veins (65, 66). The symptoms/signs are caused

by abnormality in cardiac function and structure and the clinical

syndrome is characterized by an increase in natriuretic peptide

levels and pulmonary or systemic congestion (67). Heart failure

can either be acute or chronic (68). The classification of heart
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FIGURE 2

Angiotensin II formation and effects on blood pressure. Angiotensinogen is produced by the liver and converted to angiotensin I by the action of renin
produced by the juxtaglomerular cells of the kidney. Angiotensin I is then converted to angiotensin II via angiotensin-converting enzyme (ACE).
Angiotensin II binds to its receptors to induce several activities such as inflammation, vasoconstriction oxidative stress and reabsorption of water and
sodium leading to elevated blood pressure and hypertension; MAS, marker assisted selected.
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failure is based on left ventricular ejection fraction (LVEF) and can

present either with reduced ejection fraction (HFrEF)) or preserved

ejection fraction (HFpEF) (65, 67). The clinical stages of heart

failure based on United states (US) guidelines fall into four

categories (67, 69) as shown in Table 1. The pathogenesis, risk

factors and therapeutic response in heart failure is sex dependent.
TABLE 1 Clinical stages of heart failure based on symptoms according to
AHA/ACC/HFSA guidelines.

Stage Description
A Patients at risk for heart failure HF but without current or prior

symptoms or signs of heart failure and without structural or biomarker
evidence of heart disease.

B Pre-heart failure stage for patients without current or prior symptoms or
signs of heart failure but have evidence of structural heart disease or
abnormal cardiac function, or elevated natriuretic peptide levels.

C For patients with current or prior symptoms and/or signs of heart failure
caused by a structural and/or functional cardiac abnormality.

D Advanced heart failure; for patients with severe symptoms and/or signs of
HF at rest, recurrent hospitalizations despite guideline-directed medical
therapy (GDMT), refractory or intolerant to GDMT, requiring advanced
therapies such as consideration for transplant, mechanical circulatory
support, or palliative care.

ACC, American college of cardiology; AHA, American heart association; HFSA,

heart failure society of America.
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For example, women are more susceptible to traditional risk

factors for heart failure and have more severe symptoms

especially with higher left ventricular ejection fraction compared

to men (70, 71). However, in terms of the adverse outcomes

such as hospitalization and mortality, the prognosis regardless of

the ejection fraction state, appears to be better for women than

men (72). In general, specific data on sex differences in heart

failure is still limited due to the fact that women are

underrepresented in most studies (72). Also, while women may

have more disease severity on some outcomes, this is not the

case with other outcomes or symptoms such as plaque rupture

which is more common in men (71, 73).

The transition from hypertrophy to heart failure in

hypertensive heart disease is driven by several cellular mediators

many of which are progressive changes already explained under

LVH and these include oxidant stress, apoptosis, insufficient

angiogenesis, mitochondria dysfunction, metabolic derangements

and fetal gene program induction (74, 75). The underlying

pathways and cellular mediators that are activated to mediate the

pathology of heart failure in hypertensive heart disease include

peroxisome proliferator-activated receptor-γ coactivator-1α

(PGC-1α) and PGC-1β (64), GPCRs, p38, ERK1/2, JNK,

CAMKII, protein kinases (type C, G, and A), Growth factor-
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mediated stimulation of mechanistic target of rapamycin (mTOR)

(74), epigenetic modulators (such as NFAT, MEF2) and transient

receptor potentials (74, 76). Most of these pathways have been

reviewed elsewhere (74). PGC-1α and PGC-1β both play a role

in the maintenance of cardiac function during pressure overload

such that in the progression to heart failure, a deficiency of

PGC-1β is shown to accelerate the transition (64). The hormone

ligands that mediate the activation of these pathways include

angiotensin II, endothelin 1, α-adrenergic receptors and β-

adrenergic receptors (74). At organ level, multiple cardiac,

vascular, and non-cardiac abnormalities associated with

hypertensive heart disease underly the pathophysiology of heart

failure (77, 78). These include impaired structural and functional

changes of the left ventricle, myocardial ischemia, autonomic

deregulation, endothelial dysfunction and vascular stiffening (77,

79). The RAAS is an important contributor that plays a central

role in the transition from LVH to heart failure in hypertensive

heart disease and has been explained above.
Mechanisms of conduction arrhythmias
associated with hypertensive heart disease

The most common manifestation or complication of

hypertensive heart disease is cardiac arrhythmias, and the most

common among these is AFib (80). AFib is an irregular and very

rapid heart rhythm associated with increased risk for blood clots

in the heart, stroke, and heart failure (81–84). AFib can be

detected on an electrocardiography (ECG) (Figure 3). During

normal heart conduction, electrical signals from the sinoatrial

node travel through the atria to the atrioventricular node, passes

through the ventricles causing them to contract (Figures 3A,B).

In AFib, the electrical signals conduct in a chaotic manner firing

from multiple locations leading to faster and irregular heartbeats

and characterized by lack of a P-wave and irregular QRS

complexes on an ECG (85) (Figure 3C).

Although effective control of blood pressure prevents AFib,

some antihypertensive drugs such as thiazide diuretics used to

control blood pressure can contribute to AFib risk by inducing

hypokalaemia and hypomagnesemia (80). The mechanisms

associated with AFib are not yet clear but include modulation of

L-type Ca2+ and K + currents and gap junction function, cardiac

structural remodeling and autonomic remodeling which is

characterized by altered sympathovagal activity and

hyperinnervation (85). One explanation for the chaotic rhythms

in AFib is that structural remodeling characterized by atrial

fibrosis occurring in hypertensive heart disease is associated with

reentry of a self-sustaining cardiac rhythm abnormality (86).

Ectopic conduction activities originating from the pulmonary

veins is one of the common triggers of AFib due to specific

action potential properties of the pulmonary vein cardiomyocytes

(86). Overall, the mechanisms of conduction arrhythmias

associated with hypertensive heart disease are not yet clear. In

addition, sex differences in the risk, pathogenesis and outcomes

of AFib also exist but data is limited (87).
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Mechanisms of coronary artery disease
associated with hypertensive heart disease

Coronary artery disease in hypertensive heart disease is

accelerated by chronic elevation of blood pressure that induces

endothelial dysfunction and exacerbates atherosclerotic processes

(88). LVH exacerbates coronary artery disease by promoting

myocardial ischemia mediated by a decreased coronary reserve and

increased myocardial oxygen demand (88). Atherosclerosis remains

the main cause of cardiovascular diseases and hypertensive heart

disease accelerates complications of atherosclerotic diseases (89).

Coronary arteries are considered the most susceptible blood vessels

to atherosclerosis in the entire cardiovascular system due to their

structurally higher curvature and torsion that plays a role in the

localization of early coronary artery thickening (90) (Figure 4A).

Blood pressure disturbances and irregularities and cardiac

remodeling associated with hypertensive heart disease increase the

risk of coronary artery disease and related complications such as

myocardial infarction, angina, heart failure and AFib (88, 91, 92)

(Figure 4B). The risk factors for coronary artery disease are similar

with those associated with hypertension (93, 94). Sex differences in

the burden, pathogenesis or severity of coronary artery disease do

exist. For example incidental finding of coronary microvascular

dysfunction is more common in women than men (95–98). In

addition, coronary microvascular dysfunction occurs more in

women than in men (99).

The mechanisms underlying the pathophysiology of coronary

artery disease include fatty streak formation that activates

macrophages to take up these lipids and deposit in the sub

endothelium (100, 101). Immune cells including T cells are

activated and recruited, secreting inflammatory cytokines in the

process that results in the deposition of oxidized low-density

lipoprotein (LDL) particles and collagen to form a stable

subendothelial plaque that grows with time predisposing to vessel

occlusion and atherothrombotic activity in chronic hypertension

(101, 102) (Figure 4B). The immune system is intricately involved

in atherosclerotic processes. Studies using apolipoprotein E–

deficient mice have reported that when chronic inflammation does

not resolve, tertiary lymphoid organs emerge in tissues and the

adventitia of the aorta which become infiltrated with activated

dendritic cells, B cells, and T cells of varying types (103, 104).

These cells seem to target unknown antigens released from injured

tissue and contribute to advanced atherosclerosis. The whole mark

of disease progression is mediated by autoimmune B and T cells

that become overly activated as a result of failure of anti-

inflammatory effects to remove the continuous discharge of

antigens from injured atherosclerotic tissue (104). Further,

evidence of formation of neuroimmune cardiovascular interfaces

characterized by expanded axon networks and activated artery-

brain circuit activity in the adventitia is another proposed

mechanism contributing to the progression of atherosclerosis in

coronary artery disease (105). The whole process of atherosclerosis

development has been described elsewhere (106). Shear stress

associated with hypertensive heart disease and atherosclerotic

changes leading to plaque progression and remodeling activates

PKC epsilon, c-Jun N-terminal Kinase (JNK) MAP kinase, and
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FIGURE 3

Electrocardiography and conduction system of the heart. (A) Normal Electrocardiography (ECG). (B) Conduction system of the heart. (C) Atrial Fibrillation
ECG tracing.
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p53 that worsen endothelial remodeling in the vasculature (107).

High shear stress also activates matrix metalloproteinases (MMPs)

resulting in thinning of artery wall and eccentric remodeling (107).

Although there are many proposed models of atherosclerosis

based on animal studies and a few focused on humans, the

challenge remains in translating our understanding to clinical

practice (108).
Dietary salt in hypertensive heart
disease and its complications

Excess dietary salt is associated with the development of

hypertension and increases the risk for cardiovascular disease,

stroke and death (109, 110). Through several mechanisms, excess

dietary salt modulates endothelial function and structure,

increases systemic peripheral resistance, modulates nervous system

function and activates cells of the immune system (109, 111, 112)

and accelerates the complications of hypertensive heart disease.

The adverse effects of salt also affect normotensive individuals

(113–115). Reduction in salt intake of less than 5 grams per day

has been shown to lower the risk of developing hypertension and

ameliorate cardiovascular diseases (110, 116–125). However,

programs aimed at reducing salt intake at population level face a

lot of compliance challenges (126).
Salt sensitivity of blood pressure

Although excess dietary salt raises blood pressure, the effect of

salt on blood pressure is variable in the population (127). While

significantly elevating blood pressure in some individuals
Frontiers in Cardiovascular Medicine 06
(salt sensitivity), excess salt has no effect on blood pressure in

others (salt resistant) and there is a group of individuals (about

15%) whose blood pressure increases with low salt intake (inverse

salt sensitivity) (127–129). Salt sensitivity of blood pressure (SSBP)

results in part from genetic polymorphisms in genes regulating

sodium handling and those not related to sodium handling such

as the Protein Kinase CGMP-Dependent 1 (PRKG1), cytochrome

b-245 alpha (CYBA) chain (also known as p22-phox), branched

chain amino acid transaminase 1 (BCAT1), Solute Carrier Family

8 Member A1 (SLC8A1), SLC4A5, Angiotensin II Receptor

Type 1 (AGTR1), Selectin E (SELE), cytochrome P450 family 4

subfamily A member 11 (CYP4A11), Neuronal precursor cell

expressed developmentally down-regulated 4-like (NEDD4l) and

Visinin Like 1 (VSNL1) (129–133). As explained above, RAAS

activation leads to vasoconstriction, increased systemic vascular

resistance (SVR) and elevation in blood pressure (134). In

individuals with SSBP, RAAS is altered in that renin stimulation is

reduced in salt depletion and the mechanisms are not adequate to

suppress renin in high salt intake hence worsening the adverse

effects of salt on blood pressure (135–138).
Salt induced immune-activation in the skin
in hypertensive heart disease

The handling of salt by the kidney and how salt contributes to

water retention and elevated blood pressure is well known. The

current dogma that sodium in the interstitial space equilibrates

with plasma has been challenged in emerging studies that have

now identified extrarenal handling of sodium that contributes to

hypertension and sustenance of blood pressure in hypertensive
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FIGURE 4

Atherosclerosis progression in coronary artery disease. (A) Coronary artery disease is characterized by narrowed coronary arteries due to advanced
atherosclerotic fatty plaque. (B) Atherosclerosis in coronary artery disease and complications. Atherosclerosis is initiated by fatty streak and
macrophage infiltration to rid of cholesterol deposits in the coronary arteries. Macrophages that have engulfed cholesterol deposits transform into
lipid laden foam cells, enter the subendothelial layer and also activate the immune system leading to inflammation. Increased deposition of fat,
calcium and persistent inflammation leads to formation of fibrotic and calcic changes that can result in plaque rupture, thrombosis and blockage of
blood flow in the vasculature. The resulting complications of advanced atherosclerotic lesions include myocardial infarction, atrial fibrillation and left
ventricular hypertrophy among others. Activated macrophages and T cells are the main players.
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heart disease (139, 140). It is now known that sodium can accumulate

in tissues and skin without commensurate volume retention and

activate innate and adaptive immunity leading to or sustaining

hypertension (139, 141). Accumulation of salt in the skin is

associated with autoimmune disease severity and heightening of

inflammation in several diseases such as lipedema, diffuse

cutaneous systemic sclerosis, multiple sclerosis, psoriasis and

systemic lupus erythematosus (142–146). Several studies have

demonstrated similar findings of increased sodium accumulation in

the skin in hypertension using sodium magnetic resonance imaging
Frontiers in Cardiovascular Medicine 07
(23Na MRI) (147–150). For dietary sodium to reach the skin from

the intestinal lumen, it is first absorbed across the apical membrane

of enterocytes through sodium-hydrogen exchangers (NHE),

sodium glucose cotransporter 1 (SGLT1), sodium-dependent

phosphate transporter 2b (NaPi2b), glucose transporters (GLUT)

and endothelial sodium channels (ENaC) and pumped across the

basal membrane of the intestine into the interstitium by Na-K

ATPases (151–154). From the insterstitium sodium diffuses into

the intestinal capillaries for transport. In the vasculature, excess

dietary salt diminishes the buffering capacity of the negatively
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charged glycocalyx lining the endothelium and the red blood cells

leading to extravasation of sodium and accumulation of salt in the

interstitial tissues (140, 155, 156). Accumulation of salt in the skin

increases the density and hyperplasia of the lymph-capillary

network and this effect is mediated by activation of tonicity-

responsive enhancer binding protein (TonEBP) in mononuclear

phagocyte system (MPS) cells (140). TonEBP binds to and activates

the promoter of the gene encoding vascular endothelial growth

factor-C (VEGF-C) resulting in VEGF-C secretion and trapping by

macrophages, augmenting interstitial hypertonic volume retention,

decreasing endothelial nitric oxide synthase expression and

elevating blood pressure in response to excess dietary salt (140). In

addition, the hypertonic milieu contributed by the accumulation of

sodium in the skin that induces the expression of VEGF-C

increases lymphangiogenesis as a compensatory mechanism to

eliminate sodium from the skin but this process is usually

disrupted in hypertension, exacerbating hypertensive heart disease

(147, 148). Low salt diet has shown to improve dermal capillary

density and blood pressure in hypertension (157).

A group by Laffer et al. investigated hemodynamic changes in

individuals with SSBP and found that compared to salt resistant

individuals, individuals with SSBP had higher total peripheral

resistance after salt loading which did not change after salt

depletion and further, they also gained weight during salt loading

but lost more weight during salt depletion that reflected failure to

correct fluid retention (158). This study suggests that individuals

with SSBP are unable to maintain and modulate a proper

hemodynamic balance that reflects a dysfunction in the storage

of salt in the interstitial compartment probably due to vascular

dysfunction (156, 159).

Resident macrophages and dendritic cells in the interstitium of

the skin are activated in the presence of excess dietary salt and via

increased activity of the ROS producing reduced nicotinamide

adenine dinucleotide phosphate (NADPH)-oxidase, the ROS oxidize

arachidonic acid leading to formation of Isolevuglandins (IsoLGs)

(160, 161). IsoLGs adduct to lysine residues and alter intracellular

protein structure and function and the resulting IsoLG-protein

adducts act as neoantigens presented to and activating T cells (160).

The activated T cells produce interferon-gamma (IFN-γ),

interleukin 17A (IL-17A) and tumor necrosis factor-alpha (TNF-α)

which causes vascular damage and lead to hypertension (160, 162).

The activated macrophages and dendritic cells produce

inflammatory cytokines IL-1β, IL-6 and IL-23 which induce T cell

proliferation and production of inflammatory cytokines implicated

in hypertension (160) (Figure 5). It has been demonstrated in

many studies that T cells infiltrate the kidney causing vascular

injury via inflammatory cytokines and increased oxidative stress

and contributing to salt sensitive hypertension (163–165).
Cellular pathways activated by excess
dietary salt

Several cellular pathways have been implicated in salt sensitive

hypertension. The NACHT, LRR, and PYD domains-containing

protein 3 (NLRP3) inflammasome is an oligomeric complex
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containing the NOD-like receptor NLRP3, the adaptor

Apoptosis-associated speck-like protein containing a caspase

recruitment domain (ASC), and caspase-1 implicated in salt

sensitive hypertension (166). The inflammasome is activated

when NF-κB upregulates the inflammasome components and

pro-IL-1β leading to the assembly of components to form the

NLRP3 inflammasome signaling complex (134, 166) (Figure 5).

Activation of the NLRP3 inflammasome leads to the release of

pro-inflammatory cytokines IL-1β and IL-18 via pyroptosis that

involves the cleavage of gasdermin D and development of pores

in the membrane of cells through which the cytokines and other

cellular contents are released (134, 166). It has been

demonstrated that the NLRP3 inflammasome can be activated in

high salt environments in an ENaC-dependent manner leading

to IsoLG-protein adduct formation in dendritic cells and

macrophages and antigen presentation to activate cells of the

adaptive immune system and leading to hypertension as

explained above (167).

In high salt diets, small guanosine triphosphatases (GTP)ases

Rho and Rac kinases are activated and lead to activation of

sympathetic nerve outflow that results in blood pressure elevation

(168). In vascular smooth muscles, Rho kinases facilitate

vasoconstriction though GPCRs and Wnt pathways, and in

vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO)

leading to increased vascular resistance and vascular tone and

salt sensitive hypertension (168).

A study by Chu et al., in 329 subjects looked at growth factors that

are produced in relation to the activation of the phosphoinositide 3-

kinase/ Ak strain transforming (PI3K-Akt) pathway, which is

activated through serine and/or threonine phosphorylation of a

range of downstream substrates (169). They found that individuals

with SSBP had elevated levels of several growth factors compared to

salt resistant group (169). The signal transduction PI3K-Akt

Pathway regulates metabolism, proliferation, cell survival, growth

and angiogenesis (170). The PI3K-Akt Pathway activation has been

implicated to contribute to the progression of atherosclerotic plaque

formation and pathological changes in the vasculature leading to

hypertension and cardiovascular disorders in many studies (171–

175). Several other cellular pathways associated with salt sensitive

hypertension such as the WNK signaling pathway (176), Kelch-like

3/Cullin 3 ubiquitin ligase complex (177), brain Gαi2-proteins of

GPCR (178, 179) in the central nervous system, MAPK/extracellular

signal regulated kinase [ERK] mediated by angiotensin II in

vascular smooth muscles (180), and redox signaling (181) have

been well elucidated.
Genetic predisposition in hypertensive
heart disease complications

There is substantial evidence for genetic involvement in

hypertensive heart disease and its complications (heart failure,

AFib, and coronary artery disease). Evidence from observational,

sibling and longitudinal twin studies reported that LVH

phenotypes are highly heritable (182–184). Specific variants have

been associated with abnormalities in cardiac structure and
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FIGURE 5

Salt induced hypertension. In high salt environments, dendritic cells or macrophages become activated through increased intracellular sodium that enter
via the epithelial sodium channel (ENaC). Sodium activates NADPH oxidase and the inflammasome leading to formation of Isolevuglandins(IsoLGs)-
protein adducts that are processed in major histocompatibility molecules and presented to T cells, activating them. Activated T cells produce
inflammatory cytokines IFN-γ, TNF-α and IL-17A that lead to hypertension. NF-Kb, Nuclear factor kappa-light-chain-enhancer of activated B cells;
IFN-γ, interferon gamma; TNF-α, Tumor necrosis factor alpha; ROS, reactive oxygen species; NLRP3, NACHT, LRR, and PYD domains-containing
protein 3; ASC, Apoptosis-associated speck-like protein containing a CARD.
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function related to hypertensive heart disease using gene

association and genome-wide association studies (185, 186).

Genome wide association studies and international collaborative

metanalysis studies have also reported more than 30 gene loci

associated with AFib (187–191). Several studies have

demonstrated that most polymorphisms associated with blood

pressure also increases the risk for coronary artery disease (192),

incident hypertension and cardiovascular diseases (193). We

found several studies that have reported genes associated with

cardiomyopathies and heart failure such as myosin heavy chain 7

(MYH7), troponin T (TNNT2), troponin I (TNNI3), cardiac

myosin binding protein 3 (MYBPC3), tropomyosin alpha-1

(TPM1), Lamin A/C (LMNA/C), plakophilin 2 (PKP2),

desmocollin 2 (DSC2), desmoglein 2 (DSG2), desmoplakin

(DSP), plakoglobin (JUP) and titin (194). We also know that the

genetic component requires interaction with environmental

factors for the effect or risk for hypertension and cardiovascular

disease to be heightened (195). The genetic predisposition to

hypertensive heart disease has been extensively reviewed and

studied elsewhere (185, 192, 195–200).
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Current diagnostic techniques

Echocardiography, carotid ultrasound and cardiac magnetic

resonance imaging are important diagnostic techniques used in the

clinic to detect functional and structural changes in the heart such

as occurs in LVH (1, 50, 201). Echocardiography is cheap, readily

available and more preferred to the high cost and limited

availability of the gold standard, cardiac magnetic resonance

imaging (42). Cardiac magnetic resonance imaging is a noninvasive,

tomographic, nonionizing technique used to detect structural

changes in the heart and therefore important for the diagnosis of

hypertrophic cardiomyopathy, coronary heart disease, congenital

heart disease, heart failure and other cardiac abnormalities (202).
Therapy for hypertensive heart disease
and its complications

Controlling hypertension with current medication reduces the

risk for complications and adverse cardiovascular events.
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The current US and European guidelines have extensively

discussed therapy for hypertension and all related cardiovascular

complications (2, 203). Thus, we will briefly focus on recent

clinical studies reporting potential therapies that are especially

used in combination for the treatment of LVH, AFib, coronary

artery disease, and heart failure.
Left ventricular hypertrophy therapies

Patients with LVH benefit remarkably from intensive blood

pressure lowering (<120 mmHg) to prevent complications (36).

In clinical trials, several therapies have been reported to reduce

LVH and its complications. Use of the neprilysin inhibitor

sacubitril used for treatment of heart failure and the angiotensin

receptor blocker valsartan was associated with reduced left

ventricular mass index when compared to the angiotensin

receptor blocker (ARB) Olmesartan, in participants with

hypertension (204). Another clinical trial reported that

combination of the ARB telmisartan and simvastatin did not

only significantly reduce blood pressure but was able to reverse

LVH and improve left ventricular systolic function (205). Similar

findings were reported for a triple fixed dose combination of

perindopril/indapamide/amlodipine (angiotensin-converting

enzyme inhibitor (ACEI)/diuretic/calcium channel blocker

(CCB)) in patients with essential hypertension followed for 14

months (206). Another interesting finding is from a clinical trial

by Lal et al. where they used allopurinol, a xanthine oxidase

inhibitor commonly used to reduce plasma uric acid in patients

with gout, to determine its efficacy in reducing LVH (207). High

dose allopurinol was more effective in reducing left ventricular

mass and LVH when compared to febuxostatin (207) but caution

must be exercised in using allopurinol in normouricemic

individuals with controlled blood pressure as it can increase

oxidative stress (208). In general, it appears that significant

reversal of LVH is greater when both RAAS and sympathetic

nervous system (SNS) inhibitors are used compared to drugs that

just target blood pressure reduction (209). Other drugs as well as

natural compounds or interventions used in combination have

also been reported in clinical trials to ameliorate progression of

LVH, examples include a nutraceutical combination of berberine,

red yeast rice extract and policosanol (210), azelnidipine (211),

losartan (212), low-dose eplerenone (213), metformin in patients

with coronary artery disease without diabetes (214), diets low in

fat and carbohydrate and regular consumption of green tea

(215, 216).
Therapies for atrial fibrillation

Several clinical trials have reported beneficial therapies in the

management of AFib. A few are discussed below.

When AFib is controlled, patients remain at risk for

cardiovascular events, however, early rhythm control achieved by

using antiarrhythmic drugs or atrial fibrillation ablation was

effective in treating AFib and reducing the risk for cardiovascular
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events (217). In clinical practice, patients are first prescribed

drugs such as beta blockers or a CCB in patients with

asymptomatic AFib but a few clinical trials found that

cryoballoon ablation was more effective compared to drug

therapy as initial therapy for AFib (218, 219). Thus, rhythm

control may be beneficial in both asymptomatic and

symptomatic AFib (220). Further, radiofrequency ablation may

delay or prevent paroxysmal AFib from progressing into

persistent AFib (221). Despite its beneficial effect, caution should

be exercised, as catheter ablation may also increase left atrial

stiffness and worsen post-ablation diastolic function (222).

Additional interventions for the management of AFib and its

complications have been reported in other clinical trials

elsewhere (223–227).
Therapies for coronary artery disease and
heart failure

Patients with coronary artery disease also benefit from several

interventional strategies including dietary interventions (228,

229), rivaroxaban monotherapy and other drugs (230–232), and

physical exercise (233, 234). Further, lifestyle modifications have

also been reported to be beneficial (235).

To alleviate heart failure and reduce its complications, several

interventions are available (236). For example, in a clinical trial

by Hieda et al. they found that physical exercise training for one

year reversed left ventricular myocardial stiffness in patients with

stage B heart failure with preserved ejection fraction that is

characterized by LVH and N-terminal pro-B-type natriuretic

peptide or high-sensitivity troponin (237). Therapeutic

interventions for patients with heart failure also exist.

Empagliflozin, dapagliflozin and spironolactone improves and

ameliorates adverse outcomes of heart failure with persevered

ejection fraction (238–240). In addition, individualized

nutritional support as well as treatment with vericiguat for

hospitalized patients with heart failure is also beneficial in

reducing the risk for death and morbidity (241–243). Further, in

patients with acute decompensated heart failure, usage of

levosimendan in combination with Shenfu injection was effective

in improving hemodynamics and enhance myocardial

contractility (244). In severe heart failure where therapy is

limited, use of omecamtiv mecarbil therapy is reported to have

beneficial effects in reducing adverse outcomes (245).

Management of heart failure is discussed in detail in the US and

European guidelines.
Future directions

Future studies should focus on clinical studies (especially

prospective) to understand the pathogenesis and complications of

hypertensive heart disease as there are few studies in this area.

Understanding the implications of physiological and pathological

LVH and the potential for regression will be important for

clinical application.
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Conclusions

Hypertensive heart disease progresses through several

mechanisms that amplify and increase the risk for adverse

complications. Excess dietary salt is one of the modifiable factors

that contribute enormously to the pathogenesis of hypertensive

heart disease. Reduction of dietary salt has potential to reduce blood

pressure and the risk for development of hypertensive heart disease.
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