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Introduction: Venous thromboembolism (VTE) risk assessment at admission is of
great importance for early screening and timely prophylaxis and management
during hospitalization. The purpose of this study is to develop and validate novel
risk assessment models at admission based on machine learning (ML) methods.
Methods: In this retrospective study, a total of 3078 individuals were included with
their Caprini variables within 24 hours at admission. Then several ML models were
built, including logistic regression (LR), random forest (RF), and extreme gradient
boosting (XGB). The prediction performance of ML models and the Caprini risk
score (CRS) was then validated and compared through a series of evaluationmetrics.
Results: The values of AUROC and AUPRC were 0.798 and 0.303 for LR, 0.804 and
0.360 for RF, and 0.796 and 0.352 for XGB, respectively, which outperformed CRS
significantly (0.714 and 0.180, P < 0.001). When prediction scores were stratified into
three risk levels for application, RF could obtain more reasonable results than CRS,
including smaller false positive alerts and larger lower-risk proportions. The boosting
results of stratification were further verified by the net-reclassification-improvement
(NRI) analysis.
Discussion: This study indicated that machine learning models could improve VTE
risk prediction at admission compared with CRS. Among the ML models, RF was
found to have superior performance and great potential in clinical practice.
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Introduction

Venous thromboembolism (VTE) includes pulmonary embolism (PE) and deep vein

thrombosis (DVT), two clinical manifestations of the disease at different stages and

locations. As a common complication and adverse event during hospitalization, VTE is

one of the leading causes of preventable hospital death (presented with PE) and increased

length of stay (1, 2). In a Chinese multicenter study between 2007 and 2016, the age- and

sex-adjusted hospitalization rates of VTE patients increased from 3.2 to 17.5 per 100,000

population, and the hospitalization mortality rates decreased from 4.7% to 2.1% (3). The

studies of diagnosis, therapy, and prevention have been rapidly developed recently (4, 5).

VTE risk is constantly changing during patients’ hospitalization and may be triggered by

the clinical intervention of surgery and anesthesia. Throughout the whole cycle of dynamical
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assessments, the time point of admission is of great importance for

VTE management. Performing pre-test assessment at admission

could promote risk stratification and follow-up decision-making,

and early screening and prophylaxis could effectively reduce the

incidence (6). Currently, a great number of VTE risk-assessment

models (RAMs) have been proposed, mainly including a list of

clinical factors and corresponding scores. There have been several

studies focusing on the validation of RAMs at admission to guide

early screening and prophylaxis (7–9).

As one of the most used RAMs, the Caprini RAM (10) has been

applied inside electronic health records in Shanghai Tenth People’s

Hospital for VTE management of hospitalized patients for several

years. In practice, it was performed in a variety of departments at

several time points, including admission, before/after surgery,

department transfer, and discharge. While it was designed mainly

for the surgical population, the validity of Caprini RAM for

medical inpatients was also addressed widely and it was suggested

to use a single hospital-wide RAM out of practical reasons (11, 12).

With the wide application of artificial intelligence in medical

fields, its role in disease prediction, diagnosis, and treatment

guidelines has received great attention from clinicians (13). In

recent years, a variety of studies have shown that machine

learning (ML) algorithms could improve prognostic VTE risk

prediction and then help in clinical decision-making. Specifically,

ML models were utilized for VTE risk prediction and compared

with Khorana RAM among cancer outpatients treated with

chemotherapy (14), with Padua RAM among inpatients of the

internal medicine (15), with IMPROVE RAM among inpatients

(16), and with Caprini RAM among trauma hospitalized

population (17). Besides, there have been also many studies

focusing on novel or advanced algorithm design based on

machine learning and even deep learning techniques. Yang et al.

built an end-to-end prediction models from raw electronic

medical records based on ontology extraction using natural

language process technique (18). Another study designed a

hybrid knowledge and ensemble learning method from

clinical narratives (19). Some studies developed novel algorithms

in a multi-task learning framework to improve the VTE risk

prediction for small sample cohorts, such as hierarchical

modeling (20) and task-wise split gradient boosting (21).

Recently, the theory of neural differential equation was applied to

build deep neural competing risk time-to-event VTE models (22).

Although the value of machine learning algorithms in

predicting VTE risk has been widely confirmed, most of the

studies were based on the clinical indicators of patients during

hospitalization or prognosis to build prediction models, which

were limited by the feasibility of clinical data. To the best of our

knowledge, the problems of ML model development and

validation for VTE risk at admission have been seldom studied

(8). With data availability for machine learning provided by the

filling of Caprini scale at admission, we designed a single-site

retrospective study and the research object was to build and

evaluate machine learning models based on Caprini variables to

assess VTE risk at admission and to explore potential areas of

improvement by analyzing a series of model predictive

performance.
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Methods

Study design

We conducted a single-site retrospective study of prognostic

prediction modeling at Shanghai Tenth People’s Hospital. The

clinical data were retrieved from the electronic medical records

with complete admission and discharge records between January

2020 and December 2020.
Diagnostic criteria of VTE
The two subtypes, DVT and PE, were diagnosed by lower

extremity vein ultrasound or venography and chest computed

tomography pulmonary angiogram, respectively. Considering that

in clinical practice patients might be bedridden or immobilized,

we also included bedside ultrasound imaging checks where lower

extremity veins were mentioned in the corresponding report

texts. Following the same way as our previous study, an imaging

check was confirmed as VTE-positive only if positive statements

were inspected in the report/conclusion texts, otherwise, it was

regarded as negative (20). The VTE check results were

additionally confirmed by clinicians for reliability.
Study population
Since this study aimed to assess hospital-wide patients’ VTE

risk status at admission, the cohorts for model development and

validation were based on the inpatient departments at Shanghai

Tenth People’s Hospital where Caprini scale was performed and

there were positive VTE patients.

The inclusion criteria were designed as follows: (a) the length

of stay at least 3 days, (b) older than 18 years, (c) Caprini scale

assessment within 24 h of admission, and (d) at least one VTE

imaging check (lower extremity venous ultrasound/venography or

chest computed tomography pulmonary angiogram) with clear

diagnosis results within 4 days of admission. If there was at least

one positive result, the patient was classified into the positive

group, otherwise classified into the negative group. A patient was

classified into the VTE-positive group if at least one positive

imaging check was retrieved.

In consideration of the risk assessment necessity, the following

exclusion criteria were introduced: (a) departments where no

patients were assigned positive outcomes; (b) patients with

positive imaging check results before Caprini scale evaluation

within 24 h of admission. In addition, subsequent clinical

interventions between Caprini scale and VTE image checking,

such as drug prophylaxis and surgery, would induce verification

bias and risk status changing on VTE outcomes. We considered

two additional exclusion conditions: (c) patients in the positive

group who underwent surgery before the positive check record;

(d) patients in the negative group who received drug orders

(anticoagulant, thrombolytic, and defibrillation drugs) for

prophylaxis before the imaging checks.

As a retrospective study, the sample size was determined due to

practical rather than statistical considerations. Nevertheless, the

values of events per variable were empirically acceptable, and the
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later experiments showed that model overfitting or underfitting was

well controlled.

Caprini score and predictors
We extracted the Caprini scale data within 24 h of admission

for all patients in the cohort. If there were multiple scale records,

then the last one would be used. Briefly, the scale data included a

series of risk factors and the final Caprini risk score (CRS). In this

study, the risk factors were used as predictors for modeling, while

CRS was used for model comparison as the Caprini scale results.

According to the study design, the Caprini scales were always

performed before VTE image checks to make predictors blind to

the outcome and to avoid information leakage.

In clinical practice, the Caprini RAM version 2013 (10, 23) was

deployed, which involved 28 risk factors. Among the candidate

variables, the variables “Age” and “Bedridden” were ordinal with

four and three levels, respectively, while the rest were binary. The

variables could be used for modeling directly without any

preprocessing like data imputation since the variables in Caprini

scale were completed by clinicians and nurses without any data

missing. See Supplementary Table S1 for the full list and

abbreviation in this study.

Dataset splitting
After cohort establishment, we carried out a stratified random

splitting scheme according to the outcome to obtain a training

dataset and an independent test dataset, with a size ratio of 7:3.

The training dataset was used for the machine learning model

development, while the test dataset was used for model

validation and performance comparison. Thus, there was no

difference between the development and validation datasets in

the outcome, predictors, and eligibility criteria.
Machine learning model development

We conducted machine learning model development based on

the training dataset and considered the three most popular binary

classification algorithms in clinical predictive modeling tasks:

Logistic Regression (LR), Random Forest (RF), and Extreme

Gradient Boosting (XGB). For each algorithm, the model training

consisted of the following procedures.

Hyperparameter tuning
There were some configurations (aka hyperparameters) in each

model that should be predefined before training. As a black box

optimization problem, hyperparameter search was solved using

the Bayesian optimization algorithm. For each model, the

optimal hyper-parameters were specified after 200 rounds of

searching. See Supplementary Table S2 for hyperparameter

range setup.

Feature selection
We conducted model-based feature selection after tuning

hyperparameters for model reduction. For RF and XGB, we

conducted recursive feature elimination (RFE) with 5-fold cross-
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validation. RFE was a backward feature selection strategy, starting

with overall variables, and removing the variable with the least

importance (measured by average split gains in any RF or XGB)

at every round. The optimal variable subset was acquired by

maximizing the cross-validated AUROC values across the whole

RFE rounds. For LR, we adopted the LASSO (least absolute

shrinkage and selection operator) constraint in the hyperparameter

tuning step. After searching the optimal hyperparameters and the

variable subset, we retrained plain LR, RF, and XGB on the entire

training set again based on the selected features.

Calibrating
The calibration of a predictive model for binary outcomes

referred to the agreement between outcome probabilities and

predictive scores. We performed a univariate Logistic regression

(termed Platt scaling) for CRS on the training set to convert the

score through a sigmoid function (24). For each machine

learning model, an isotonic regression was fitted to adjust the

raw model prediction if the hypothesis test for calibration was

rejected (24, 25). To avoid overfitting, we took the mean value of

the cross-validated isotonic regression outputs as the final

probability values.
Model validation

We assessed the performance of machine learning models as

well as CRS in various ways of measures based on the

independent test set, including traditional metrics related to

discrimination and calibration as well as some novel measures

related to reclassification and clinical usefulness (26).

Model metrics
As a rule of thumb, we reported the receiver-operating-

characteristic (ROC) curves as well as the areas under the ROC

curves (AUROC) for all models to measure the primary

predictive performance. We also specified the optimal threshold

values with respect to maximizing the Youden index and

calculated the confusion matrices as well as sensitivity, specificity,

and F1 score. Considering the problem of label imbalance, we

also presented precision-recall curves (PRC) and the areas under

the PRC (AUPRC) as complements for model comparison. For

each metric, we conducted statistical inference by means of the

nonparametric Bootstrap resampling technique where the

number of resampling was set as 5,000. Model calibration was

validated through the most popular Hosmer-Lemeshow

goodness-of-fit test and the corresponding plots for graphical

illustration (27, 28).

The theory of decision curve analysis (DCA) provides a new

perspective for model utility evaluation (29–31). To put it simply,

assuming that some clinical intervention was performed for

individuals greater than a prediction threshold, the benefits of

intervention could be evaluated by gains from true positive

individuals and losses from false positive ones. Then the decision

curves (DCs) were obtained by varying threshold values and

computing standardized net benefits. It should be noted that
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prediction models must be well-calibrated, otherwise DCs would be

biased and the comparison between models might be invalid (29).

We used SHapley Additive exPlanations (SHAP) values to

measure and visualize the variable contribution and importance

in any model (32, 33). As a novel model-agnostic approach for

black-box model explanation, SHAP could show how variables

participate in model prediction while providing both local

personalized prediction interpretability and global variable

importance explanation. This method has been widely used in

clinical predictive modeling research to improve model

transparency (34, 35).

Risk stratification application
In real applications, the CRS was categorized into three risk

levels for follow-up treatment and nursing. Therefore, the risk

stratification of machine learning models was also designed as

three levels: low-risk, moderate-risk, and high-risk. The principle

of stratification cutoff specification was to keep the false negatives

in the low-risk group and the false positives in the high-risk

group non-inferior to CRS. For any machine learning model, the

low-risk threshold was set up such that the sensitivity

corresponded to that of 3 points for CRS, and the high-risk

threshold was set up such that the specificity corresponded to

that of 5 points for CRS. We then reported some description of

stratification results on the test set, including positive rates, level

proportion, etc.

We further investigated whether the stratification application of

the machine learning models would show any improvement

compared to the existing CRS using the net classification

improvement (NRI), a measurement defined as the difference

between improved and worsened prediction proportions (36). We

reported the NRI components of negative and positive groups,

respectively. Statistical inference and hypothesis tests were

performed using the asymptotic Z statistics.
Statistical analysis

In the data summary, categorical variables were presented by

numbers and percentages, while continuous variables were

presented by medians and quantiles. The difference tests between

the training and test datasets were implemented by Chi-square,

Fisher’s exact, and Mann–Whitney U test for categorical, binary

(with any actual or expected contingency table cell values < 5),

and numerical variables, respectively. For any statistic metric we

reported the standard derivation (sd) or 95% confidence interval

(CI). Statistical significance was defined as P < 0.05.
Code implementation

All the experiments were performed using the Python language

(version 3.9). The statistical tests were based on the scipy (version

1.9.3) library. The main machine learning development was based

on the scikit-learn (version 1.1.2) library, including LR, RF,

recursive feature elimination, isotonic regression, and main
Frontiers in Cardiovascular Medicine 04
model metrics. XGB, hyperparameter tuning, SHAP explanation

were based on the libraries xgboost (version 1.6.2), hyperopt

(version 0.2.7), and shap (version 0.41), respectively. The rest

computation was implemented manually in the Python

environment. The codes for model training and validation were

released at https://github.com/WenboSheng/vte-modeling-at-

admission.
Results

Dataset information

The cohort in this study included 3,078 individuals from 14

departments, which was divided into a training set and a test set

with sample sizes 2,154 and 924. See Figure 1 for the complete

participant flow details. The positive rate of the VTE outcome

was 8.5%, with 184 and 79 outcome events in the training and

test sets, respectively. There was no significant difference between

the training set and the test set on the outcome, age, sex,

departments, and CRS. See Table 1 for the dataset description.
Model prediction performance

The models were fitted on the training set, including

hyperparameter tuning, automatic feature selection, and potential

calibrating. The final LR selected 15 features (namely, with non-

zero coefficients). For RF and XGB, the RFE procedure selected

15 and 14 features, respectively, and additional cross-validated

isotonic regressions were necessary since the raw output scores of

the two models were found far from well-calibrating. The

characteristics of selected variables for RF were presented in

Table 2. See Supplementary Table S3 for the details of feature

selection as well as model specification information (variable

coefficients in LR and feature importance in RF and XGB).

The discrimination metrics were illustrated in Table 3,

including AUROC, AUPRC, sensitivity, specificity, precision, and

F1 score. Note that sensitivity, specificity, precision, and F1 score

were based on the optimal Youden index. The ROC curves of

the predictive models were shown in Figure 2, left panel. It can

be concluded that the AUROC values of all the machine learning

models are significantly superior to CRS (P < 0.001, pairwise

comparison with Bonferroni correction). Besides, RF achieved the

best score (AUROC = 0.804, 95% CI 0.750–0.852), whereas the

difference among the three machine learning models was not

significant (P = 0.60). Due to the label imbalance, we used PRC

and AUPRC as the secondary assessment index, which paid

more attention to the prediction of minor labels (Figure 2,

middle panel). Also, all the LR, RF, and XGB outperformed CRS

significantly (P = 0.003). Besides, RF achieved the best score

(AUPRC = 0.630, 95% CI 0.268–0.464), and was higher than LR

significantly (P = 0.015). The calibration curves were displayed in

Figure 2, right panel. All the Hosmer-Lemeshow tests were not

significant (P values larger than 0.05), indicating the consistency

between prediction and observation on both training and test
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FIGURE 1

Cohort flowchart.

Sheng et al. 10.3389/fcvm.2023.1198526
sets for all the models (RF and XGB were adjusted by isotonic

regression).

We investigated the clinical utility through DCA on the test set.

According to the DCA theory, there are two reference curves by

default, that is, the no intervention (treat none) and all

intervention (treat all) scenarios. As shown in Figure 3, the

machine learning models provided greater net benefit values than

CRS at almost all risk thresholds. In addition, the decision curve
Frontiers in Cardiovascular Medicine 05
of RF is superior to that of LR, but the comparison results

between RF and XGB depend on threshold specification. Besides,

the model validity was confirmed by the fact that all the DCs

were completely located upon the two reference curves.

Figure 4 illustrated the SHAP values of RF. As shown in the

right panel of Figure 4, the top five important factors considered

by RF for prediction were bedridden (on bed rest or restricted

mobility, including a removable leg brace for less than 72 h), age,
frontiersin.org
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TABLE 1 Dataset characteristics.

Clinical Features Overall Training set Test set P-Value
n 3,078 2,154 924

Outcome, n (%) Non-VTE 2,815 (91.5) 1,970 (91.5) 845 (91.5) >0.99

VTE 263 (8.5) 184 (8.5) 79 (8.5)

Caprini_risk, n (%) Low (0–2) 1,244 (40.4) 871 (40.4) 373 (40.4) >0.99

Moderate (3–4) 859 (27.9) 601 (27.9) 258 (27.9)

High (≥5) 975 (31.7) 682 (31.7) 293 (31.7)

Age, median [Q1, Q3] 64.0 [52.0,73.0] 65.0 [52.0,73.0] 64.0 [52.0,72.0] 0.34

Sex, n (%) Female 1,927 (62.6) 1,366 (63.4) 561 (60.7) 0.17

Male 1,151 (37.4) 788 (36.6) 363 (39.3)

Departments, n (%) Cardio-vascular 111 (3.6) 70 (3.2) 41 (4.4) 0.28

Emergency 19 (0.6) 12 (0.6) 7 (0.8)

Endocrinology 431 (14.0) 306 (14.2) 125 (13.5)

Geriatrics 17 (0.6) 13 (0.6) 4 (0.4)

Gynaecology 734 (23.8) 506 (23.5) 228 (24.7)

ICU 95 (3.1) 60 (2.8) 35 (3.8)

Neurology 115 (3.7) 79 (3.7) 36 (3.9)

Oncology 35 (1.1) 20 (0.9) 15 (1.6)

Orthopedics 892 (29.0) 644 (29.9) 248 (26.8)

Othersa 21 (0.7) 15 (0.7) 6 (0.6)

Surgery 393 (12.8) 266 (12.3) 127 (13.7)

Thyroid&Mammary 114 (3.7) 86 (4.0) 28 (3.0)

Traditional Chinese Medicine 29 (0.9) 22 (1.0) 7 (0.8)

Urology 72 (2.3) 55 (2.6) 17 (1.8)

a“Others” included departments of rheumatism immunity, microecology treatment, and blood branch.

Sheng et al. 10.3389/fcvm.2023.1198526
CVC (tube in the blood vessel in neck or chest that delivers blood

or medicine directly to the heart within the last month), VVV

(visible varicose veins), and stroke (experienced a stroke). As

included in Caprini scale, these risk factors have been confirmed

with VTE by many previous studies. In the SHAP value plot

(Figure 4, left panel), all variables had a positive relationship

with risk, which also verified a valid clinical implication of RF.
Risk stratification

Taking 3 points and 5 points as the two thresholds in CRS, the

false negative rate (1-sensitivity) in the low-risk group and the

false-positive rate (1-specificity) in the high-risk group on the

training set were 13.0% and 29.2%, respectively. Then the two

values were used as a reference for risk stratification of RF and

XGB as described in Figure 5. Here we did not include LR since

its prediction performance was weaker than RF from the

aforementioned AUPRC and DCA. Taking RF vs. CRS as an

example, the positive rate of the low-risk group decreased from

2.41% to 2.08%, and the positive rate of the high-risk group

increased from 16.0% to 21.9%. The proportion of the low-risk

group increased from 40.4% to 51.9%, and the proportions of the

moderate- and high-risk groups decreased from 27.9% to 19.9%

and from 31.7% to 28.1%, respectively. This indicated a higher

risk enrichment ability for the machine learning model than CRS.

Further, we carried out NRI analysis to investigate the

improvement of RF and XGB against CRS. The NRI components

for the positive and negative groups of RF were 0.101 (sd = 0.046, P

= 0.03) and −0.135 (sd = 0.016, P < 0.001), respectively. The
Frontiers in Cardiovascular Medicine 06
statistical inference showed that RF could correct those misclassified

individuals effectively. In contrast, for XGB we found a significant

negative NRI value of −0.17 (sd = 0.017, P < 0.001) but a non-

significant positive NRI value (NRI_positive =−0.01, P = 0.81). See
Supplementary Table S4 for the detailed reclassification results

across the risk levels. The NRI analysis showed that RF might have

a better ability for prediction improvement than XGB.
Sensitivity analysis

In the cohort design of this study, VTE risk at admission was

investigated by means of occurrence within 4 days of staying

since the length of stay itself was considered a risk factor of

VTE. To indicate the rationality of the setting, we modified this

parameter to 7 and 15 days to explore the predictive effect on

medium- and long-term VTE risk during hospitalization. The

steps of cohort construction, variable and outcome setup, and

machine learning modeling followed the same design protocol. It

could be concluded that the predictive performance weakened

slightly with the increase of the time span parameter.

Nevertheless, the conclusion that machine learning models

outperformed CRS always remained. See Supplementary

Figure S1 for the results of AUROC trends on the test sets.
Discussion

Early screening within 24 h at admission was an important

issue for VTE management during hospitalization. In this single-
frontiersin.org
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TABLE 3 Prediction performance with 95% CI of the investigated models on the test set.

CRS LR XGB RF
AUROC 0.714 (0.656, 0.767) 0.798 (0.745, 0.845) 0.798 (0.745, 0.846) 0.804 (0.750, 0.852)

AUPRC 0.180 (0.133, 0.247) 0.303 (0.227, 0.415) 0.352 (0.261, 0.452) 0.360 (0.268, 0.464)

Sensitivity 0.886 (0.595, 0.797) 0.797 (0.709, 0.886) 0.772 (0.671, 0.861) 0.810 (0.722, 0.886)

Specificity 0.431 (0.585, 0.650) 0.715 (0.646, 0.708) 0.701 (0.669, 0.730) 0.688 (0.656, 0.718)

Precision 0.127 (0.124, 0.167) 0.207 (0.166, 0.210) 0.194 (0.170, 0.219) 0.195 (0.173, 0.218)

F1 0.222 (0.205, 0.275) 0.329 (0.270, 0.338) 0.310 (0.272, 0.347) 0.314 (0.280, 0.349)

The cutoff values for sensitivity, specificity, precision, and F1 were derived from the maximal Youden’s indexes.

TABLE 2 Variable characteristics included in RF.

Variablesa Training set (n = 2,154) Test set (n = 924)

Negative (n = 1,970) Positive (n = 184) P-value Negative (n = 845) Positive (n = 79) P-value
VVV, n (%) 0 1,965 (99.7) 168 (91.3) <0.001 844 (99.9) 73 (92.4) <0.001

1 5 (0.3) 16 (8.7) 1 (0.1) 6 (7.6)

LungDisease, n (%) 0 1,945 (98.7) 180 (97.8) 0.305 833 (98.6) 78 (98.7) 1.000

1 25 (1.3) 4 (2.2) 12 (1.4) 1 (1.3)

Broken, n (%) 0 1,800 (91.4) 159 (86.4) 0.035 776 (91.8) 67 (84.8) 0.057

1 170 (8.6) 25 (13.6) 69 (8.2) 12 (15.2)

SwollenLeg, n (%) 0 1,966 (99.8) 181 (98.4) 0.017 841 (99.5) 77 (97.5) 0.086

1 4 (0.2) 3 (1.6) 4 (0.5) 2 (2.5)

PastMajorSurg, n (%) 0 1,914 (97.2) 170 (92.4) 0.001 818 (96.8) 71 (89.9) 0.007

1 56 (2.8) 14 (7.6) 27 (3.2) 8 (10.1)

HistoryVTE, n (%) 0 1,966 (99.8) 175 (95.1) <0.001 842 (99.6) 76 (96.2) 0.010

1 4 (0.2) 9 (4.9) 3 (0.4) 3 (3.8)

CVC, n (%) 0 1,914 (97.2) 161 (87.5) <0.001 814 (96.3) 67 (84.8) <0.001

1 56 (2.8) 23 (12.5) 31 (3.7) 12 (15.2)

MinSurg, n (%) 0 1,868 (94.8) 171 (92.9) 0.359 821 (97.2) 72 (91.1) 0.012

1 102 (5.2) 13 (7.1) 24 (2.8) 7 (8.9)

Bedridden, n (%) None 1,736 (88.1) 121 (65.8) <0.001 730 (86.4) 51 (64.6) <0.001

<72 h 86 (4.4) 30 (16.3) 45 (5.3) 14 (17.7)

≥72 h 148 (7.5) 33 (17.9) 70 (8.3) 14 (17.7)

Stroke, n (%) 0 1,805 (91.6) 150 (81.5) <0.001 773 (91.5) 59 (74.7) <0.001

1 165 (8.4) 34 (18.5) 72 (8.5) 20 (25.3)

IBD, n (%) 0 1,963 (99.6) 182 (98.9) 0.176 844 (99.9) 79 (100.0) 1.000

1 7 (0.4) 2 (1.1) 1 (0.1)

Obesity, n (%) 0 1,748 (88.7) 159 (86.4) 0.411 751 (88.9) 69 (87.3) 0.821

1 222 (11.3) 25 (13.6) 94 (11.1) 10 (12.7)

Malignancy, n (%) 0 1,706 (86.6) 156 (84.8) 0.565 712 (84.3) 70 (88.6) 0.389

1 264 (13.4) 28 (15.2) 133 (15.7) 9 (11.4)

Age, n (%) ≤=40 yr 213 (10.8) 5 (2.7) <0.001 88 (10.4) 2 (2.5) <0.001

41–60 yr 595 (30.2) 28 (15.2) 268 (31.7) 13 (16.5)

61–75 yr 751 (38.1) 86 (46.7) 333 (39.4) 35 (44.3)

>75 yr 411 (20.9) 65 (35.3) 156 (18.5) 29 (36.7)

MajorSurg, n (%) 0 1,913 (97.1) 172 (93.5) 0.014 814 (96.3) 68 (86.1) <0.001

1 57 (2.9) 12 (6.5) 31 (3.7) 11 (13.9)

aVVV, visible varicose veins; PastMajorSurg, past major surgery (>45 min) within last month; HistoryVTE, history of blood clots, either DVT or PE; CVC, tube in blood vessel in

neck or chest that delivers blood or medicine directly to heart within the last month; MinSurg, minor surgery (<45 min) is planned; Bedridden, on bed rest or restricted

mobility, including a removable leg brace for less than 72 h; IBD, a history of inflammatory bowel disease; Malignancy, current or past malignancies (excluding skin

cancer, but not melanoma); MajorSurg, length of a surgery over 2 h. See Supplementary Table S1 for the full description.
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site study, we established machine learning models for risk

assessment at admission and evaluated the corresponding

prediction performance and potential improvement for the

Caprini score.

We considered LR, a traditional linear model, as well as RF and

XGB, the two most popular tree-based models in biomedical

classification tasks. As displayed in Figure 2, the AUROC and
Frontiers in Cardiovascular Medicine 07
AUPRC values of each model on the training and test datasets

were similar, which implied that the pitfalls of overfitting or

underfitting were well controlled during model training. In

summary, machine learning models could elevate the accuracy of

risk assessment effectively compared to CRS. By means of a

comprehensive analysis of evaluation metrics including AUROC,

AUPRC, DCA, and NRI, RF was found to achieve the best
frontiersin.org
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FIGURE 2

Discrimination and calibration performance of CRS and the three machine learning models LR, XGB, RF on the (A) training and (B) test datasets. Left panel:
Receiver operating characteristics curves (legends: Area under ROC of each model); middle panel: precision-recall curves (legends: Area under PRC of
each model); right panel: calibration plots (legends: P-values of Hosmer-Lemeshow tests).

FIGURE 3

Decision curve analysis of the models CRS, LR, RF, and XGB, as well as
two references (treat-all and treat-none).

Sheng et al. 10.3389/fcvm.2023.1198526
prediction performance. The ML models could be potentially used

together or in place with Caprini scale at admission to provide

more information on VTE risk for inpatients from surgery,

orthopedics, and many other departments. Of course, more
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external model-validation studies were necessary before actual

clinical practice for such newly developed models.

There are several problems with RAMs and machine learning

models in previous studies. First, clinical variables collection was

cost-consuming, including variable design, data extraction,

quality control, feature engineering, etc. The cost was

proportional to the clinical variable number, which limited the

applicability of machine learning models, especially for those

complex models that involved a lot of variables. Second, the

timing of availability was a critical issue in the admission

scenario. Many indicative clinical variables in the previous study

were infeasible before Caprini scale at admission, especially the

time-aware variables like in-hospital duration and the blood

coagulation-related indicators from specialized blood biochemical

tests (37). Inhospital duration values were always within 24 h and

hence made no sense. We found that the missing rates of the

coagulation variables such as D-dimer, C-reactive protein,

fibrinogen, and prothrombin at admission before Caprini scale

were large and generally regarded unacceptable in modeling.

Such hospital-wide systematic data missing might result from the

diversity of diagnosis and treatment pathways among different

departments. In addition, it was unfair and of limited validity to

make comparison between machine learning models and CRS if
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FIGURE 4

SHAP plots for RF. Left: SHAP values of top 10 variables; Right: Feature importance of top 10 variables. Bedridden—on bed rest or restricted mobility,
including a removable leg brace for less than 72 h; CVC—tube in the blood vessel in neck or chest that delivers blood or medicine directly to the
heart within the last month; VVV—visible varicose veins; HistoryVTE - history of blood clots, either DVT or PE; PastMajorSurg - past major surgery
(>45 min) within last month; Malignancy—current or past malignancies; MajorSurg—length of a surgery over 2 h; Broken—broken hip, pelvis, or leg.

FIGURE 5

Stratification results. Left: Rates of positive individuals in the three stratified levels for the models CRS, RF, and XGB. Right: Proportion of the three stratified
levels for the models CRS, RF, and XGB.

Sheng et al. 10.3389/fcvm.2023.1198526
they stemmed from different regimens of variable inclusion. In

contrast, relying on the Caprini variables in this study could get

rid of these problems. No additional variables were required to be

designed and extracted. The same variable scheme used by both
Frontiers in Cardiovascular Medicine 09
CRS and machine learning models ensured the data completeness,

clinical interpretability, and plausibility of model comparison.

During model training, we introduced the mechanisms of

hyperparameter tuning and feature selection for optimization and
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avoiding overfitting. Feature selection could reduce model

complexity and improve the robustness and generalization ability.

Involving too many variables may both increase the risk of

overfitting and lessen model interpretability, and hence hinder

the clinical application. In this study, we used a model-based

stepwise selection approach, which tried to search the most

suitable feature subset for each model in a greedy search manner,

and was popular in clinical prediction modeling (38). The results

show that using fewer variables could achieve better or non-

inferior results in machine learning models.

In this study, the positive rate was 8.5%, a typical case of mild

class imbalance. We introduced PRC to better focus on the

classification of the positive samples. In general, while the ROC

curve and AUROC described the overall discriminative ability,

PRC and AUPRC were known to be more informative for class-

imbalanced predictive tasks (39). We found that despite no

significant difference for AUROC among machine learning

models, RF achieved the best score of AUPRC and was

significantly higher than LR. This revealed that RF could learn

the feature information of the VTE-positive class more

effectively, and hence harbored better predictability. This also

demonstrated that PRC was an effective supplementary indicator

for model comparison and selection in imbalanced problems.

This conclusion was also supported by the DCA results.

SHAP interpretation was a novel and powerful tool to analyze

feature contribution in any machine learning model. Compared

with traditional tree importance or permutation importance,

SHAP could not only provide overall feature ranking but also

reveal the positive/negative relationships between variables and

the outcome. The top five variables identified from SHAP

explanation were bedridden, age, central venous catheter, visible

variable veins, and stroke. All these variables were confirmed to

affect VTE risk and have positive clinical significance for

screening and prevention by several studies. A clinical study

confirmed that acute stroke, age ≥70 years old, and bedridden

were independent risk factors for the occurrence of DVT (40).

Central venous catheter insertion could cause local venous

damage at the entry site, leading to decreasing in peripheral

blood flow and thereby increasing the risk of thrombosis (41). It

was also found that VTE risk increased among population with

variant veins (42).

Many predictive models were evaluated only from the

algorithmic perspective, such as the above-mentioned ROC, PRC,

and Youden index. We additionally considered the clinical

application validity. Following the usage of Caprini scale, we

performed risk stratification (low-, moderate-, and high-risk

levels). The setup of cutoff values was a subtle issue and entailed

careful research since too high or too small cutoff values would

lead to low sensitivity or specificity. The analysis results showed

that the machine learning model has a higher risk enrichment

ability than CRS. At the low-risk level, the increased sample size

and decreased positive rates could relieve the missed diagnosis

and medical care costs. At the high-risk level, the reduced false

alarm rate could improve the acceptance of medical staff to use

this tool. Besides, at the moderate-risk level, the decreased

sample size could reduce the model prediction ambiguity.
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We further analyzed the improvement of the machine learning

model using NRI. At the output setup of three levels, the prediction

improvement was defined as upward levels for positive or

downward levels for negative. Previous studies have shown that

the overall additive NRI index has serious criticism and

controversy such as misleading, false positives, and lack of

reasonable explanation (43–45). Hence, we reported the NRI

components rather than the overall NRI (46). The results showed

that RF was effective in correcting the misclassification by CRS

in both the positive and negative groups.

This study has some limitations. First, this study is a single-site

retrospective study with inevitable underlying confounding factors

and bias, and the results have not been prospectively or externally

verified. External validation was necessary to investigate whether

the ML models outperformed the Caprini score in clinical

practice. It is particularly noteworthy that most of hospitalized

patients were in a low VTE risk state with absence of imaging

checks, and the risk stratification and prediction performance of

ML models in this group urgently need to be explored. Second,

this study is based on Caprini variables. But the clinical pathway

for a patient to receive Caprini scale or not was not in

consideration. Such inclusion bias would interfere with cohorts

and data distribution, and thus would limit the generalization of

the follow-up data-driven models. Lastly, we simply excluded

patients if an intervention was found before image checking

(golden criteria) since such intervention would change VTE risk

and the outcome of image checking could not reflect the risk

status at admission. Such verification bias might be further

improved, for instance, in the framework of semi-supervised

learning. Somehow, this study implied that machine learning

techniques could be used for VTE risk assessment at admission

and boost prediction performance. More model development and

validation studies should be further conducted to promote

clinical applications.
Conclusion

In conclusion, machine learning algorithms could be utilized to

build models to assess VTE risk at admission effectively. Based on

the variables of Caprini scale, the prediction performance of the

random forest model for VTE was demonstrated superior to

both other machine learning models and Caprini scores.
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