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Background: Worsening heart failure (WHF) is a heterogeneous clinical syndrome
with poor prognosis. More effective risk stratification tools are required to identify
high-risk patients. Evidence suggest that aberrant ceramide accumulation can be
affected by heart failure risk factors and as a driver of tissue damage. We
hypothesized that specific ceramide lengths and ratios serve as biomarkers for
risk stratification in WHF patients by reflecting pathological changes of distinct
organ dysfunctions.
Medthods: We measured seven plasma ceramides using liquid chromatography-
mass spectrometry (LC-MS) in 1,558 patients, including 1,262 participants in
retrospective discovery set and 296 WHF patients in prospective validation set in
BIOMS-HF study (Registry Study of Biomarkers in Heart Failure). Univariable and
multivariable logistic regression models were constructed to identify
associations of ceramides with organ dysfunctions.
Results: We constructed three ceramide-based scores linked independently to
heart, liver, and kidney dysfunction, with ceramides and ratios included in each
score specifying systemic inflammation, chronic metabolic disorder, and water-
sodium retention. The combined ceramide heart failure score (CHFS) was
independently associated with adverse outcomes [Hazard Ratio, 2.80 (95% CI:
1.78–4.40; P<0.001); 2.68 995% CI: 1.12–6.46; P=0.028)] and improved the
predictive value of Acute Decompensated Heart Failure National Registry score
and BNP [net reclassification index, 0.34 (95% confidence interval, CI: 0.19–
0.50); 0.42 (95% CI: 0.13–0.70)] in the discovery and validation set, respectively.
Lower BNP levels, but higher CHFS had the highest hazard of future adverse
events in WHF patients.
Conclusion: Abnormal plasma ceramides, associated with heart and peripheral
organ dysfunctions, provide incremental prognostic information over the
ADHERE score and brain natriuretic peptide concentration for risk stratification
in WHF patients. This may facilitate the reclassification of high-risk patients in
need of aggressive therapeutic interventions.

KEYWORDS

worsening heart failure, ADHERE score, biomarker, organ dysfunction, prognosis
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2023.1185595&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fcvm.2023.1185595
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1185595/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1185595/full
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1185595/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2023.1185595
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Ren et al. 10.3389/fcvm.2023.1185595
1. Introduction

Worsening heart failure (WHF) is a life-threatening disorder

with a 1-year event rate of 40% (1). The current treatment for

WHF is mostly symptomatic; at best, it is tailored according to

the initial hemodynamic status. However, some patients

experience high mortality and hospital readmission rates (2).

Patients with WHF often have coexisting multi-organ injury/

dysfunction (heart, kidney, and liver) upon admission (3–6).

Maladaptive crosstalk between the heart and injured peripheral

organs leads to insufficient peripheral perfusion, a persistent

congestive state, and abnormal changes in cardiac systolic or

diastolic function, resulting in pathological ventricular

remodeling and adverse outcomes (7). Dysfunction or injury to

the peripheral organs is a common result of different etiological

and risk factors, as suggested by the severity and complex

pathological heterogeneity of WHF (8). Several clinical markers

have been recommended in the European Heart Failure (HF)

guidelines for the identification of organ dysfunction, including

alanine transaminase (ALT), aspartate transaminase (AST),

creatine kinase-MB, and estimated glomerular filtration rate (9).

The natriuretic peptide concentration and Acute Decompensated

Heart Failure National Registry (ADHERE) score, which are

derived from the patient’s blood urea nitrogen concentration,

systolic blood pressure, and creatinine concentration, provide a

means of assessing an individual patient’s risk of inpatient

mortality due to HF (10–12). Despite the availability of these

measures, we have not been able to reduce adverse clinical

outcomes in patients with WHF. Therefore, identifying the

underlying pathological changes linked to different types of

organ dysfunction could help improve the risk stratification and

treatment of patients with WHF.

Various underlying pathophysiological changes, such as

proinflammatory activation, oxidative stress, persistent ischemia,

unresolved hyperemia, unhealthy metabolic status, and

hypoperfusion, often coexist in patients with WHF who have

organ injury/dysfunction (13). Several studies have shown that

lipid metabolism reflects the underlying pathological processes in

peripheral organs and aggravates the deterioration of cardiac

function (14–16). The bioactive sphingolipid ceramide is both a

structural component of the cell membrane and a signaling

molecule that regulates endoplasmic reticulum stress, apoptosis,

mitochondrial energy metabolism, and insulin resistance (17).

Evidence suggests that distinct ceramides are closely related to

several cardiometabolic diseases such as diabetes, hypertension,

and coronary heart disease, and act as prognostic biomarkers for

cardiovascular diseases (14, 18–20). A recent study conducted

using an animal model of fatty liver disease showed that plasma

Cer(d18:1/24:1) and Cer(d18:1/24:1) levels were both affected by

the activation of ceramide synthase 2, which strongly indicates

metabolic disorders in the liver tissue. Ahmad et al. showed that

tissue-specific ceramide synthase 6 in glomerular podocytes

produces Cer(d18:1/16:0), which affects renal perfusion by

participating in oxidative stress and inflammatory reactions

during acute/chronic kidney injury (21). Thus, it is becoming
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evident that distinct plasma ceramides are probably tissue-

specific and have different physiological functions. Exploring the

relationship between distinct organ dysfunctions and specific

ceramide lengths in patients with WHF may provide evidence to

further elucidate how these bioactive sphingolipids affect the

occurrence and development of HF. Therefore, we hypothesized

that specific ceramide lengths and ratios could serve as

biomarkers for risk stratification in patients with WHF by

reflecting pathological changes in distinct organ dysfunction.

In the present study, we identified a correlation between

distinct ceramides and adverse outcomes in patients with WHF.

We assessed the association between ceramide molecules and

organ dysfunction. Finally, we established a ceramide heart

failure score (CHFS) and verified its feasibility for risk

stratification to provide greater insight into the potential role of

ceramide in WHF.
2. Methods

2.1. Study population

The overall study design is shown in Supplementary

Figure S1. This study comprised a cross-sectional discovery set, a

retrospective discovery set, and a prospective validation cohort.

Data supporting the findings of this study are available from the

corresponding author upon reasonable request.

One cross-sectional study was established to evaluate whether

plasma ceramides are associated with heart failure progression.

The cross-sectional set (Supplementary Figure S1A) included

447 patients in 3 heart failure stages: healthy controls, preclinical

patients, and patients with worsening heart failure. All the

participants were age- and sex-matched. Patients with worsening

heart failure were identified from the Registry Study of

Biomarkers in Heart Failure (BIOMS-HF) cohort (22). The

inclusion criteria were as follows: A total of 149 healthy controls

were recruited from the population participating in the physical

examination center at Anzhen Hospital. The inclusion criterion

was a healthy clinical status with a potential risk of HF but

without structural heart disease. The 149 participants with

preclinical HF had a history of structural heart disease but no

symptoms of HF.

Discovery and validation sets were obtained from BIOMS-HF,

a retrospective and prospective cohort study (Supplementary

Figure S1B). The retrospective discovery cohort included 964

patients with WHF who visited the Beijing Anzhen Hospital,

Capital Medical University, between August 2017 and March

2019 (BIOMS-HF study registration number: NCT03784833 in

ClinicalTrials.gov). The prospective validation set included 296

patients with WHF who visited Beijing Anzhen Hospital, Capital

Medical University, between April 2019 and June 2019. This

study was based on the inclusion criteria of BIOMS-HF: age of

≥18 years, HF symptoms and signs (dyspnea or minimal

exertion at rest, dry and wet oral, pleural and ascites, peripheral

edema, or pulmonary congestion on x-ray films), and brain
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natriuretic peptide (BNP) and N-terminal pro-BNP (NT-pro-BNP)

concentrations of ≥35 and ≥125 pg/ml, respectively (23). For a

diagnosis of WHF, patients were required to have a relevant

history of HF symptoms and signs and a diagnosis of structural

heart disease. Structural heart disease included any one of the

following criteria: an increased left ventricular end-diastolic size

as measured by echocardiography (≥55 mm); a left ventricular

ejection fraction (LVEF) of ≤50%; ventricular septal thickening

(>12 mm) or left ventricular posterior wall thickening (>12 mm)

as measured by echocardiography; severe valve stenosis/

dysfunction; or significant myocardial abnormality

(cardiomyopathy), congenital heart disease, or previous cardiac

surgery (24). The detailed study design is presented in

Supplementary Figure S1B. A total of 964 patients in the

discovery set and 296 in the validation set were analyzed,

including 972 patients without composite events and 288 patients

with composite events.

This study was approved by the local ethics committee. The

study was performed in accordance with the requirements of the

Declaration of Helsinki. All the participants provided written

informed consent.
2.2. Follow-up and outcomes

The primary endpoints were all-cause mortality and the

following events: repeated hospitalization for HF,

recommendation for heart transplantation by physicians,

implantation of a cardiac resynchronization therapy defibrillator

(25), and follow-up with a New York Heart Association

functional classification of IV. Unplanned emergency visits or

hospitalizations leading to HF deterioration were defined as those

due to HF. Data on events were obtained from telephone or

electronic medical records. The primary endpoints and adverse

events were reviewed and confirmed by certified physicians to

ensure accuracy. There were 315 (33%) patients who suffered

from HF event/hospitalization, and 152 (16%) patients who died

in the experimental period in the discovery set. The validation

set included 97 (33%) patients with HF event/hospitalization and

41 (14%) patients died in the experimental period. During the

median follow-up of 325.5 days in the discovery set, 129 patients

were lost to follow-up (follow-up rate: 86.6%). During a median

follow-up of 208 days in the validation set, 13 patients were lost

to follow-up (follow-up rate: 95.6%).
2.3. Sample collection and quantification of
ceramides

Fasting blood samples were collected in

ethylenediaminetetraacetic acid tubes, centrifuged, aliquoted, and

stored at −80°C until analysis. Ultra-performance liquid

chromatography-tandem mass spectrometry was performed to

quantitatively detect several plasma ceramides [Cer(d18:1/14:0),

Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0), Cer(d18:1/

20:0), Cer(d18:1/22:0), Cer(d18:1/24:0), and Cer(d18:1/24:1)]
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using a Thermo TSQ Quantum mass spectrometer equipped with

an electrospray ionization probe and interfaced with the Agilent

1,290 Infinity LC system (Agilent, Palo Alto, CA, United States).

The injection volume of the extracted samples was 10 µl. The

details of the ceramide tests were elaborated from previous

research conducted by our team (26).
2.4. Definition of organ dysfunction/injury

Organ dysfunction/injury was defined based on baseline

measurements. A troponin I concentration greater than the

upper reference limit (URL) (>0.056 ng/ml) was considered

myocardial injury (27). Renal insufficiency was defined as an

estimated glomerular filtration rate of <60 ml/min/1.73 m2,

calculated using the Modification of Diet in Renal Disease Study

equation (28, 29). The presence of at least one of these abnormal

liver function test results indicates liver injury or dysfunction:

ALT and AST levels beyond the upper limit reference range for

liver function (male: 9–50 U/L, female: 7–40 U/L; AST: male:15–

40 U/L; female: 13–35 U/L), bilirubin concentration higher than

the URL (>1.3 mg/ml), and albumin concentration lower than

the lower reference limit (<3.5 mg/dl) (30, 31).
2.5. Statistical analysis

Continuous variables with a normal distribution are expressed

as means with standard deviations. The statistical significance of

the differences between the groups was tested using analysis of

variance, Student’s t-test, or the χ2 test, as appropriate. Statistical

significance was set at P < 0.05. Logistic regression was used to

estimate the odds ratios (OR) per standard deviation. Cox

proportional hazards were used to calculate hazard ratios (HR).

Proportional hazard assumptions were tested using Schoenfeld

residuals. The Spearman correlation coefficient was used to

evaluate association for continuous variables. Logistic regression

analysis was used to evaluate the correlation between scores with

categorical clinical outcomes (e.g., diabetes, ascites, ortopnea).

Excluding cases with missing values may bias the results (32);

thus, imputation proceeded in two steps: first, continuous

variables were imputed using the EM algorithm to create a

monotone missingness pattern, and then categorical variables

were imputed using the logistic regression method. Statistical

analyses were performed using Stata 15.0 statistical software and R.

Univariate and multivariate logistic regression models were

constructed to determine the relationship between ceramide

length and distinct organ dysfunction (heart, liver, and kidney).

To assess the robustness of the final model, we performed a

1,000-repeat boot analysis (using Stata’s “swboot” package).

Variables selected more than 700 times were considered as

robust predictors. The Hosmer–Lemeshow test was performed to

test for the model’s goodness-of-fit. A restricted cubic spline

(three nodes of all variables) was constructed to display the

relationship between the Ceramide lengths and ratios and organ

injuries.
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TABLE 1 Baseline characteristics of event and non-event groups of
patients with worsening heart failure in the discovery cohort.

No-event group
(N = 732)

Event group
(N = 232)

P value

Male sex, n (%) 613 (62) 176 (65) 0.283

Age, years 62 ± 14.4 68 ± 14.0 <0.001

Clinical history, n (%)
Smoking 159 (23) 36 (18) 0.131

Hypertension 420 (59) 137 (60) 0.722

Diabetes mellitus 243 (34) 95 (42) 0.031

Hyperlipidemia 244 (34) 68 (30) 0.210

CKD 122 (17) 53 (23) 0.040

Prior MI 116 (16) 40 (18) 0.657

Prior stroke 98 (14) 34 (15) 0.628

Atrial fibrillation 207 (29) 71 (31) 0.486

VHD 278 (39) 79 (35) 0.264

CAD 391 (55) 127 (56) 0.835

NYHA 0.019

II 187 (28) 59 (27)

III 324 (48) 88 (40)

IV 158 (24) 72 (33)

Hemodynamics
SBP, mmHg 128 ± 24 125 ± 24 0.075

DBP, mmHg 76 ± 15 74 ± 17 0.099

Heart rate,bpm 84 ± 21 86 ± 20 0.055

LVEF, % 45 ± 15 44 ± 15 0.209
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The ceramide heart, liver, and kidney scores were constructed

based on the logistic model coefficient for each given ceramide

concentration and the corresponding ratio:

ceramide heart=liver=kidney score

¼
X

n¼k

bk � ceramide or ratio concentrationþ b

where βk is the coefficient of the multivariable logistic model for

each ceramide length or ratio concentration and b is the

constant term of the model. We decided ceramide heart, liver,

and kidney scores after comparing models through the Akaike

information criteria (AIC) and the Bayesian information criteria

(BIC). Because dysfunction/injury to more than one organ

(heart, kidney, or liver) is a well-recognized independent

predictor of poor outcomes, we constructed the CHFS as

the sum of the ceramide heart, liver, and kidney scores.

A multicollinearity test was conducted to detect the

multicollinearity between key variables of CHFS (ceramide heart

score, ceramide liver score, and ceramide kidney score). We

identified the effect modification on the BNP level using

multiplicative interaction terms.
Laboratory data
HDL-C, mmol/L 1.08 ± 0.58 1.00 ± 0.32 0.066

LDL-C, mmol/L 2.53 ± 0.92 2.47 ± 0.81 0.814

TG, mmol/L 1.35 ± 0.88 1.23 ± 1.08 0.052

TC, mmol/L 4.12 ± 1.12 4.00 ± 1.04 0.375

hs-CRP 8.12 ± 10.89 11.57 ± 13.57 <0.001

BNP 980 ± 1,022 1,414 ± 1,389 <0.001

D-Dimer 633.1 ± 2,397.5 954.3 ± 1,886.7 <0.001

HB, g/L 133.4 ± 23.5 127.2 ± 24.1 <0.001

cTNI 1.70 ± 7.17 2.78 ± 8.71 0.006

Na+ 139.0 ± 3.87 138.0 ± 4.99 0.001

K+ 4.19 ± 0.56 4.29 ± 0.71 0.091

LnCr 4.52 ± 0.58 4.62 ± 0.66 0.048

Therapy
Statin 297 (51) 79 (54) 0.483

ACEI/ARB 205 (35) 42 (29) 0.145

β-blocker 353 (59) 87 (59) 0.887

Diuretic 393 (66) 107 (72) 0.134

Spironolactone 279 (47) 76 (52) 0.296

Digoxin 178 (24) 35 (27) 0.975

ANRI 71 (11) 11 (9) 0.414

LVEF, left ventricular ejection fraction; BNP, brain natriuretic peptide; CKD, chronic

kidney disease; MI, myocardial infarction; VHD, valvular heart disease; CAD,

coronary artery disease; NYHA, New York Heart Association; SBP, systolic blood

pressure; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein

cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol;

TG, triglycerides; hs-CRP, high sensitivity C-reactive protein; HB, hemoglobin;

CTNI, high-sensitivity cardiac troponin I; ACEl/ARB, angiotensin converting

enzyme inhibitor or angiotensin receptor blocker; ANRI, enkephalinase inhibitors.
3. Results

3.1. Study population, plasma ceramide
length, and ratio distributions in the
discovery set

Among the 964 patients with WHF in the discovery set, the

baseline characteristics of the patients with and without

composite events are shown in Table 1. Patients with

composite events were older and had a higher incidence of

diabetes mellitus. During laboratory examinations, patients with

composite events had higher BNP, lower high-density

lipoprotein, higher high-sensitivity C-reactive protein, and

higher creatine kinase concentrations. There were no other

statistically significant differences in baseline characteristics.

The characteristics of the validation set are presented in

Supplementary Table S4. The baseline levels of Cer(d18:1/

16:0), Cer(d18:1/18:0), Cer(d18:1/24:1), and Cer(d18:1/24:0) and

the distinct ratios of Cer(d18:1/16:0)/Cer(d18:1/24:0), Cer

(d18:1/18:0)/Cer(d18:1/24:0), and Cer(d18:1/24:1)/Cer(d18:1/

24:0) were significantly different between event and no-event

groups in the discovery cohort. No significant differences were

found in other chain species [Cer(d18:1/14:0), Cer(d18:1/20:0),

and Cer(d18:1/22:0)] (Supplementary Table S1). We also

observed that the Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer

(d18:1/24:1) levels increased, whereas the Cer(d18:1/24:0) levels

decreased. The results are presented in Supplementary

Figure S2. The remaining chain lengths [Cer(d18:1/14:0), Cer

(d18:1/20:0), and Cer(d18:1/22:0)] showed no trends or

significant differences.
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3.2. Plasma ceramides and ratios in patients
with WHF with adverse clinical outcomes in
the discovery set

In the multivariate Cox regression analyses, Cer(d18:1/16:0), Cer

(d18:1/18:0), Cer(d18:1/24:1), and Cer(d18:1/24:0) accumulation was
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positively associated with the primary endpoint after adjustment

for age and sex; the HR was 1.85 [95% confidence interval (CI):

1.38–2.74], 1.34 (1.08–1.65), 1.33 (1.02–1.76), and 0.69 (0.53–

0.91), respectively; Supplementary Table S2]. After adjusting for

age, sex, and clinical risk factors (Model 1, including sex, age,

body mass index, systolic blood pressure, diastolic blood

pressure, heart rate, diabetes, hypertension, hyperlipidemia,

chronic renal disease, atrial fibrillation, coronary heart disease,

and smoking), the ratios Cer(d18:1/16:0)/Cer(d18:1/24:0), Cer

(d18:1/18:0)/Cer(d18:1/24:0), and Cer(d18:1/24:1)/Cer(d18:1/24:0)

were still significantly related to adverse events [HR: 2.58 (95%

CI: 1.74–3.82); HR: 1.65 (95% CI: 1.22–2.22); and HR: 1.99 (95%

CI: 1.40–2.82), respectively] (Figure 1).
3.3. Ceramide lengths and ratios in patients
with heart, liver, and kidney dysfunction in
the discovery set

Univariate andmultivariate logistic regression analyses of ceramide

lengths and ratios for different organ dysfunctions in the discovery

cohort are shown in Table 2. Increases of Cer(d18:1/18:0) and the

ceramide ratios Cer(d18:1/18:0)/Cer(d18:1/24:0) were correlated with

cardiac injury; very-long-chain ceramides [Cer(d18:1/24:0) and Cer

(d18:1/24:1)] and Cer(d18:1/16:0) were correlated with liver

dysfunction; Cer(d18:1/16:0) and Cer(d18:1/16:0)/Cer(d18:1/24:0)

were correlated with renal dysfunction (all P < 0.005). Before the

detailed analysis, we quantified the appropriateness of our statistical
FIGURE 1

Association of combined endpoint with baseline ceramide lengths and ratios i
systolic blood pressure, diastolic blood pressure, heart rate, diabetes, hyperten
disease, and smoking. Effect size (odds ratio and 95% confidence interval) is p
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models using AIC and BIC (Supplementary Table S7). The final

model was selected considering both the statistical significance and

Bayesian information criteria and detailed equation was shown in

Supplementary Table S10.
3.4. Ceramide cardiac/liver/kidney scores
and clinical characteristics in the discovery
set

Furthermore, we constructed ceramide heart, liver, and kidney

scores based on plasma ceramide concentrations and distinct ratios.

The restricted cubic spline of ceramide levels, cardiac injury/liver

dysfunction, and kidney dysfunction scores are shown in

Figure 2. The Hosmer–Lemeshow goodness-of-fit test for three

logistic regression models shows that the models are acceptable

(ceramide heart score: P = 0.123; ceramide liver score: P = 0.859;

ceramide kidney score: P = 0.136) (Supplementary Table S6).

We examined the correlations between these scores and the

clinical characteristics in the discovery cohort of patients with

WHF (Figure 3, Supplementary Figure S4). We found that the

ceramide liver score was correlated with chronic metabolic

injuries, including body mass index (BMI), glutamyl-

transpeptidase (GGT), diabetes, orthopnea, and ascites; The

ceramide kidney score significantly correlated with kidney

function impairment and signs of water and sodium retention

(edema score and orthopnea). Ceramide heart score associated

with LVEF and cardiac tissue damage marker CKMB, suggesting
n the discovery cohort. Model was adjusted for sex, age, body mass index,
sion, hyperlipidemia, chronic renal disease, atrial fibrillation, coronary heart
resented for each ceramide length and ratio.
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TABLE 2 Univariate and multivariate logistic regression of ceramide lengths and ratios for different organ dysfunctions in the discovery cohort.

Organ dysfunctions Univariable Multivariable

Odds ratio (95% CI) z-value P value Odds ratio (95% CI) z-value P value

Cardiac injury
Cer(d18:1/16:0) 3.45 (2.27–5.25) 5.78 <0.001

Cer(d18:1/18:0) 2.45 (1.88–3.22) 6.57 <0.001 1.91 (1.29–2.83) 3.22 0.001

Cer(d18:1/24:1) 2.45 (1.76–3.42) 5.27 <0.001

Cer(d18:1/24:0) 1.67 (1.21–2.32) 3.11 0.002

Cer(d18:1/16:0)/Cer(d18:1/24:0) 1.33 (0.98–1.82) 1.80 0.072

Cer(d18:1/18:0)/Cer(d18:1/24:0) 1.67 (1.32–2.11) 4.29 <0.001 2.20 (1.51–3.21) 4.08 <0.001

Cer(d18:1/24:1)/Cer(d18:1/24:0) 1.51 (1.08–2.10) 1.44 0.015

Liver dysfunction
Cer(d18:1/16:0) 2.43 (1.71–3.47) 4.92 <0.001 2.08 (1.24–3.51) 2.76 0.006

Cer(d18:1/18:0) 1.59 (1.27–1.97) 1.04 <0.001

Cer(d18:1/24:1) 2.03 (1.54–2.69) 4.97 <0.001 2.28 (1.51–3.45) 3.90 <0.001

Cer(d18:1/24:0) 0.56 (0.63–0.79) −4.17 <0.001 0.46 (0.32–0.65) −4.41 <0.001

Cer(d18:1/16:0)/Cer(d18:1/24:0) 2.03 (1.53–2.70) 4.91 <0.001

Cer(d18:1/18:0)/Cer(d18:1/24:0) 1.63 (1.32–2.01) 4.67 <0.001

Cer(d18:1/24:1)/Cer(d18:1/24:0) 2.46 (1.83–3.31) 6.00 <0.001 2.07 (1.38–3.10) 3.51 <0.001

Kidney dysfunction
Cer(d18:1/16:0) 2.68 (1.89–3.79) 5.54 <0.001 3.10 (1.73–5.56) 3.79 <0.001

Cer(d18:1/18:0) 1.33 (1.08–1.63) 2.69 0.007

Cer(d18:1/24:1) 1.72 (1.31–2.24) 3.94 <0.001

Cer(d18:1/24:0) 1.27 (0.96–1.68) 1.70 0.088

Cer(d18:1/16:0)/Cer(d18:1/24:0) 1.50 (1.15–1.97) 2.96 0.003 1.64 (1.08–2.48) 2.34 0.019

Cer(d18:1/18:0)/Cer(d18:1/24:0) 1.15 (0.94–1.39) 1.40 0.161

Cer(d18:1/24:1)/Cer(d18:1/24:0) 1.40 (1.06–1.83) 1.72 0.016

FIGURE 2

The restricted cubic spline of ceramide heart, liver, and kidney scores for different organ dysfunctions. (A) Restricted cubic spline of the association
between the ceramide heart score and the cardiac injury. (B) Restricted cubic spline of the association between the ceramide liver score and liver
dysfunction. (C) Restricted cubic spline of the relationship between the ceramide kidney score and kidney dysfunction. The solid lines indicate
estimates of the odds ratios of organ damage across continuous levels of different ceramide scores, fitted using logistic regression analysis. The
dashed lines indicate the 95% confidence intervals.
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a clinical phenotype related to myocardial damage. Our results

demonstrated different patterns of clinical characteristics among

the ceramide heart, liver, and kidney scores.
3.5. Performance of CHFS in both discovery
and validation set

Finally, we developed a novel CHFS comprising the ceramide

heart, liver, and kidney scores to model the clinical use of
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ceramide in patients with WHF. Test of multicollinearity for all

variables resulted in the variance inflation factor (VIF) scores

ranging from 1.07 to 2.19, indicating no concerns about

multicollinearity (Supplementary Table S7). The CHFS was

independently correlated with all-cause mortality in both the

discovery set and validation cohort (HR: 2.76; 95% CI: 1.75–4.33;

P < 0.001; HR: 3.47; 95% CI: 1.36–8.87; P = 0.009) and composite

events (HR: 2.91; 95% CI: 1.23–6.88; P < 0.001; HR: 3.45; 95%

CI: 1.10–10.80; P = 0.034) (Supplementary Table S3). We tested

assumptions of proportional hazards using Schoenfeld residuals
frontiersin.org
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FIGURE 3

Association of ceramide cardiac injury/liver dysfunction and kidney dysfunction scores and clinical characteristics. DM, diabetes mellitus; LVEF,
left ventricular ejection fraction; NE, neutrophilic granulocytes; WBC, white blood cells. *P < 0.05, **P < 0.01, ***P < 0.001.
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in both discovery and validation set (Supplementary Table S8).

The global test showed no deviation from proportionality

(discovery set: P = 0.329, validation set: P = 0.264)

(Supplementary Table S9). The effect of the addition of CHFS

to the ADHERE score (age, sex, urea concentration, heart rate,

and systolic blood pressure) in predicting the composite endpoint

or all-cause mortality was assessed using the category-free

(continuous) net reclassification index (NRI) (Supplementary

Table S4). We examined whether the addition of CHFS to the
FIGURE 4

Abnormal ceramides from organ dysfunction indicate the greatest risk in worse
endpoint and all-cause motility in the validation cohort. (B) The standard haz
endpoint in worsening heart failure patients. This figure demonstrates that the
ADHERE predictors: age, sex, urea, heart rate, and systolic blood pressure. C
Point estimates and confidence limits for reclassification (NRI) and fit statistic
Heart Failure National Registry; BNP, brain natriuretic peptide; CHFS, ceram
index; WHF, worsening heart failure.
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ADHERE logistic regression variables improved the overall WHF

patient classification for all-cause mortality in the entire cohort

(NRI: 0.31; 95% CI: 0.18–0.44). The ceramide heart failure score

provided favorable risk reclassification for combined endpoint

and all-cause motility beyond traditional ADHERE and BNP

levels [net reclassification improvement, 0.42 (95% CI: 0.13–0.70)

and 0.49 (95% CI: 0.20–0.78), respectively]. We observed no

interaction between the CHFS and BNP levels in association with

the composite event (interaction, P = 0.135, Figure 4). The
ning heart failure. (A) Additional value of CHFS for prediction of combined
ard for ceramide heart failure score across BNP levels for the composite
hazard of CHFS is higher in lower BNP worsening heart failure patients.
HFS consists of the combined ceramide heart, liver, and kidney scores.
s are described in the Methods section. ADHERE, Acute Decompensated
ide heart failure score; CI, confidence interval; NRI, net reclassification
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hazard of the composite event for higher CHFS appeared to be

greatest in patients with lower BNP levels and worsening heart

failure in the validation set.
3.6. Subgroup analysis of CHFS
performance in total cohort

We stratified worsening heart failure patients by LV ejection

fraction and (Supplementary Table S5). After adjusting for

clinical variables, CHFS were significantly associated with poor

outcomes in patients with HFpEF [hazard ratio, 3.85 95% CI:

1.50–9.87; P = 0.005].
4. Discussion

In this study, we found that specific ceramide forms [Cer

(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:1), and Cer(d18:1/

24:0)] were associated with HF severity. We then discovered a

relationship between abnormal ceramide lengths and ratios and

the risk of adverse events that subsequently progressed to

refractory HF or death in patients with WHF in the discovery

set. After adjusting for clinical risk factors, the ceramide ratios

remained significantly associated with adverse events.

Furthermore, we determined the ceramide heart, liver, and

kidney scores with C18:0 and C18:0/Cer(d18:1/24:0), Cer(d18:1/

16:0) and Cer(d18:1/24:1)/Cer(d18:1/24:0), and Cer(d18:1/16:0)

and Cer(d18:1/16:0)/Cer(d18:1/24:0), respectively. Finally, we

established that the CHFS (the summary of the three ceramide

organ scores mentioned above) can be used as a risk

stratification tool to identify high-risk patients with WHF.

Abnormal plasma ceramide levels and ratios provide additional

information about the injury/dysfunction of the heart and

peripheral organs and the risk of HF deterioration, which may

indicate specific pathophysiological characteristics of patients

with WHF (33).
4.1. Myocardial ischemia, inflammation, and
ceramide heart score

Studies have shown that ceramide destroys mitochondrial

respiration and leads to the decompensation of mitochondrial

function, thus affecting cardiac function (34). Inflammation is

an important factor in the development of diastolic

dysfunction in patients with WHF. Our data suggest that Cer

(d18:1/18:0) and the ceramide ratio Cer(d18:1/16:0)/Cer(d18:1/

24:0) are strongly correlated with myocardial ischemia and

inflammation status. Studies have shown that CerS4 is

expressed in the heart, has a high affinity for C18 and C20

acyl-CoA, and contributes to heart failure (35). In

cardiomyocytes, CerS2 overexpression causes oxidative stress

and mitochondrial dysfunction via lipid overload, eventually

leading to apoptosis (36).
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4.2. Water sodium retention symptoms with
ceramide kidney score

In patients with worsening heart failure, myocardial ischemia

and hypoxia cause a serious decline in cardiac output, leading to

a decrease in circulating blood volume and poor perfusion of

major peripheral organs. The imbalance of metabolic pathways,

such as the inflammatory response, insulin resistance, weakening

of anabolism, and accumulation of oxygen free radicals caused

by abnormal hemodynamic changes, simultaneously affects

cardiac function and aggravates disease progression (34). Studies

revealed that under acute kidney damage state, production of

reactive oxygen species and proximal tubular cell death induced

activation of CerS6, causing the elevation of C16:0) both in

kidney tissue and plasma (37–39). Our data suggest that Cer

(d18:1/16:0) and Cer(d18:1/18:0) levels are associated with kidney

damage.
4.3. Chronic metabolic vulnerability of liver
and ceramide liver score

Previous studies have pointed out that the difference between

long-chain (C16:0-C18:0) and ultra-long-chain (C20:0-C24:0)

ceramide is produced by different ceramide synthase isomers

(CerS1/5/6 and CerS2/4, respectively). Different concentrations

of plasma ceramides may also reflect changes in the

composition and function of cellular membranes within tissues.

Our study showed that Cer(d18:1/16:0) and ceramide ratio Cer

(d18:1/24:1)/Cer(d18:1/24:0) indicated chronic metabolic

vulnerability and liver injury. By reducing ER stress and

PEPCK expression, plasma very-long-chain ceramide (C24,

C24:1) secreted by CerS2 reduced cellular stress and glucose

homeostasis (40–42).

CerS isoforms may partially explain the altered ceramide

composition, providing a biological explanation for the

ceramide ratios. Studies have confirmed that de novo ceramide

levels must be within a narrow range to maintain normal

cardiac homeostasis. Thus, several hypothesized biological

mechanisms link different ceramide and their ratios to cardiac

dysfunction and increased mortality. (1) Ceramide metabolism

and apoptosis in cardiac dysfunction: De Paola et al. showed

that Cer(d18:1/16:0) generates reactive oxygen species and

contributes to cardiomyocyte apoptosis. Interestingly, Cer

(d18:1/24:0) counteracts Cer(d18:1/16:0)-mediated cytochrome

c release in a dose-dependent manner, possibly by interfering

with mitochondrial outer membrane channel formation and

reducing membrane permeability (36, 43). (2) Ceramide

promotes inflammatory activation during cardiac dysfunction:

studies have revealed that ceramides contribute to

inflammatory processes both as regulators of cytokine

production and downstream effectors that mediate cytokine-

induced stress responses (44–46). Ceramides can also induce

vascular dysfunction by deactivating endothelial nitric oxide

synthase (47). (3) Ceramides as potential inducers of fibrosis:
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ceramides stimulate the proteolytic processing of cAMP-

responsive element-binding protein 3-like protein 1

(CREB3L1), a transcription factor that induces collagen

production (48, 49). Although these actions have not been

explored in the heart, these and other mechanisms may

explain how ceramides contribute to myocardial energy

metabolism, inflammation, and fibrotic responses that drive

HF progression.
5. Conclusion

In line with these previous findings, our clinical results

supported that the plasma ceramide length and ratio reflected the

impairment of heart/liver/kidney organ function in WHF

patients and indicated myocardial injury, inflammation, and

water sodium retention. Abnormal plasma ceramides are

associated with an increased risk of disease progression. Our

study proved that CHFS is a practical tool for refining the risk

stratification of a worsening adverse prognosis in patients with

WHF. Further research is needed to discern the potential of

specific ceramides to serve as therapeutic targets for HF-

protective drugs.
5.1. Limitations

This study has several limitations. Because the study was

retrospective and involved a single-center cohort, it may have

been subjected to bias owing to uncontrolled confounding

factors. We cannot prove a causal relationship between the

duration of ceramide use and progression to end-stage HF and

death. Moreover, ceramide is a sphingolipid derived from diet

and other factors. Despite these limitations, our results provide

new insights into the value of ceramides in evaluating the

prognosis of patients with WHF.
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