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Serum amyloid A (SAA) subtypes 1–3 are well-described acute phase reactants
that are elevated in acute inflammatory conditions such as infection, tissue
injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also
have been implicated as playing roles in chronic metabolic diseases including
obesity, diabetes, and cardiovascular disease, and possibly in autoimmune
diseases such as systemic lupus erythematosis, rheumatoid arthritis, and
inflammatory bowel disease. Distinctions between the expression kinetics of
SAA in acute inflammatory responses and chronic disease states suggest the
potential for differentiating SAA functions. Although circulating SAA levels can
rise up to 1,000-fold during an acute inflammatory event, elevations are more
glucose transporter 4; GM-CSF, granulocyte-macrophage colony stimulating factor; HbA1c, hemoglobin
A1c; HDL, high density lipoprotein; HFD, high fat diet; HMGB1, high mobility group box 1; HNF,
hepatocyte nuclear factor; HO-1, heme oxygenase type-1; HOMA-IR, homeostatic model assessment for
insulin resistance; hSAA, human serum amyloid A; HUVEC, human umbilical vein endothelial cells; IBD,
inflammatory bowel disease; IBS, irritable bowel syndrome; IκBα, nuclear factor of kappa light polypeptide
gene enhancer in B cells inhibitor alpha; IL-1, interleukin-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1
beta; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IL-12, interleukin 12; IL-17, interleukin-
17; IL-22, interleukin-22; IL-23, interleukin-23; iNOS, inducible nitric oxide synthase; IP-10, interferon γ-
induced protein 10; JNK, c-Jun N-terminal kinase; LDL, low-density lipoprotein; LDLR, low-density protein
receptor; LFD, low fat diet; LOX-1, oxidized low-density lipoprotein; LPS, lipopolysaccharide; Mɸ,
macrophage; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemotactic protein-1; M-CSF,
monocyte colony stimulating factor; MDMs, monocyte-derived macrophages; MIP1α, macrophage
inflammatory protein-1 alpha; NAFLD, non-alcoholic fatty liver disease; NFκB, nuclear factor kappa B; NO,
nitric oxide; PAT, pulsed therapeutic-level antibiotic; PBMCs, peripheral blood mononuclear cells; PCOS,
polycystic ovary syndrome; PKA, protein kinase A; PKR, protein kinase R; PLIN, perilipin; PPARγ,
peroxisome proliferator-activated receptor gamma; RA, rheumatoid arthritis; RAGE, receptor for advanced
glycation end-products; RANTES, regulated on activation, normal T cell expressed and secreted; RBP4,
retinol-binding protein 4; rSAA, recombinant serum amyloid A; SAA, serum amyloid A, SAA1, serum
amyloid A1; SAA2, serum amyloid A2; SAA3, serum amyloid A3; SAA4, serum amyloid A4; SAF-1, serum
amyloid A-activating factor 1; SELS, selenoprotein S; SES-CD, simplified endoscopy score for Crohn’s
disease; SLE, Systemic lupus erythematosus; SPF, specific pathogen-free; SRB1, scavenger receptor class B
type 1; STZ, streptozotocin; T1D, type 1 diabetes; T2D, type 2 diabetes; TGFβ, transforming growth factor
β; Th17, T-helper 17 cells; THP-1, human leukemia monocytic cell line; TLR-2, toll-like receptor 2; TLR-4,
toll-like receptor 4; TNBS, trinitrobenzone sulfonic acid; TNFα, tumor necrosis factor alpha; UC, ulcerative
colitis; VCAM-1, vascular cell adhesion molecule 1; VLCD, very low carbohydrate diet; VLDL, very low-
density lipoprotein; WAT, white adipose tissue.
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modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives
from the liver, while in chronic inflammatory conditions SAA also derives from adipose
tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic
metabolic disease states are contrasted to current knowledge about acute phase SAA.
Investigations show distinct differences between SAA expression and function in human
and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype
responses.
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1. Introduction

Members of the serum amyloid A (SAA) family are acute phase

reactants and chemokines that are elevated in acute inflammatory

conditions such as infection (1, 2), as well as chronic inflammatory

conditions including autoimmune disorders (3–8), obesity (9–13),

type 2 diabetes (T2D) (14, 15), and cardiovascular disease (CVD)

(16–19) (reviewed extensively in 20, 21). Several SAA subtypes are

present across diverse animal species (22), including invertebrates

(23), suggesting important conserved functions. Since SAA is

poorly soluble in aqueous solutions, it circulates associated with

lipoproteins, in particular high density lipoprotein (HDL), and is

considered an apolipoprotein (24, 25). Functions of particular SAA

subtypes include roles in host defense (26–30), chemoattraction

(31–34), lipid metabolism (35–37), and inflammation (38). We

now review the emerging knowledge about distinctive functions of

the different SAA subtypes.
1.1. SAA subtypes and receptors

Of the 4 known SAA subtypes, SAA1 and SAA2 are highly

expressed in the liver in mammals including humans in response

to inflammatory stimuli, and can circulate at high concentrations,

usually bound to HDL (39). SAA1 and SAA2 are highly

homologous, differing in only a few amino acids. In contrast,

SAA3 is more highly expressed in extrahepatic tissues in

particular animal species (40, 41). SAA3 is not known to

circulate under most conditions, with the exception of high dose

lipopolysaccharide (LPS) injection (42). SAA3 is considered to be

a pseudogene in humans due to a premature stop codon (43),

leading to a frame shift in codon 31, thereby deleting the last ten

amino acids (44). SAA3 is only ∼40% homologous to SAA1/2.

Since in humans SAA1 and SAA2 are expressed from both liver

and extrahepatic tissues, it has been difficult to conclusively

distinguish hepatic from extrahepatic SAA functions in humans.

However, phenotypic distinctions between hepatic and extra-

hepatic SAA subtypes in mice, due to the predominance of

extrahepatic Saa3, allow sharper definition (18, 38, 44). SAA3

protein has been detected in human mammary gland epithelial

cell lines (45), although its expression is more commonly found

in non-human mammals. SAA4 is constitutively expressed by

most cell types and responds only minimally to inflammatory

stimuli (46, 47). In many prior studies, distinctions between
02
specific SAA subtypes were not reported, perhaps due to the lack

of available antibodies capable of distinguishing them. This is

unfortunate, as it is possible that different SAA subtypes exert

different functions in the context of metabolic disease. In this

review, we use the term “SAA” to refer to SAA1/2, or to reflect

that the authors of work described did not specify particular

SAA subtypes. In addition, in accordance with scientific

nomenclature standards, “SAA” will refer to humans, while “Saa”

corresponds to mouse.

The major identified SAA receptors are listed in Table 1. SAA

binds to formyl peptide like receptors 1 and 2 (FPLR1 and FPLR2)

in human monocytes, neutrophils, human embryonic kidney

(HEK293) cells, and human umbilical vein endothelial cells

(HUVECs), thus promoting chemotaxis and increased calcium

flux. In response to varied stimuli (Table 1), mitogen-activated

protein kinases (MAPKs) and nuclear factor kappa B (NFκB)

pathways are further activated, which leads to secretion of tumor

necrosis factor alpha (TNFα), interleukin-8 (IL-8), and monocyte

chemotactic protein-1 (MCP-1) (32, 33, 48–51, 69, 70). The

receptor for advanced glycation end products (RAGE) is another

known SAA receptor present on several tissues and cell types.

SAA mediates the activation of the AGE/RAGE axis and NFκB

pathways, with subsequent transcription of interleukin-6 (IL-6),

heme oxygenase type-1 (HO-1) and monocyte colony stimulating

factor (M-CSF) (52–55). Moreover, SAA induces signal

transducer and activator of transcription 1 (STAT1)-mediated

high mobility group box 1 (HMGB1) expression and protein

kinase R (PKR) activation, potentially through RAGE and toll-

like receptors (TLRs) (52). SAA has affinity for TLR2 and TLR4

(56–61, 71, 72), and to the oxidized low-density lipoprotein

receptor (LOX-1) (62) and scavenger receptor class B type 1

(SRB1), thus mainly signaling via the MAPK pathway in both

immune and epithelial cells. A recently described SAA receptor

is Selenoprotein S/Tanis [SELS in humans (63, 65, 67, 68), Tanis

in animal models (68)]. Tanis/SELS is highly expressed in liver,

skeletal muscle, and adipose tissue (68), which may distinguish

SAA effects mediated by this receptor from those found

primarily on immune cells. SELS expression on adipose tissue is

highly correlated to circulating SAA levels, suggesting a potential

feed-forward mechanism (68, 73). Importantly, most of these

potential SAA receptors respond to multiple ligands, with SELS

having the highest degree of SAA-specificity. Collectively, varied

SAA receptor expression patterns on different cell and tissue

types could indicate different SAA functions.
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TABLE 1 SAA receptors and downstream signaling pathways.

SAA
receptors

SAA Host specificity Ligand(s)/stimuli Target tissue/
cell

Signaling
pathways

Outcomes

Human Rodent
FPRL1/
FPRL2

SAA1,
SAA2

(32, 33,
48–51)

(32) SAA (0.01–2 µM)
rhSAA1 (20 µg)
LPS (100 ng/ml)

GM-CSF (100 ng/ml)

Neutrophils
Monocytes
Cell lines:

HEK 293, HUVEC

Calcium signaling
Cell migration

NFκB
MAPK (ERK/
p38/JNK)
AKT

↑ intracellular Ca2+ (32, 33, 51)
↑ chemotaxis (32, 33)

↑ IL-8, CCL2
(Cell media/ plasma) (50, 51)

↑ IL-8, TNFα mRNA/protein (48)
↑ p-ERK, p-p38, p-JNK (48, 50)

↑ p-AKT (48)

RAGE SAA1,
SAA2

(52, 53) (52–55) rSAA1 (0.1–10 µg/ml)
LPS (5 mg/kg)

AgNO3 (0.5 ml of a
2% solution)
AEF (100 µg)
Azocasein (7%)

sRAGE VC1 (100 µg)
peptide 5 (100 µg)

Kidney, Liver,
Spleen
Primary

macrophages
Cell lines:

RAW264.7, THP-1,
U937, BV-2

AGE-RAGE
NFκB
STAT1
PKR

↑ SAA (Tissue distribution) (55)
↑ NO (52)

↑ AGE, CML (plasma) (53)
↑ IL-6, IL-12, HGMB1, MCP-1,

RANTES (Cell media/plasma) (52)
↑ RAGE, IL-6, HO-1,
M-CSF mRNA (53, 54)
↑ p-STAT1, p-PKR (52)

TLR2 SAA1,
SAA2

(56) (56, 57) rhSAA (1 µM)
Concavalin (10 mg/kg)

Liver, Spleen
Cell line:
HeLa

TLR
NFκB

MAPK (ERK/
p38/JNK)

↑ ALT, AST (57)
↑ SAA, SAF-1, IL-6, IFNϒ, TNF-α

(plasma) (56)
↑ SAA1, MCP-1, MIP1α/β, IL-1R, IL-10,
IL-8, IL-18, IL-23, IP-10, eotaxin mRNA

(56, 57)
↑ CD4+, Th17, T-reg, F4/80 + CD11b+

(57)
↓ p-IκBα (57)

↑ p-ERK1/2, p38, JNK (57)

TLR4 SAA1,
SAA2,
SAA3

_ (58–61) SAA3 (0.3–1 µg/ml)
LPS (0.01–1 µg/ml)
Concavalin (10 µg)

S100A8, S100A9 (70–100 µg)

Kidney, Liver, Lungs
Primary

macrophage
Myeloid cells (Mac1

+)
Cell lines:

MCF7, RAW264.7

NFκB
MAPK (ERK/
p38/JNK)
AKT

Rho GTPase

↑ Chemotaxis (58, 60)
↑ NO, iNOS (59)

↑ SAA3, IL-6, TNFα mRNA (58, 60)
↓ TLR4 mRNA (61)

↑p-IkB (58)
↑ p-ERK, p-p38, p-JNK (59, 60)

↑ p-AKT (59)

LOX-1 SAA1,
SAA2,
SAA3

_ (62) hSAA3 (2 µg/ml)
LPS (1 µg/ml)

Cell lines:
LU65, LU99,

MCF7, HUVEC
H292, T47D

MAPK (ERK) ↔ hSAA2, hSAA3 mRNA (62)
↑ p-ERK (62)

↑ IL-6, IL-1β (plasma) (62)

SR-B1/CLA-1 SAA1,
SAA2

(66, 67) (63, 66) SAA (0–10 µg/ml)
Recombinant adenovirus

SAA1/2
LPS (25 µg)

Cell lines:
HeLa, HepG2,
THP-1, CHO

Cholesterol efflux
MAPK (ERK/

p38)

↑ ABCA1- and SR-B1 dependent
cholesterol efflux (64, 65)

↓ Cholesteryl ester uptake (63)
↑ p-ERK1/2, p-38 (63)

SELS/Tanis SAA1,
SAA2

(65, 68, 73) (68) Insulin (6–100 nM)
Glucose (12–35 mM)

Euglycemic-hyperinsulinemic
clamp (40 mU·m−2·min−1)

Adipose tissue,
skeletal muscle, liver

Cell lines:
HepG2, C2C12,

3T3-L1

MAPK (ERK/
p38)

Inflammatory
pathways

↑ SAA (plasma) (68)
↑ IL-8 (Cell media) (66)

↑↓ Tanis/Sels mRNA (67, 68)
↑ p-ERK1/2, p-p38 (66)

↑ cardiometabolic risk factors (67, 68)

ABCA1, ATP-binding cassette A1; AEF, amyloid-enhancing factor; AGE, Advanced glycation end-products; AKT, protein kinase B; AEF, Amyloid-enhancing factor; ApoA1,

apolipoprotein A1; CCL2, C-C Motif Chemokine Ligand 2; CHO, Chinese hamster ovary cells; CML, Carboxy methyl lysine; ERK, extracellular signal-regulated kinase; FPRL1,

formyl peptide receptor-like 1; FPRL2, formyl peptide receptor-like 2; FPRL1, formyl peptide receptor-like 1; GM-CSF1, Granulocyte-macrophage colony-stimulating

factor; HMGB1, high mobility group box 1 protein; HO-1, heme oxygenase 1; hSAA, human serum amyloid A; HUVEC, human umbilical vein endothelial cells; IκBα,

nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; IL-1β, interleukin 1 beta; IL-6, interleukin 6; IL-8, interleukin-8; IL-10, interleukin 10;

IL12, interleukin 12; IP-10, Interferon gamma-induced protein 10; JNK, c-Jun N-terminal kinase; LOX-1, oxidized low-density lipoprotein receptor 1; MCP-1, monocyte

chemotactic protein 1; M-CSF, macrophage colony-stimulating factor; MIP-1α, macrophage inflammatory protein 1 alpha; NFκB, nuclear factor kappa-light-chain-

enhancer of activated B cells; NO, nitric oxide; PKR, protein kinase R; RAGE, receptor for advanced glycation end-products; RANTES, Regulated upon Activation,

Normal T Cell Expressed and Presumably Secreted; rhSAA, recombinant human serum amyloid A; SAA1, serum amyloid A1; SAA2, serum amyloid A2; SAA3, serum

amyloid A3; SAF-1, Serum amyloid A-activating factor-1; SELS, selenoprotein S; sRAGE, Soluble for advanced glycation end-products; SR-B1, scavenger receptor B1;

TLR2, toll-like receptor 2; TLR4, toll-like receptor 4; TNFα, tumor necrosis factor-alpha.

↑, increased; ↓, decreased; ↔, non-affected.

den Hartigh et al. 10.3389/fcvm.2023.1197432
1.2. SAA regulation in the acute phase
response

Considerable research has been focused on the kinetics of

hepatic SAA expression and secretion during an acute
Frontiers in Cardiovascular Medicine 03
inflammatory response [reviewed in (20, 74)]. The mechanics of

SAA expression and secretion vary with the stimulus type.

Systemic levels of SAA can be 1,000-fold higher than baseline

during an acute inflammatory response to sepsis (75, 76), viral

infections including COVID-19 (1, 77, 78), vaccinations (79), or
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tissue trauma (80). The immediate systemic levels of SAA are

primarily hepatic in origin during infection (44), with

contributions from extra-hepatic sources following tissue trauma

(81). Hepatic SAA production is triggered by bacterial products

such as endotoxin or inflammatory cytokines interleukin-1 beta

(IL-1β), interleukin-6 (IL-6), and TNFα that reach the liver (74).

While much prior work has focused on the hepatic acute-phase

SAA1 and SAA2 subtypes, important roles for extra-hepatic SAA

in the chronic inflammatory processes associated with metabolic

diseases are now emerging (82, 83).
1.3. SAA vs. CRP

Since its discovery nearly 100 years ago, C-reactive protein

(CRP) has been used in clinical practice as a marker of acute

inflammation (84). CRP is known to rapidly increase in response

to infection or trauma, and has a short half-life that enables a

rapid decrease when the stimulus ceases (85). However, SAA

rises in parallel with CRP in the same acute inflammatory

conditions, and may be a more sensitive marker for acute events

(19, 86–88). Similar to CRP, hepatic SAA is regulated by the

above inflammatory cytokines (IL-1β, IL-6, and TNFα 89, 90),

although CRP can be induced by pathways related to interleukin-

17 (IL-17) and hepatocyte nuclear factor (HNF), in contrast to

SAA (91). In addition to inflammatory cytokines, hormones

including glucocorticoids, leptin, and thyroid hormone also

regulate SAA expression (92, 93). Indeed, SAA levels may be

better predictors of coronary artery disease (CAD), cancer, and

of related poor outcomes than CRP (19, 94). However, CRP

levels more accurately predict poor outcome in elderly

populations (95). SAA as a biomarker of acute infection or

traumatic injury remains less widely used clinically due to a lack

of robust calibration reagents and routine assays. There would be

great value to developing reliable, robust, and cost-effective SAA

clinical assays.
2. SAA in chronic metabolic diseases

Chronic inflammatory conditions tend to promote much lower

elevations in systemic SAA (∼3 to 10-fold) than acute

inflammatory conditions and may be sustained, deriving from

diverse tissues such as the liver, adipose tissue, lung, small and

large intestines, and hematopoietic cells such as macrophages

(9, 11, 18, 96–100). The markedly different systemic SAA levels

observed in acute vs. chronic inflammatory conditions suggests

the potential for different mechanisms (91), prompting

speculation that SAA is an important concentration-dependent

effector of innate and adaptive immune responses (44). Aging

has been associated with increased SAA levels (83, 101, 102), as

have aging-related metabolic conditions. Evidence for potential

roles of SAA in several metabolic diseases are discussed in the

sections that follow, with an emphasis on obesity, diabetes, non-

alcoholic fatty liver disease (NAFLD), CVD, autoimmune

conditions such as systemic lupus erythematosus (SLE) and
Frontiers in Cardiovascular Medicine 04
rheumatoid arthritis (RA), and inflammatory bowel diseases

(IBD) ulcerative colitis (UC) and Crohn’s disease (CD) (Figure 1).
2.1. Obesity and metabolic syndrome

The increased circulating SAA levels observed in individuals

with obesity are highly correlated with body mass index (BMI),

body weight, adiposity, and SAA1 and SAA2 mRNA expression

in white adipose tissue (WAT) (11, 96), and are not related to

hepatic SAA1 or SAA2 expression (9, 97, 98, 103). Circulating

SAA levels have been positively associated with visceral adiposity

(104), suggesting visceral fat as a potential source. However, the

relative contributions of subcutaneous and visceral WAT to SAA

production are not known, nor has it been determined that

WAT-derived SAA contributes to the circulating SAA pool in

obesity (105), or whether WAT-derived SAA induces local

cytokine production that stimulates hepatic SAA expression.

SELS, a major SAA receptor, is expressed in adipose tissue and

directly associates with adiposity and BMI (65), suggesting a

potential feed-forward mechanism that contributes to the

sustained adipose tissue inflammatory state in obesity (71).

Whether increased SAA expression in WAT plays a local or

systemic role in obesity pathogenesis, or whether it is merely a

biomarker of disease severity, is unknown. The extent to which

WAT, liver, or both contribute to systemic SAA levels has not

been resolved.

An initial study of 34 subjects with obesity showed a 6-fold

increase in SAA expression in subcutaneous WAT compared

with 27 lean controls; this was associated with 20-fold higher

expression from adipocytes than the WAT stromal vascular

fraction (96), which contains pre-adipocytes, immune cells, and

vasculature. A meta-analysis confirmed a strong positive

association between BMI and circulating SAA levels (13), and

showed that SAA1 and SAA2 expression was higher in

subcutaneous WAT in people with overweight and/or obesity

(97, 106). In addition, serum SAA levels are positively associated

with adipocyte diameter (106, 107). Distinctions between SAA1

and SAA2 were generally not made in these early studies due to

the lack of distinguishing primers and subtype-specific antibodies

that persists.

Conversely, weight loss can reduce circulating and adipose

tissue-derived SAA levels in humans. A meta-analysis of 10

studies showed that weight loss significantly reduced circulating

SAA levels (13). Weight loss following a low-fat (LFD) (n = 19)

or very low carbohydrate diet (VLCD) (n = 22) led to reduced

circulating SAA levels proportional to the amount of weight lost

and also associated with insulin resistance (88). Several

independent studies showed that weight loss due to a VLCD in

women (n = 33–48) was strongly associated with reduced plasma

SAA and adipocyte-derived SAA (9, 10, 96, 108), while insulin

sensitivity was not consistently affected (9, 108). These divergent

phenotypes could reflect different subject characteristics, with

postmenopausal women showing a metabolic benefit from SAA

reduction (9, 10) while premenopausal women did not (108).

Another study in 439 women reported similar reductions in
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FIGURE 1

Metabolic disease states associated with increased circulating SAA. Obesity, cardiovascular disease (CVD), autoimmune diseases (including systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA)), diabetes (Type 1, Type 2, and gestational), inflammatory bowel disease (IBD, including Crohn’s disease
(CD) and ulcerative colitis (UC)), and non-alcoholic fatty liver disease (NAFLD) are chronic metabolic conditions that are all associated with increased
circulating SAA levels.

den Hartigh et al. 10.3389/fcvm.2023.1197432
plasma SAA with weight loss due to dietary intervention, but not

exercise (109). Importantly, other inflammatory markers

including MCP1 and CRP also decreased during weight loss

(109). Roux-en-Y gastric bypass significantly reduced circulating

SAA levels in women with obesity (n = 20) (110). Additional

studies are required to determine whether specifically reducing

SAA in the context of weight loss is beneficial.

Mouse studies parallel the observation that SAA levels are

increased in humans with obesity, and that adipose tissue mRNA

expression of Saa is similarly increased in the obese state. Initial

studies identified Saa3 as the specific subtype expressed in

murine adipocytes (111) and macrophages (112, 113), both

essential for development of obesity. Ob/ob mice, which

spontaneously develop obesity due to increased food

consumption subsequent to leptin deficiency, have elevated

circulating and adipose tissue Saa levels (114, 115). Further, diet-

induced obese mice consistently have elevated Saa3 mRNA levels

in adipose tissue (82, 116–121). However, obesity-associated
Frontiers in Cardiovascular Medicine 05
adipose-derived Saa3 does not contribute to circulating Saa levels

in mice (105). Mice engineered to express luciferase via the Saa3

promotor only show luciferase activity in adipose tissue following

long-term high fat diet (HFD)-fed conditions, with no detectable

luciferase in any tissue examined after one week of HFD or after

acute injection with LPS, providing temporal data about Saa3

expression kinetics (121). However, using more sensitive mass

spectrometry, we have shown that a single high dose LPS

injection is sufficient to induce Saa3 expression in adipose tissue,

associated with increases circulating Saa (42), an effect supported

by identifying Saa3 in LPS-stimulated plasma using isoelectric

focusing gels and ELISA (122).

Sleep deprivation has been associated with sharp increases in

SAA. Circulating SAA levels increased by more than 4-fold in

mice experiencing paradoxical sleep deprivation for 72 h, an

effect coincident with increased adipose tissue Saa3 mRNA

expression, but not Saa1/2 (123). Circulating Saa and Saa3

mRNA returned to basal levels when sleep was restored.
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Importantly, increased circulating SAA also has been observed in

humans deprived of sleep for either 24 or 48 h (123). In another

study, SAA levels were 2-fold elevated in 17 adults who regularly

experienced obstructive sleep apnea, which disrupts sleep,

compared to weight-matched controls (124). Obstructive sleep

apnea is strongly associated with the metabolic syndrome (125),

also associated with SAA levels, which may confound

interpretation of these studies. Because sleep deprivation and

disrupted sleep schedules increase risk for obesity and its

complications, disrupted sleep-induced SAA could be considered

a novel risk factor for metabolic disease.

Studies in which mouse Saa is perturbed genetically have

yielded ambiguous results. Mice engineered to express human

SAA1 from WAT had elevated circulating human SAA1

mirroring obesity levels even without an obesogenic stimulus

(126), providing evidence that WAT-derived SAA circulates.

However, overexpressing SAA1 from WAT had no observed

effects on body weight, WAT inflammation, or glucose or insulin

tolerance (127). Loss of extrahepatic Saa3 in obese mice led to

improved local WAT inflammation and systemic lipoprotein

profiles and to resistance to high fat diet (HFD)-induced obesity,

particularly in female mice (82). By contrast, subsequent Saa3

knock out mice were more prone to HFD-induced obesity with

increased adiposity (128). Further, triple knock-out mice (Saa1,

Saa2, and Saa3-deficient) showed no effect of a HFD on body

weight or adiposity, but had worsened glucose and insulin

tolerance (129). These divergent results suggest that the distinct

metabolic characteristics of the models used, such as the

inclusion of dietary sucrose/cholesterol, which particular Saa

subtypes are perturbed, or gut microbiota composition and

function, could have major impacts on observed phenotypes

related to Saa.

Despite such phenotypic differences in obesity when SAA

subtypes were perturbed, several studies point towards SAA

promoting adipose tissue expansion. Silencing Saa3 in cultured

pre-adipocytes reduced their adipogenic potential, leading to

smaller adipose tissue depots when injected into NUDE mice

(130). Similarly, targeting Saa using anti-sense oligonucleotides

reduced adipose tissue expansion and inflammation as well as

circulating endotoxin levels in male Swiss Webster mice (131),

suggesting that disrupting Saa signaling also improved intestinal

barrier integrity. Increased Saa3 expression in visceral adipose

tissue from obese mice is highly correlated with macrophage

number and inflammatory expression profile (121), suggesting

that interaction with macrophages may drive adipocyte Saa3

expression. Thus, the crosstalk between adipocytes and

macrophages that promotes adipose tissue inflammation and

subsequent insulin resistance in obesity may require SAA (121).
2.2. Type 2 diabetes and gestational
diabetes

Excess visceral adiposity and increased systemic inflammation

are associated with insulin resistance (132, 133), which is the

reduced capacity for insulin-stimulated glucose uptake in
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metabolically active tissues such as adipose tissue and skeletal

muscle. Pancreatic insulin secretion subsequently increases to

compensate for reduced insulin sensitivity to maintain

euglycemia. If the pancreatic beta cells are unable to secrete

sufficient insulin to compensate for the reduced insulin

sensitivity (termed beta cell dysfunction), hyperglycemia ensues,

leading to glucose intolerance and eventually T2D (134). Cross-

sectional studies in men of European, Asian Indian, and

American descent have shown that total, visceral, and

subcutaneous adiposity, BMI, and waist circumference are all

negatively associated with insulin sensitivity (135, 136). In

addition to its association with obesity, with a key contribution

from adipose tissue, SAA is similarly associated with T2D in

humans and in animal models. In 134 patients with T2D,

circulating SAA levels strongly correlated with hemoglobin A1c

(HbA1c) and homeostatic model assessment for insulin

resistance (HOMA-IR) after controlling for age, sex, and BMI

status (14), suggesting a relationship between SAA and insulin

resistance.

In humans, diabetes and circulating SAA levels are strongly

related (11, 107, 137–140), and a prospective association between

SAA and incident T2D has been reported (15). In a study of 765

older men (mean age 77), 112 with T2D, serum SAA strongly

correlated with diabetes status, an association lost when adjusted

for BMI, waist circumference, or fasting insulin levels (141). In a

small study, omental adipose tissue from subjects with diabetes

(n = 6) had a 3-fold increase in SAA mRNA expression

compared with non-diabetic controls (n = 10), and omental SAA

expression strongly correlated with fasting glucose levels and

total body fat mass (142). In 134 subjects with T2D, HbA1c and

HOMA-IR strongly correlated with circulating SAA levels after

controlling for age, sex, and BMI (14); the effect was reduced

with adjustment for parameters related to glucose metabolism

(15), suggesting linkage between SAA and insulin resistance. In

subjects with both obesity and T2D, SAA is bound to apoB-

containing lipoproteins including very low-density lipoproteins

(VLDL) and low-density lipoproteins (LDL), in addition to HDL

[its usual transport partner in plasma (37)], similar to

observations in mice (143). The mechanism for SAA binding to

these lipoproteins in people with diabetes is unknown. Evidence

exists that a truncated form of SAA1, which is missing an N-

terminal arginine, is reduced in subjects with T2D and is

negatively associated with glycemic control (144). Adipose tissue

SELS was positively associated with measures of glycemic control

in both lean and obese subjects (65, 73), as well as in age- and

weight-matched subjects with diabetes (145). Moreover, insulin

increases SELS expression in cultured adipocytes (65), suggesting

a potential feed-forward mechanism for increased SAA

expression in insulin resistance. SAA disrupts insulin signaling in

cultured adipocytes (120, 146), suggesting a potential mechanism

for its association with T2D. Most T2D subjects also have

abdominal obesity, making it difficult to tease apart obesity-

specific and T2D-specific contributions of SAA.

However, a strong association exists between diabetes and

SAA that is independent of obesity. One study of 182 T2D

subjects showed elevated serum SAA levels compared to healthy
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weight-matched controls (n = 180), with mean BMI of 24 in both

groups (147). A small study similarly showed that SAA levels

were elevated in age- and weight-matched subjects with T2D

compared with normoglycemic controls (73). Controlling for age,

sex, and BMI revealed a sustained correlation between indices of

glucose dysregulation (i.e., HbA1c, HOMA-IR) and SAA,

suggesting an effect specific to the diabetic state (14). However,

another study found no differences in SAA levels between

weight-matched subjects with obesity or T2D (110). To our

knowledge, only a single study has reported no differences in

SAA between healthy insulin-sensitive subjects and those with

T2D (148). Emerging evidence suggests that improving insulin

sensitivity drives the reduction in SAA levels following weight

loss. In a small study in which subjects with overweight or

obesity were given rosiglitazone for 12 weeks, circulating SAA

levels were reduced by 37% despite the absence of weight loss,

and WAT explants from these subjects showed lower SAA

secretion post-treatment (9). Pharmacotherapy for T2D (i.e.,

metformin, glipizide, rosiglitazone, insulin, or acarbose) reduces

serum SAA levels in T2D subjects (9, 139, 149). Thus, while the

diabetic state and SAA levels are directly associated, whether

SAA plays a distinct role in T2D pathology independent of a role

in obesity remains to be determined.

SAA levels are further elevated in subjects with T2D and

nephropathy (147, 150) and retinopathy (151). SAA may be an

important predictor for end-stage renal disease and death in

patients with diabetic kidney disease, with elevated intra-renal

SAA expression (152). SAA is elevated in T2D patients with

proteinuria, with serum SAA levels positively associated with

albumin excretion rate and glomerular membrane thickening

(140, 153), consistent with a potential causal role.

Similar links between Saa and T2D have been observed in

animal models. In mice, a HFD promotes early increases in Saa3

expression in white adipose tissue, with subsequently elevated

hepatic levels of Saa1 and Saa2 (120). In these models, insulin

resistance is highly correlated with circulating Saa levels (120). In

hepatocytes, overexpression of the Saa receptor, Tanis, led to

decreased insulin-stimulated glucose uptake and glycogen

synthesis, indicating increased insulin resistance (73). Db/db

mice, which lack the leptin receptor and spontaneously develop

features resembling obesity and T2D, express high levels of Saa3

from adipocytes, but not the liver (114). In a common rodent

model of T2D in which obesity is initiated by consumption of a

HFD and hyperglycemia is triggered by the administration of

low-dose streptozotocin (STZ), a beta cell toxin that promotes

hyperglycemia, renal Saa3 is increased (154).

Systemic SAA levels are elevated in pregnancy, especially in

women with gestational diabetes (GD) (101). Serum SAA levels

were 14% higher in 39 pregnant women with GD than in 25

healthy controls, and SAA was positively associated with BMI,

age, oral glucose tolerance test, and HbA1c levels (155). It is

unknown whether GD itself increases systemic SAA levels, or

whether increased SAA simply reflects gestational weight gain

(156). While one study did not observe increased SAA levels in

GD patients, decreased variability in SAA levels was observed

(157). Further studies are required to conclusively determine if
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SAA plays a detrimental role in GD. Indeed, a prospective

clinical trial (NCT04238936) aims to compare SAA levels

between women diagnosed with GD and healthy controls.
2.3. Polycystic ovary syndrome (PCOS)

PCOS is a chronic inflammatory condition that impacts ∼5%–
10% of women of reproductive age in industrialized countries and

is associated with an increased incidence of obesity, diabetes, and

atherosclerosis (158, 159). In a study of 83 subjects with PCOS,

serum SAA levels were double those of 39 age-matched controls

(160). Omental and subcutaneous WAT biopsies showed

increased SAA mRNA and protein expression, suggesting that

the circulating SAA derived at least in part from adipose tissue.

Incubation of adipose tissue explants with glucose increased SAA

production, providing evidence that SAA secretion may be

regulated by hyperglycemia. PCOS subjects were insulin-resistant,

and a 6-month treatment regimen with metformin reduced

circulating SAA levels, suggesting a possible link between SAA

and adipose tissue insulin sensitivity (160). Because PCOS is

associated with enhanced WAT lipolysis (161), and WAT-derived

SAA also augments lipolysis (9), we speculate that WAT-derived

SAA may play a causal role in PCOS-mediated metabolic

dysfunction.
2.4. Non-alcoholic fatty liver disease
(NAFLD)

NAFLD is commonly present as part of the metabolic

syndrome (162), a constellation of disorders that increase the risk

for CVD and diabetes, including abdominal obesity,

hyperglycemia/insulin resistance, hypertension, and dyslipidemia

(163). NAFLD is characterized by triglyceride accumulation in

hepatocytes (steatosis), which can progress to steatohepatitis,

characterized by the accumulation of inflammatory cells. SAA

levels often are elevated in patients with the metabolic syndrome

(164, 165). SAA was found to be 2–3-fold higher in patients with

non-alcoholic steatohepatitis relative to age-matched healthy

controls (166). Because liver biopsy, the gold standard diagnostic

test for the presence of NAFLD, is an invasive procedure, non-

invasive biomarkers for this condition would be highly desirable.

However, although SAA could potentially be a useful biomarker

for NAFLD, it is too non-specific to justify its use for this purpose.

Mechanisms linking SAA and NAFLD remain speculative. In

the Cohort on Diabetes and Atherosclerosis Maastricht

(CODAM) study, in which alanine amino transferase (ALT) was

used as a surrogate measure of NAFLD, multiple linear regression

analysis was used to investigate the association between ALT and

several metabolic syndrome components as potential mediators of

the liver disease. Their findings suggest that insulin resistance is

the key pathophysiological mechanism to explain the association

between the metabolic syndrome and NAFLD, with adipose

tissue inflammation, endothelial dysfunction and free fatty acid

levels likely playing lesser roles (167). However, ALT is an
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imperfect biomarker for NAFLD. Cytokines produced by liver-

resident and infiltrating inflammatory cells may play important

roles in liver inflammation and NAFLD. SAA may exacerbate

hepatic steatosis via the TLR4-mediated NFκB signaling

pathway (168). Hepatocyte-derived SAA1 promotes intrahepatic

platelet aggregation and aggravates liver inflammation in

NAFLD (169). Studies using hypercholesterolemic mice deficient

in IL-1α or IL-1β showed the importance of these two cytokines

in transforming steatosis to steatohepatitis and liver fibrosis (170).

Given the well-documented link between SAA and IL-1β, SAA

may also be important for liver disease progression. However,

this requires additional study.
2.5. Cardiovascular disease (CVD)

Inflammation is a hallmark of atherosclerosis (171), and a

recent clinical trial, The Canakinumab Anti-Inflammatory

Thrombosis Outcomes Study (CANTOS), for the first time

showed in a proof-of-concept trial that inhibiting inflammation

using an antibody against Il-1β decreased cardiovascular events

(172). The relationship between inflammation and CVD has been

extensively studied by measurement of the inflammatory marker,

CRP, which consistently has been shown to be modestly and

chronically elevated in CVD patients and to predict the risk of

cardiovascular events in a similar manner to SAA (19, 173, 174),

although SAA has not been studied as extensively as CRP. As

noted earlier, acute phase SAA is a good predictor of coronary

artery disease outcomes (19, 94).

SAA could simply be a biomarker of the chronic inflammatory

state that is present in CVD, similar to CRP; alternatively, it may

play pathogenic roles. As described below, considerable evidence

points to its role as a mediator rather than simply being a

marker of atherosclerotic CVD. In considering its possible

mediating role, potential differences between effects of

lipoprotein-bound SAA and free SAA derived from extrahepatic

cells in the artery wall must be distinguished.

SAA mRNA is present in macrophages, smooth muscle cells

and endothelial cells in human atherosclerotic lesions (18),

findings that suggest an immune response within the

atherosclerotic artery wall, in which locally generated SAA is

unlikely to be associated with lipoproteins. However, other

studies showed immunohistochemical colocalization of Saa

with apolipoproteins, including apoA1, the major

apolipoprotein of HDL, in murine atherosclerotic lesions (175),

consistent with SAA being transported to the artery wall by

plasma lipoproteins.

Several studies in mice provide evidence for Saa being an

atherosclerosis mediator. LDL receptor (Ldlr)-deficient mice fed a

pro-inflammatory diet with or without added cholesterol showed

marked increases in plasma Saa levels, which correlated with

atherosclerosis extent (116). Mice in which Saa was either

overexpressed or silenced suggest Saa roles in atherosclerosis

pathogenesis, although the data are not uniform. Chow-fed

Apoe-deficient mice in whom Saa was overexpressed using a

lentiviral vector had increased en face and aortic root lesions
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compared to control-fed mice, although differences were not

observed with an atherogenic diet (176). Plasma levels of IL-6

and TNFα and expression of vascular cell adhesion molecule 1

(VCAM-1) and monocyte chemotactic protein-1 (MCP-1), and

lesion macrophage content all increased with Saa overexpression

(176). In another experimental approach, a single injection of a

human Saa-containing adenovirus in Apoe-deficient mice

increased plasma Saa levels for ∼10 days, leading to increased

atherosclerosis (177). When repeated injections of the human

SAA-containing adenovirus were administered to immune-

deficient mice to prevent an antibody response to the human

protein, brachiocephalic lesions and aortic lesion area were

markedly increased (177). The authors postulated that the

increase in atherosclerosis was due to SAA-mediated induction of

transforming growth factor-β (TGFβ), which increased vascular

biglycan expression and led to increased LDL retention (see

later). Deficiency of Saa in Ldlr-deficient mice led to reduced

atherosclerosis in the ascending aortic arch but not in the aortic

root or innominate artery at 6 weeks, although this difference

was lost by 12 weeks (178). Parallel findings were observed in

male Ldlr-deficient mice also deficient in FPLR2, one of the

major Saa receptors, although the effect was more prolonged

than in the Saa/Ldlr double knockout mice (179). In both

studies, transplantation of Saa-deficient bone marrow-derived

cells replicated the findings, suggesting that the reduced

atherosclerosis may have resulted from the absence of free Saa in

lesions rather than in the circulation. However, in Apoe/Saa

double knockout mice, no difference in lesion area was observed

at ∼50 weeks (180), although no early time points were

examined. A subsequent study in Apoe-deficient male mice also

lacking Saa1 and Saa2 using Saa3 suppression with an anti-sense

oligonucleotide showed significantly reduced atherosclerosis

(181). These results imply that all acute phase Saa isoforms have

pro-atherogenic properties, and that deficiency/suppression of all

3 acute phase isoforms is required for atheroprotection in mice.

Saa3 effects on atherosclerosis were not reported in female mice,

despite sexually dimorphic Saa3 expression (182) (see below). Saa

transgenic rabbits failed to show an increase in atherosclerotic

lesions (183). Therefore, in summary, while most mouse studies

suggest that Saa contributes to the development of early

atherosclerotic lesions, results in Saa-deficient models are not

consistent, possibly related to the nature of the model and the

timing of observations. Nevertheless, such studies raise the

question of how Saa might affect the atherogenic process. Several

potential mechanisms are plausible.

Since SAA can be expressed by several cells of the artery wall

(18), including perivascular adipocytes (184) and macrophages

(18, 112, 113, 182–187), the locally produced SAA in lesions

unattached to lipoproteins could have signaling functions that

might be atherogenic. These include activation of the NFkB and

MAPK signaling pathways via interaction with receptors such as

class B scavenger receptor CD36, TLR4, TLR2, FPLR2 and

RAGE (176, 188, 189). Activation of monocytes/macrophages

and perivascular adipocytes can generate chemoattractant

molecules such as MCP-1, which could lead to the recruitment

of additional inflammatory cells and vascular smooth muscle
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cells. SAA also can be a direct chemoattractant (190). Moreover,

direct activation of the chemoattractant receptor, FPLR2, by free

SAA could further attract inflammatory cells into developing

vascular lesions. Free SAA also has been shown to induce a

phenotypic switch in vascular smooth muscle cells towards a

more proliferative type of cell that synthesizes more matrix

molecules (188). However, in vitro studies using free SAA should

be interpreted cautiously, since minor contamination with

endotoxin could lead to similar effects.

HDL-bound SAA also may play a role in atherogenesis. When

SAA is secreted by the liver as part of the acute or chronic

inflammatory response, it circulates in plasma bound to HDL,

although it can associate with less dense lipoproteins under

certain circumstances (24, 25, 37, 143). HDL particles that carry

SAA, so-called “inflammatory HDL”, is less atheroprotective than

normal HDL, with reduced inhibition of inflammation in cells

due to its being trapped by cell surface proteoglycans (191),

versican in the case of adipocytes and biglycan produced by

macrophages (118). Trapping of SAA-containing HDL at the cell

surface prevents it from adequately promoting reverse cholesterol

transport (192). HDL derived from inflamed mice devoid of Saa1

and Saa2 functioned normally, as it did when the proteoglycans

were removed from the cell surface either chemically or by

genetic manipulation (118). Humans treated with low levels of

endotoxin also had impaired cholesterol efflux capacity from

macrophages, despite no change in circulating HDL-cholesterol

levels. Proteomic analyses showed that the cholesterol efflux

capacity of HDL correlated inversely with Saa1 and Saa2 content

(193). Binding of SAA-containing HDL by extracellular

proteoglycans such as biglycan in humans (194) and perlecan in

mice (174) may lead to HDL retention in the vascular intima,

increasing susceptibility to oxidative and enzymatic damage

similarly to trapped LDL (195). Retained HDL could thus be

pro-atherogenic, compared to its more widely accepted anti-

atherogenic properties. The products of oxidative and enzymatic

damage to retained lipoproteins may play important roles in

atherogenesis (196).

Finally, SAA might stimulate thrombosis, which often precipitates

clinical events. SAA can induce tissue factor production by monocyte/

macrophages (197) and platelet activation (198). Thus, SAA could

play multiple roles in the atherosclerotic process from monocyte

adhesion, inflammatory and smooth muscle cell chemotaxis,

cellular inflammation, HDL function, retention of atherogenic

lipoproteins in the artery wall, and thrombogenesis. The net effect

is that SAA is likely to play a causative role in atherogenesis,

although the extensive data are not fully consistent.
2.6. Type 1 diabetes

In contrast to T2D, type 1 diabetes (T1D) develops as a result

of autoimmune destruction of pancreatic beta cells, reducing

insulin production capacity; subjects with T1D thus require

exogenous insulin to maintain euglycemia. Little is known

regarding SAA and T1D. One study has shown that SAA levels
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were elevated in 1,139 subjects with T1D compared with 848

healthy controls (199); however, these plasma donors were not

age-matched, and the T1D subjects tended to be older. However,

SAA increased specifically in HDL in subjects with T1D

compared to age-, sex-, and BMI-matched controls, an effect

much stronger when subjects were stratified by HbA1c and was

not observed for CRP (200). A common T1D model can be

generated in mice by injecting them with the pancreatic beta cell

toxin STZ, leading to beta cell apoptosis (201, 202). In such

STZ-treated mice, circulating SAA levels increased (203), with

increased Saa3 expression specifically from adipocytes (114).

Whether hyperglycemia or STZ itself stimulated adipose Saa3

was not determined. However, treating cultured 3T3-L1

adipocytes with 12–25 mM glucose induces Saa3 mRNA

expression (114, 190, 204), an effect replicated by hyperglycemic

clamps in mice (114), suggesting that hyperglycemia is the

critical factor. Whether glucose-stimulated SAA expression

changes systemic SAA levels or performs local functions is not

known. As with studies related to T2M, mechanistic studies are

needed in mice to determine whether SAA is sufficient or

required for the pathology of T1D.
2.7. Autoimmune diseases: systemic lupus
erythematosus (SLE) and rheumatoid
arthritis (RA)

SLE and RA are chronic diseases in which a person’s immune

system attacks its own tissues, resulting in inflammation and tissue

damage in affected organs. While RA can be physically debilitating

but typically is not life-threatening, SLE can lead to severe

complications such as kidney failure, seizures, and increased risk

of thrombosis. SAA may be a biomarker for both conditions

(3, 6, 205–207). SAA promotes T-helper 17 (Th17) differentiation

(208, 209), which plays important immunologic roles. However,

excessive Th17 responses also can promote autoimmune conditions

including SLE and RA (210). In patients with RA, their joints

contain elevated SAA (6, 205), with levels correlating with plasma

SAA levels and disease progression (211, 212). Rather than simply

diffusing into joints from the bloodstream, SAA itself may be

expressed in synoviocytes, macrophages, and endothelial cells

within synovial tissues in RA patients (6, 213). Computational

modeling identified Saa3 as the gene most strongly correlated with

the severity of collagen-induced arthritis (214). Moreover, synovial

fibroblasts isolated and cultured from patients with RA produced

2–4 times more SAA than those from healthy subjects (213).

Whether SAA directly contributes to these autoimmune diseases

remains to be elucidated. A potential mechanism is that in RA

patients, SAA and associated cytokines potently induce matrix

degrading enzymes in synovial fibroblasts (213, 215, 216), which if

left unchecked could contribute to disease pathogenesis and joint

destruction. Treatment with the TNF antagonist etanercept reduces

RA disease severity while simultaneously reducing circulating SAA

levels (217), providing one linkage between SAA and RA, but the

causal direction is unknown.
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2.8. Inflammatory bowel disease (IBD)

The two major types of IBD include ulcerative colitis (UC) and

Crohn’s disease (CD). Both are complex conditions that result from

chronic dysregulated immune function in the gastrointestinal tract

(218). UC is limited to the colon; however, CD can involve any part

of the gastrointestinal tract, but usually affects the distal small

intestine and/or the colon (219). Previous work suggests that

SAA may be a more sensitive biomarker for IBD than CRP (8,

220, 221), as SAA levels remain elevated while CRP disappears in

patients who are in clinical remission (222).

Patients presenting with either UC or CD consistently show

elevated serum SAA levels (220, 223). In humans, intestinal

biopsies from CD patients showed significantly increased colonic

SAA1/2 expression levels (224). From an extensive panel of

inflammatory markers, including CRP, IL-22, and IL-6, SAA had

among the highest positive associations with a Simplified

Endoscopy Score for CD (SES-CD, r = 0.4), fecal calprotectin (r

= 0.39), Crohn’s Disease Activity Index (CDAI, r = 0.14), and

stool frequency (r = 0.18) (223). Such studies link intestinal SAA

to potential roles in disease development or protection. Subjects

with CD without mucosal healing had higher SAA levels than

subjects in clinical remission (225), suggesting SAA as a marker

for CD severity. In patients with UC who were in remission,

consumption of a low-fat, high-fiber diet improved quality of life,

in conjunction with reduced circulating SAA levels (226). In one

clinical trial, SAA was a highly significant predictor of CD

severity, and treatment with filgotinib, a selective JAK1/STAT

inhibitor, improved CD symptoms while simultaneously reducing

circulating SAA levels (223).

Mouse models of IBD similarly display elevated circulating

SAA levels. Systemic SAA as well as local Saa3 expression levels

become elevated within days of administration of dextran sodium

sulfate (DSS) in drinking water in a mouse model of colitis

(227–229), an effect that may function to protect colonic

epithelium from acute injury by recruiting IL-22-producing

neutrophils (228). This does not appear to be specific to that

model, as mice given trinitrobenzone sulfonic acid (TNBS) via

colonic catheter, in another well-studied colitis model, also

responded with increased systemic SAA (230, 231).

Pharmacological treatments including 6-thioguanine and

cyclosporine A, utilized to improve colitis outcomes in mice,

effectively reduced circulating SAA levels (229), as did

administration of Bacillus subtilis spores as a probiotic (230). To

date, only a few studies have indirectly examined IBD

phenotypes with concurrent SAA genetic perturbation. One

study showed that mice concurrently deficient in Saa1, Saa2, and

Saa3 had attenuated colitis as assessed by histology (209).

However, in the proximal colon of the mouse, Saa1 and Saa2

expression is confined to the epithelium, while Saa3 expression is

found in immune cells including monocytes, macrophages, and

dendritic cells (209). These data suggest that Saa1/2 exert system-

wide functions of mucosal sensing and defense, while Saa3 drives

local function, due in part to the differential potentiation of

Th17 responses by these subtypes (209). Similarly, mice that
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were deficient in Saa1 and Saa2 that had colitis-associated colon

cancer showed attenuated weight loss, gut histological damage,

and gut inflammation (232), findings that suggest that Saa1/2

may augment colitis severity. Saa1/2 deficiency resulted in

reduced Saa3 colonic expression (232). Conversely, specific

deletion of only Saa3 rendered mice more susceptible to dextran

sulfate sodium (DSS)-induced colitis (228), implying that Saa3

may be protective against IBD. Collectively, the precise roles for

different SAA subtypes in IBD remain unknown, but emerging

evidence suggests that Saa1/2 and Saa3 have different triggers

and functions.
3. Tissue- and stimulus-specific SAA
effects

Expression kinetics for each SAA subtype varies greatly by

tissue source and stimulus type. While SAA1 and SAA2 are

primary players in the acute phase response, in mice Saa3 may

play a more prominent role in local inflammation. Mice express

Saa3 in many extra-hepatic tissues including adipose tissue, lung,

macrophages, and small/large intestine, with the liver

predominantly producing Saa1 and Saa2 (40). This distinct

division in murine subtype expression patterns enables the study

of extra-hepatic Saa in metabolic disease. Extra-hepatic Saa

expression appears predominant in chronic inflammatory

conditions, while Saa derives largely from the liver in more acute

inflammation (9, 18, 20, 91, 96, 98, 100). In humans, it is much

more difficult to separate the contribution of extra-hepatic SAA

to metabolic disease phenotypes in humans, because SAA1 and

SAA2 are expressed both from liver and extra-hepatic tissues.

Thus, much of our knowledge of extra-hepatic SAA originates

from mouse models. In this section, the various SAA subtypes

and their expression patterns in response to particular stimuli

from various tissue and cell types will be discussed (Table 2).
3.1. Liver

The liver is perhaps the most frequently studied SAA-

expressing tissue, wherein hepatic resident macrophages (i.e.,

Kupffer cells) produce Saa3 (in mice) and hepatocytes make

SAA1/2 (233, 239). As such, an influx of immune cells could

specifically increase Saa3 expression in the liver in mice. In

cultured hepatocytes, particular combinations of cytokines

predictably increase SAA1 and SAA2 gene and protein

expression (234). Hepatocytes secrete high levels of SAA during

an acute inflammatory insult in mice and humans (22). HepG2

cells, a human hepatocyte cell line, can express SAA1 and SAA2

in response to IL-1β and IL-6 in a dose-dependent manner, an

effect augmented by pre-treatment with dexamethasone or TNFα

(89, 248, 250). Primary human Kupffer cells co-cultured with

hepatocytes secrete high levels of SAA2 following treatment with

IL-1β and IL-6 (237), suggesting a potential paracrine signaling

mechanism.
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TABLE 2 Tissue- and stimulus-specific SAA effects in humans and rodents.

Tissue/cell type Model Stimulus SAA subtypesa

Liver
Human HepG2 cells (234)

HepG2 cells (89, 248)

HepG2 cells (252)
Primary hepatocytes (251)
Liver tissue (98)

IL-1β, IL-6
TNFα (10 ng/ml)
IL-6
TNFα, DEX
IL-1 β
LPS (20–500 ng/ml)
Obesity

↑↑ SAA1, SAA2 (15–25-fold)
↔ SAA1, SAA2
↑↑ SAA1, SAA2 (5-fold)
↔ SAA1, SAA2
↑ SAA1
↑↑ SAA1, SAA2
↔ SAA1

Rodent BALB/c mice (40, 238)

Swiss mice (236)
C57Bl6/J mice (122, 233)
Primary hepatocytes (122)
Mouse fibrosis model (239)
Mouse HSCs (239)
C57Bl6/J mice (42)

Ldlr-/-.Leiden mice (244)
FVB mice (114)
db/db mice (114)
C57Bl6/J (121)
Mouse liver (113)
Mink liver (269)
C57Bl6/J (209)

LPS (50 µg)
Casein (0.5 ml 10%)
LPS (100 µg)
LPS (100 µg)
LPS (25 µg)
Ccl4 (0.5 µl/g)
Ccl4 (0.5 µl/g)
LPS (25 µg)
AgNO3 (0.5 ml 1%)
Casein (0.5 ml 5%)
DIO (50 weeks HFD)
STZ- hyperglycemia
Genetic T2D
DIO (16 weeks)
Amyloidosis
LPS (3 mg/kg)
MOG- autoimmune encephalomyelitis

↑↑ Saa1, Saa2, Saa3 (100-fold)
↔ Saa1, Saa2
↑↑ Saa1
↑↑ Saa1, Saa2, Saa3 (2,000–5,000-fold)
↑↑ Saa1, Saa2, Saa3
↑ Saa1, Saa3 (10–40-fold)
↔ Saa1, ↑ Saa3 (40-fold)
↑↑ Saa1–4 (200, 2,000, 1,000-fold)
↑↑ Saa1, Saa2 (400, 10,000-fold)
↔ Saa4, ↑ Saa1–3 (60, 1,000, 8-fold)
↔ Saa1
↔ Saa3
↔ Saa3
↔ Saa3
↓ Saa1, Saa2
↑ Saa1
↑↑ Saa1–2, ↔ Saa3 (10, 20-fold)

Adipocytes/WAT
Human Omental and SQ adipose tissue (9)

SQ adipose tissue (96, 98)

MADS (253)
Primary breast adipocytes (254)

Obesity
DEX, insulin
Rosiglitazone
Obesity
Obesity → weight loss
rSAA (1–30 µg/ml)
DHA (50–100 µM)

↑↑ SAA1
↑ SAA1 (6-fold secretion)
↓ SAA1 (70% reduction in secretion)
↑ SAA1–2, SAA4 (6-fold)
↓ SAA1, SAA2 (1.6–2.2-fold)
↑ SAA1 (7-fold)
↑ SAA1

Rodent C57Bl6/J mice (42)

C57Bl6/J mice (122)
Ldlr-/-.Leiden mice (44)
3T3-L1 adipocytes (114)

FVB mice (114)

ob/ob mice (114, 121)
db/db mice (114, 121)
3T3-L1 adipocytes (190)

3T3-L1 adipocytes (245)
C57Bl6/J (121)
3T3-L1 adipocytes (246)

3T3-L1 adipocytes (242)
Swiss Webster mice (271)

LPS (25 µg/mouse)
AgNO3 (0.5 ml 1%)
Casein (0.5 ml 5%)
LPS (100 µg)
DIO (50 weeks HFD)
TNFα, LPS
Insulin, Rosi, IL-6
Hyperglycemia (25 mM)
LPS (100 ng/g)
STZ- hyperglycemia
Obesity
Genetic T2D
SFA (12:0, 14:0, 16:0)
Hyperglycemia (25 mM)
PUFA (20:4, 20:5, 22:6)
IL-1β
DIO (16 weeks)
LPS
LPS + RAW264.7 cells
rSAA (5 µg/ml)
Presense of microbes

↑↑ Saa1, Saa2, Saa3 (60, 30, 750-fold)
↔ Saa1–3
↔ Saa1–3
↑ Saa1 (100-fold), ↑↑ Saa3 (400-fold)
↓ Saa1
↑↑ Saa3
↔ Saa3
↑ Saa3
↑↑ Saa3 (200-fold)
↑ Saa3
↑↑ Saa3
↑ Saa3 (8-fold)
↑ Saa3 (2-fold)
↑ Saa3 (5-fold)
↓ Saa3
↑ Saa3 (10,000-fold)
↑ Saa3 (11-fold)
↑ Saa1 (2-fold)
↑ Saa1 (2-fold)
↑ Saa3 (3-fold)
↑ Saa3 (10-fold), ↔ Saa1, Saa2

Monocytes
Human PBMC (250)

THP-1 cells (187)
U-937 cells (187)
HL-60 cells (187)

IL-1β, IL-6, TNFα
LPS + DEX, or DEX
LPS, DEX, IL-1, IL-6
LPS, DEX, IL-1, IL-6

↑ SAA2 (7-fold)
↑ SAA1
↔ SAA1
↔ SAA1

Macrophages
Human Coronary artery sections (18)

THP-1 macrophages (187)

U-937 macrophages (187)
HL-60 macrophages (187)

Atherosclerosis
LPS
DEX
DEX
LPS, DEX, IL-1, IL-6

↑ SAA1
↔ SAA1
↑ SAA1
↑ SAA1
↔ SAA1

(continued)
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TABLE 2 Continued

Tissue/cell type Model Stimulus SAA subtypesa

Rodent BALB/c mice (40)
RAW264.7 cells (246)
RAW264.7 cells (271)
Kupffer cells (233)
Peritoneal macrophages (233)
Peritoneal macrophages (113)
Microglia, MDM (209)

LPS (50 µg)
LPS
LPS
LPS
LPS
Amyloidosis
MOG- autoimmune encephalomyelitis

↑↑ Saa3 (100-fold)
↔ Saa1
↑ Saa3
↑ Saa1
↑ Saa1
↑↑ Saa3
↑ Saa3

Intestine
Rodent BALB/c mice (40)

C57Bl6/J (121)
CONV-R vs. GF mice (271)
CONV-R vs. GF mice (278)
CMT-93 colonic epithelial cells (224, 271)
Mink intestine (269)

LPS (50 µg)
Casein (0.5 ml 10%)
DIO (16 weeks)
Presence of microbes
Presence of microbes
LPS
LPS (3 mg/kg)

↑↑ Saa1 (1–4-fold), Saa3 (3–25-fold)
↔ Saa1, Saa3
↔ Saa3
↔ Saa1, Saa2, ↑ Saa3
↑↑ Saa1, Saa2, Saa3 (4-fold)
↑↑ Saa3 (7-fold), ↔ Saa1–2
↑↑ Saa1

12:0, lauric acid; 14:0, myristic acid; 16:0, palmitic acid; 20:4, arachidonic acid; 20:5, eicosapentaenoic acid; 22:6, docosahexaenoic acid; AgNO3, silver nitrate; Ccl4,

tetrachloride; CLA, conjugated linoleic acid; CONV-R, conventionally-reared; DEXv dexamethasone; db/db mice: DIO, diet-induced obesity; leptin receptor-deficient

mice; DEX, dexamethasone; DHA, docohexaenoic acid; GF, germ-free; HepG2, human hepatoma cells; HSC, hepatic stellate cells; IL-1β, interleukin 1 beta; IL-6,

interleukin 6; LPS, lipopolysaccharide; MDM, monocyte-derived macrophage; MOG, myelin oligodendrocyte glycoprotein; ob/ob mice, leptin-deficient mice; PBMCs,

peripheral blood mononuclear cells; PUFA, polyunsaturated fatty acids; rSAA, recombinant SAA; SFA, short chain fatty acids; SQ, subcutaneous; STZ, streptozotocin;

T2D, type 2 diabetes; TNFα, tumor necrosis factor alpha; WAT, white adipose tissue; ↑, modest increase; ↑↑, robust increase; ↔, no change.
aFold-mRNA expression, unless otherwise indicated.
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As discussed above, potent inflammatory stimuli initiate

robust, rapid, but short-lived (∼24 h) SAA1 and SAA2

expression from the liver. LPS at dosages ranging from 0.25 to

100 µg/mouse increases murine hepatic mRNA expression of

Saa1 (up to 2,000-fold), Saa2 (up to 200-fold), and to a lesser

extent Saa3 (up to 40-fold) in an NFκB-dependent manner, with

circulating SAA levels subsequently increasing to 3,000 µg/ml

(42, 236, 238). All three SAA subtypes reach peak hepatic mRNA

expression 12 h after LPS administration (238). Only high-dose

LPS (25 µg) increases circulating Saa3 in mice (42, 122).

Similarly, LPS activates SAA1 and SAA2 mRNA expression and

secretion in human primary hepatocytes (251). Patients with

sepsis have elevated SAA levels (235), which are stronger

predictive markers of sepsis severity (76). SAA was a more

sensitive and earlier predictor of neonatal sepsis than the more

traditional CRP (75).

Other models of sterile inflammation in mice also have been

shown to increase hepatic Saa levels. Silver nitrate (AgNO3),

administered by subcutaneous injection of 0.5 ml of a 1%

solution, increases hepatic Saa1 (40-fold), Saa2 (1,000-fold), and

Saa3 (200-fold), and leads to circulating Saa levels equivalent to

that observed with high doses of LPS (42). However, in contrast

to findings after LPS, we did not find evidence of Saa3 in plasma

following AgNO3 injection (42). Injection with casein

(administered by subcutaneous injection of 0.5 ml of a 5%

solution) modestly increased hepatic Saa1 (6-fold), Saa2 (100-

fold), and Saa3 (5-fold) mRNA expression, resulting in much

smaller increases in plasma Saa levels (42). Collectively, acute

inflammatory stimuli differ in the resulting hepatic expression

levels of SAA1–3, leading to varied systemic SAA concentrations,

suggesting differential regulation.

In metabolic disease states such as obesity and T2D, hepatic

SAA expression likely results from cytokine signaling from extra-

hepatic tissues such as WAT (240, 252). A recent study identified
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SAA1 protein from both WAT and liver as a candidate

biomarker associated with low-grade inflammation. There was a

much stronger correlation of SAA1 with inflammation in the

liver than with WAT inflammation (244), suggesting a more

dominant hepatic role of SAA1. However, this particular study

mined gene ontology datasets using general inflammatory search

terms, so the particular metabolic conditions (i.e., obesity) of the

original study subjects were not indicated.
3.2. Adipocytes

The acute inflammatory studies cited above showed effects on

SAA subtypes expressed in the liver, but there also were strong

SAA responses in adipose tissue. While reported hepatic SAA

responses to LPS in mice are largely due to Saa1 and Saa2,

adipose tissue responds to LPS with massive (∼500-fold)
increases in Saa3 mRNA compared with 40-fold Saa3 increases

in the liver (42). This effect appears to be LPS-specific, as neither

AgNO3 or casein altered Saa1, Saa2, or Saa3 mRNA levels in

adipose tissue (42). Thus, we speculate that LPS can induce

expression of all three Saa subtypes in both liver and adipose

tissue that all contribute to circulating levels, while AgNO3 and

casein primarily target hepatic Saa. In this section, we present

evidence for differential SAA subtype expression in response to

several inflammatory mediators and metabolic factors.

Many stimuli have been shown to increase Saa3 mRNA and

protein expression in cultured adipocytes. These include high

levels of glucose (114, 190, 204), saturated fatty acids (190, 204),

conjugated linoleic acids (204), pro-inflammatory cytokines

including TNFα and IL-1β (114, 190, 245), and LPS (114).

Conversely, anti-inflammatory stimuli such as polyunsaturated

fatty acids (190) and rosiglitazone (114) reduce adipocyte Saa3

expression. In addition to chemical activation, 3T3-L1 adipocytes
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also express Saa3 in response to macrophage-derived components

(121, 246), suggesting an important role in cell-cell

communication, with similar effects observed in cultured human

adipocytes and in mice. Human SGBS cells treated with saturated

fatty acids display increased Saa1 expression, while

polyunsaturated fatty acids decreased glucose-induced Saa1 (190),

suggesting that the major adipose SAA subtype in humans is

SAA1. Mice injected with LPS robustly increased Saa3 expression

in visceral WAT comparable to hepatic Saa1/2 expression levels

in the same mice (42); using mass spectrometry methods, Saa3

was identified in their plasma (42), suggesting that Saa3 can

circulate under particular inflammatory conditions.

Recombinant (i.e., exogenous) SAA can directly impact

adipocyte metabolism. In cultured 3T3-L1 adipocytes,

recombinant SAA (rSAA, 5 µg/ml) reduced adipogenesis,

accompanied by reduced adipogenic transcription factors and

proteins including peroxisome proliferator-activated receptor

gamma (PPARγ), CCAAT enhancer binding protein beta (C/

EBPβ), and GLUT4 (242). rSAA also reduced lipid accumulation,

increased lipolysis, prevented glucose uptake, triggered secretion

of inflammatory cytokines IL6 and TNFα and increased mRNA

expression of Saa3. In multipotent adipose-derived stem (MADS)

cells isolated from human subcutaneous adipose tissue induced

to differentiate into primary adipocytes in vitro, free- and HDL-

associated rSAA increased MCP-1, IL-6, and IL-8 secretion in a

dose-dependent manner (253). This pro-inflammatory phenotype

was dependent on NFkB, not due to endotoxin contamination

(243, 253). Moreover, rSAA treatment reduced mRNA expression

of adiponectin, fatty acid synthase (FAS), C/EBPα, PPARγ, and

GLUT4 (253, 254), suggesting impaired adipogenesis capacity. A

propensity for rSAA to increase lipolysis also has been reported

in human adipose tissue (9). The pro-inflammatory, pro-lipolytic,

and anti-adipogenic effects of SAA also have been shown in

primary porcine adipocytes (243).

Recent technical advances have enabled the study of adipose

tissue down to the single-cell level (255, 256). Spatial

transcriptomics on human subcutaneous abdominal adipose

tissue sections has revealed 3 distinct subsets of adipocytes,

including those rich in genes for leptin (AdipoLEP), the lipid

droplet-associated proteins perilipin1 and −4 (AdipoPLIN), and

SAA1/2 (AdipoSAA) (257). AdipoLEP was enriched in genes

encoding matrix metabolism, AdipoPLIN in genes associated with

lipid and glucose metabolism, and AdipoSAA in multiple retinol-

binding adipokines (i.e., RBP4) (257). These have been linked

with obesity co-morbidities including T2D, hepatic steatosis,

inflammation, and metabolic syndrome (258, 259).

Approximately 8% of the adipocytes examined were AdipoSAA,

with similar proportions in donors with or without obesity, but

there was high variability among donors (from 2%–18% of all

adipocyte populations) (257). Whether or not the proportion of

AdipoSAA cells differs in omental WAT, or is related to sex, is of

interest.

In addition to secreting adipokines and nutrients into the

circulation, adipocytes also secrete extracellular vesicles (EVs),

including microvesicles, exosomes, and apoptotic bodies (260).

EVs are heterogeneous membrane vesicles secreted by many cell
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types, including adipocytes, and function to facilitate intercellular

communication within and between tissues via protein signaling,

immune responses, and nutrient transport (261). EVs contain

diverse cargo including proteins, lipids, and miRNAs. Adipocyte-

derived exosomes can be identified by their adipocyte-specific

protein cargo, chiefly adiponectin and perilipin (262). EVs

differing in cellular origins possess unique biological properties,

enabling cell- or tissue-specific effects. EV production derived

from WAT is increased during obesity (263–266), and is

correlated with insulin resistance in both humans and in animal

models. SAA1 and SAA2 have been identified in EVs isolated

from human adipose tissue (262), and Saa3 observed within

vesicle-like structures within murine adipose tissue (121). These

findings raise the possibility that adipose tissue-derived SAA

communicates systemically with other target tissues, in addition

to its local effects.
3.3. Macrophages

Macrophages are present in all peripheral tissues and

contribute to systemic metabolism. Macrophage classification

schema are emerging, but largely revolve around their functional

potential, including the capacity to elicit an inflammatory

response and ability to phagocytose pathogens and cellular debris

(267). As such, macrophages can either contribute to or resolve

inflammation. Moreover, macrophages that only reside within

particular tissues often receive their own classification, such as

hepatic Kupffer cells or central microglia. All tissues from which

Saa3 expression can be detected have a dynamic macrophage

population, suggesting a potential common source of Saa3.

In obesity, adipose tissue exhibits both increased SAA

expression (SAA1 and SAA2 in humans and Saa3 in mice), as

well as increased macrophage infiltration. Importantly, all SAA

subtypes are expressed from macrophages (187). Initial studies

showed that acute inflammatory stimuli, including LPS and

casein, induced only Saa3 mRNA in murine macrophages (40,

113). Saa3 mRNA also increases in activated RAW264.7

macrophages (121), murine bone marrow-derived macrophages

(121), murine J774.1 macrophages (18, 112), and murine foam

cells within atherosclerotic lesions (18), but not in the human

THP-1 cell line (187). Saa3 protein co-localizes with F4/80+

macrophages in obese adipose tissue (121).

That macrophages express SAA subtypes as well as SAA

receptors, including TLR2, TLR4, RAGE, and SRB1, suggests

autocrine activities that likely contribute to local effects (20, 268).

Deletion of putative SAA receptors yields a blunted macrophage

response to SAA. BMDMs from mice deficient in TLR2 exhibit a

blunted inflammatory response to SAA (1 µM) (56), and

neutralizing antibodies to TLR2 blunted SAA-mediated activation

of THP-1 macrophages (20). Similar effects have been observed

in peritoneal macrophages from TLR4-deficient mice (59). SAAs

may bind to macrophage-produced extracellular matrix (ECM)

components, including proteoglycans and glycoproteins (195).

Collectively, an increasing body of work connects SAA and

macrophages.
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Monocytes freshly isolated from humans or monocytic cell

lines consistently respond to SAA with potent pro-inflammatory

responses. Within an hour of treating with rSAA, peripheral

human blood mononuclear cells (PBMCs), THP-1 monocytic

cells, and monocyte-derived macrophages (MDMs) all exhibit

rapid expression of IL-1β, MCP1, IL-6, IL-8, TNFα, and

macrophage inflammatory protein 1 alpha (MIP-1α), an effect

that is sustained for 8–24 h and is similar to LPS (241). Similar

effects were observed in RAW264 monocytes treated with rSAA,

which yielded a pro-inflammatory phenotype characterized by

increased MCP-1, IL-6, IL-8, and TNFα secretion (9). While a

potent inflammatory stimulus (i.e., LPS or casein) initiates a

robust, rapid, but short-lived (∼24 h) hepatic Saa response, and

from macrophages directly treated in culture, a similarly rapid

but more prolonged Saa3 response (72 h) has been observed in

isolated peripheral macrophages, indicating markedly different

hepatic expression kinetics (40, 113). Whether such different

expression kinetics reflect a more prolonged response that is cell-

type specific or is an effect secondary to the acute phase

response remains to be determined.
3.4. Intestine

Intestinal SAA can be induced by several mechanisms, which

are complicated by the potential for differing SAA subtype

expression from varying intestinal cells. SAA1/2 are highly

expressed in intestinal epithelium and in the endothelium lining

the intestinal submucosal blood vessels in rabbits, rodents, and

humans (224, 269, 270). Conversely, Saa3 has been detected at

low levels in mouse colonic epithelium (224), but is more

prevalent in intestinal immune cells (209). Moreover, in mice,

Saa3 expression is more strongly induced by LPS and microbes

in colonic epithelium than Saa1/2 (224, 247, 271). Induction of

SAA1 and SAA2 in small intestinal epithelial cells by

commensal microbes requires both IL-23 and IL-22 in a STAT3-

dependent manner (272). Male Syrian hamsters injected with

LPS (100 µg/g body weight) also expressed high Saa levels

(unknown subtypes) in the duodenum, jejunum, and ileum

(273). Mouse intestinal Saa3 is most closely related to human

SAA1 with 70% amino acid homology (271), and may serve

local gut functions (247).

SAA expression differs markedly throughout the intestinal

tract, with SAA2 having the most variable expression between

the ileum and rectum in subjects with IBD (274). Germ-free

mice have very low ileal levels of Saa1 and Saa2, but higher

expression in the colon than in conventional mice (275). These

findings are consistent with an anti-bacterial SAA role in relation

to an omnipresent colonic microbiota, and a much more variable

ileal microbiota. As conventional mice mature, intestinal Saa rises

in the ileum, reflecting the increasing bacterial load, but do not

change in the colon. Perturbing early-in-life gut microbiome

affected intestinal Saa expression. With pulsed therapeutic-level

antibiotic (PAT) exposures at early ages after weaning, non-obese

diabetic (NOD) mice have consistently decreased Saa1/2 and

Saa3 expression in the ileum but not in the colon (249, 276,
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277). Younger mice (P12) had significantly increased Saa1/2 and

Saa3 expression in both ileum and colon two days after antibiotic

exposure ended, indicating that intestinal Saa can biphasically

respond to gut microbiome changes in patterns that are both

age- and microbiome context-dependent during this critical

period for host immune development. The early-life antibiotic-

exposed mice showed significantly increased Saa1/2 and Saa3

expression in the ileum but not in the colon at P17 days (277).

These studies further confirmed that early-life intestinal SAA

expression is subject to regulation linked to gut microbiota

composition, potentially reflecting an ancient evolutionary

strategy to regulate the establishment of immune responses or

tolerance in the developing animal.

Mono-colonization of germ-free mice with segmented

filamentous bacteria (SFB) rapidly induces expression of Saa1,

Saa2, and Saa3 in the terminal ileum, consistent with the unique

spatial expression patterns of SAA in the gut. Induction of ileal

Saa is further increased by conventionalization using fecal

microbial transplant (FMT) from specific pathogen-free (SPF)

mice (278). Induction of ileal Saa1 and Saa2 by SFB is mediated

through the IL-23/IL-22 circuit in ileal epithelial cells (272). The

SFB-induced ileal Saa proteins promote Th17 cell differentiation

from ileal lamina propria dendritic cells and contribute to

protective immune responses in the ileal mucosa (278).

Conversely, as anti-bacterial molecules, SAA may modulate gut

bacterial growth and composition either directly or through

downstream intestinal immune responses. Consistent with

observations in mice, in vitro studies showed that overexpression

of Saa1/2 in intestinal epithelial cell lines reduces growth of co-

cultured bacterial cells (224). Similarly, in zebrafish SAA in

intestinal epithelial cells derived via transgene expression

constrains the bactericidal activity of neutrophils, and promotes

neutrophil recruitment to the intestine that is functionally

distinct from hepatic SAA expression (279). In a mouse model of

DSS-induced colitis, Saa induction in the large intestine was

required to dampen local inflammation, while SAA1/2

overexpression in cultured epithelial cells reduced the viability of

co-cultured E.coli (224), suggesting a potential bactericidal

function of SAA that may contribute to barrier integrity.

Transgenic mice engineered to overexpress Saa1 are partially

protected against inflammatory responses to cecal ligation and

puncture (280), suggesting an inverse relationship between gut-

derived SAA and inflammation.

The anti-inflammatory properties of intestinal Saa1 are most

specific to LPS-induced inflammation, an effect that could be

dosage-dependent. Saa1 has the ability to bind LPS and form a

complex, which then facilitates the clearance of LPS by

macrophages (280). The transition of Saa1 from exerting pro-

inflammatory effects to anti-inflammatory effects may reflect the

proteolysis of the Saa1 protein. The N-terminal and C-terminal

domains of Saa1 are crucial for its pro-inflammatory activity, and

their removal via proteolysis can transform Saa1 into an

anti-inflammatory agent (280, 281). Whether other SAA proteins

also are capable of switching from pro-inflammatory to

anti-inflammatory functions is unknown. The precise functions

of intestinal SAAs deserve further investigation.
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4. Sexual dimorphism of SAA

Circulating SAA is positively associated with BMI and

adiposity, with a propensity to also associate with fasting glucose,

insulin, HbA1C, and HOMA-IR. An emerging literature

describes unique sexual dimorphic relationships between SAA

and several metabolic disease states. Fully characterizing sex

differences in SAA expression kinetics and functional potential is

thus of great importance.

Large-scale RNA-sequencing studies of healthy humans

showed that adipose tissue contains ∼3,000 sexually differentiated

genes, one of the highest levels of all tissues examined (282).

There was higher expression in women of all known SAA

subtypes (SAA1, SAA2, and SAA3(p) (the SAA3 pseudogene)),

which were among the most highly sex-differential genes (283).

In contrast, with the exception of breast and skin, no other SAA-

expressing tissues (i.e., liver, lung, blood) show SAA subtypes in

their lists of sex-biased genes (283). These findings have been

replicated in several large-scale sequencing studies spanning

dozens of tissues in healthy men and women (284, 285), and in

mice (286). SELS, a major SAA receptor, is elevated in the

adipose tissue of subjects with T2DM and correlated with

measures of glycemic control (73), but sex was not investigated

in these studies. Collectively, many studies indicate that adipose

tissue from female mice and humans expresses higher SAA than

tissue from males, but the involvement of sex differences in the

pathophysiology of obesity or associated metabolic disorders is

not known.

Healthy women (with BMI < 25) have higher circulating SAA

than age-matched men, despite the men having a slightly higher

average BMI (287). SAA positively correlates with BMI, waist

circumference, waist-to-hip ratio, insulin, and HOMA-IR in both

sexes. After adjusting for BMI, only the correlations with insulin

and HOMA-IR remained significant for men, but not women.

One of the first studies to address potential sex differences in

SAA kinetics characterized the association between adipocyte size

and circulating SAA levels in men and women over a large range

in BMIs, with the additional aim to examine potential

associations with measures of glycemic control (107). Women

generally had higher circulating SAA levels than men, and

stronger correlations with BMI, adiposity, subcutaneous

adipocyte diameter, fasting insulin, HOMA-IR, and leptin (107).

This could relate to the higher proportion of subcutaneous WAT

in women than men.

By contrast, the liver, the source of most acute-phase SAA, has

rarely been implicated in sex differential SAA expression. In

contrast to several studies that have not found SAA to be

differentially expressed by sex in the liver (282, 283), one study

has shown that males tend to express slightly higher levels of

SAA subtypes than female mice. Male CD-1 mice have modestly

higher hepatic mRNA expression levels of Saa1, Saa2, and Saa3

than females (288). Adipose tissue-derived SAA may be impacted

by sex steroids, as WAT is highly enriched in these molecules

(289), with levels widely varying in metabolic disease. In

experiments using cultured murine peritoneal macrophages and
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BMDMs, testosterone and 17β-estradiol directly impacted Saa3

gene expression (182). Saa3-deleted macrophages show sexually

dimorphic responses to sex steroids. After estradiol exposure,

Saa3-deficient BMDMs harvested from male mice showed a

massive increase in inflammatory gene expression compared to

wild-type macrophages, with concurrent elevation of the estrogen

receptor (182). Thus, a relationship between macrophages, sex

steroid signaling, SAA, and metabolic disease is present but

needs further definition.

Our prior studies have supported a potential sexual dimorphic

role of Saa3 in a mouse model with global Saa3 deficiency (82).

When given a high fat high sucrose (HFHS) diet, female mice,

but not male mice, were protected from body weight gain and

associated insulin resistance. To determine whether there was

similar sexually dimorphic protection against atherosclerosis in

female mice, we crossed our global Saa3-KO mice with mice

deficient in LDLR, which promotes hypercholesterolemia and is a

common model for studying atherosclerosis. In that study, male

Saa3−/− Ldlr−/− mice were protected from atherosclerosis, while

female Saa3−/− Ldlr−/− mice were not (182). We speculate that

in these models, Saa3 modulates effects via pathways that could

be tissue-specific. In the obese state, Saa3 is expressed primarily

from hypertrophic adipocytes, and also expressed from adipose

tissue macrophages (96). Conversely, in the setting of

hypercholesterolemic atherosclerosis, Saa3 expression likely

originates from aortic and/or hepatic macrophages in addition to

adipose tissue. Thus, in these different models, Saa3 deficiency

leads to divergent phenotypes in males and females.

Other studies also suggest a potential interaction between sex

hormones and SAA. Women with RA had higher SAA levels than

men with RA (211, 212, 290). In a linear regression model

involving the ratio of estradiol to testosterone (E2:T), sex and the

E2:T ratio were highly significant and independent predictors of

circulating SAA (290). Women with BMI < 25 have also been

reported to have higher SAA levels than men (287), and SAA

correlates more strongly with BMI and adiposity in women than in

men (11). These observations suggest that sex hormones play roles

in regulating SAA expression. Circulating SAA is higher in women

taking oral estrogen-containing contraceptives (291, 292) and in

women undergoing estrogen replacement therapy (287, 293). The

apparent estradiol-mediated increase in SAA observed in these

studies was secondary to elevations in CRP. More work is required

to determine the mechanisms linking sex hormones and SAA.

Phenotypic responses to pro-inflammatory stimuli have

differed in macrophages harvested from male or female mice

(182). Compared to male mice, bone marrow-derived

macrophages (BMDMs) isolated from female mice and treated

with pro-inflammatory fatty acids or LPS showed lower levels of

inflammatory cytokine expression (294). This effect appears to be

cell-autonomous, since sex hormones were not present.

Transplanting male bone marrow into donor female mice led to

a phenotypically male pattern of obesity-associated adipose tissue

inflammation (294). However, the absence of Saa3 in BMDMs

negated this inherent sex-specific effect (182). The specific

interactions between Saa3 and sex hormones remains to be
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characterized, but could explain the sexually dimorphic

observations related to SAA expression in metabolic disease.
5. SAA-targeting therapies

Targeting SAA may be a potential therapeutic avenue for

dampening inflammation. One approach is to target pathways

that will reduce SAA expression. Tocilizumab, a monoclonal

antibody that targets IL-6 and reduces SAA levels (295), has

been effective in treating a small number of patients with

amyloidosis involving the gastrointestinal tract (296) and kidneys

associated with Familial Mediterranean Fever (297, 298), and

amyloidosis associated with rheumatoid arthritis (299), but this

approach could potentially also be developed for use in other

chronic inflammatory conditions. Anakinra and canakinumab,

monoclonal antibodies that target IL-1β, have been used to

reduce SAA levels in inflammatory conditions such as Familial

Mediterranean Fever (300) and gouty arthritis (301). Moreover,

the CANTOS trial, for the first time, showed that inhibition of

inflammation using an antibody against Il-1β decreased

cardiovascular events (172), providing further evidence for the

importance of inflammation in atherosclerosis. Since SAA

appears to play a role in the pathogenesis of atherosclerosis (see

previous sections), it is possible an approach that inhibits Il-1β

could be more widely adapted for preventing atherosclerosis, as

well as rheumatic diseases and even in hyperinflammatory states

associated with COVID-19 (302).

SAA contains binding sites that are specific for heparin and

heparin sulfate, which have been postulated to be useful for

preventing amyloidogenic conformation of SAA (303). SAA also

inhibits acyl coenzyme A cholesterol acyltransferase and

enhances cholesterol esterase activities shifting stored intracellular

cholesteryl esters to free cholesterol, which can be transported

from cells. Liposomal preparations of small synthetic peptides of

SAA can bind and neutralize SAA, facilitating reverse cholesterol

transport and preventing and reversing aortic lesions in mouse

models of atherosclerosis (304). Eprodisate, which binds to the

glycosaminoglycan binding site on amyloid fibrils, thus

preventing polymerization and tissue deposition, may slow the

progression of AA amyloidosis-related renal disease (64, 305),

and also may be applicable to other amyloid related conditions.

All these approaches are still in experimental phases, but

demonstrate potential proof-of-concept mechanisms for future

SAA-targeted therapies.
6. Concluding remarks and
perspectives

Elevations of SAA subtypes have been consistently associated

with metabolic diseases such as obesity, diabetes, CVD, and

autoimmune conditions in humans and in animal models. After 40

years of investigation, evidence is not yet sufficient to determine

whether SAA plays causal roles in metabolic disease development

and progression, or is merely a biomarker of broader phenomena
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akin to CRP. In this review, we have presented evidence that

associations with several metabolic disease states differ in

expression kinetics and dominant SAA subtypes, as well as tissue,

cellular, and spatial expression patterns, implicating the tissue

microenvironment as crucial to SAA function. In particular, while

evidence suggests that WAT SAA expression increases in obesity,

whether such increases contribute to the circulating SAA pool is

not known. Due to distinct subtype expression patterns in mice vs.

humans, it could be possible for WAT-SAA to circulate in humans,

but not in mice. As such, we propose that the SAA functions

associated with metabolic disease are physiologically distinct from

those in acute-phase reactions. Moreover, accumulating evidence

suggests that different SAA subtypes, long considered to be pro-

inflammatory molecules, may play beneficial roles in conditions

like IBD, highlighting the importance of the microenvironment for

particular SAA-mediated phenotypes. Finally, we speculate that

SAA could play important roles in the differential progression of

sexually dimorphic metabolic conditions.
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