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Background: HIV continues to be a major global health issue. The relative risk of
cardiovascular disease (CVD) among people living with HIV (PLWH) was 2.16
compared to non-HIV-infections. The prediction of CVD is becoming an
important issue in current HIV management. However, there is no consensus on
optional CVD risk models for PLWH. Therefore, we aimed to systematically
summarize and compare prediction models for CVD risk among PLWH.
Methods: Longitudinal studies that developed or validated prediction models for
CVD risk among PLWH were systematically searched. Five databases were
searched up to January 2022. The quality of the included articles was evaluated
by using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). We
applied meta-analysis to pool the logit-transformed C-statistics for
discrimination performance.
Results: Thirteen articles describing 17 models were included. All the included
studies had a high risk of bias. In the meta-analysis, the pooled estimated
C-statistic was 0.76 (95% CI: 0.72–0.81, I2 = 84.8%) for the Data collection on
Adverse Effects of Anti-HIV Drugs Study risk equation (D:A:D) (2010), 0.75 (95%
CI: 0.70–0.79, I2 = 82.4%) for the D:A:D (2010) 10-year risk version, 0.77 (95% CI:
0.74–0.80, I2 = 82.2%) for the full D:A:D (2016) model, 0.74 (95% CI: 0.68–0.79,
I2 = 86.2%) for the reduced D:A:D (2016) model, 0.71 (95% CI: 0.61–0.79, I2 =
87.9%) for the Framingham Risk Score (FRS) for coronary heart disease (CHD)
(1998), 0.74 (95% CI: 0.70–0.78, I2 = 87.8%) for the FRS CVD model (2008), 0.72
(95% CI: 0.67–0.76, I2 = 75.0%) for the pooled cohort equations of the American
Heart Society/ American score (PCE), and 0.67 (95% CI: 0.56–0.77, I2 = 51.3%) for
the Systematic COronary Risk Evaluation (SCORE). In the subgroup analysis, the
Abbreviations

CVD, cardiovascular disease; PLWH, people living with HIV; PROBAST, Prediction model Risk Of Bias
ASsessment Tool; D:A:D, the Data collection on Adverse Effects of Anti-HIV Drugs Study risk equation;
FRS, Framingham Risk Score; CHD, coronary heart disease; PCE, the pooled cohort equations of the
American Heart Society/American score; SCORE, the Systematic COronary Risk Evaluation; HAART,
highly active antiretroviral therapy; CI, confidence interval; CHARMS, the Checklist for critical Appraisal
and data extraction for systematic Reviews of prediction Modelling Studies; PRISMA, the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses; REGICOR, FRS adaptation for the Spanish
population; PROCAM, the Prospective Cardiovascular Munster Study; SCORE-NL, SCORE adjusted for
national data; GND, Greenwood-Nam-D’Agostino; MCAR, missing completely at random; MAR, missing at
random; MNAR, missing not at random; ML, machine learning; IL-1, interleukin-1.
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discrimination of PCE was significantly better in the group aged ≤40 years than in the group
aged 40–45 years (P=0.024) and the group aged ≥45 years (P=0.010). No models were
developed or validated in Sub-Saharan Africa and the Asia region.
Conclusions: The full D:A:D (2016) model performed the best in terms of discrimination,
followed by the D:A:D (2010) and PCE. However, there were no significant differences
between any of the model pairings. Specific CVD risk models for older PLWH and for
PLWH in Sub-Saharan Africa and the Asia region should be established.
Systematic Review Registration: PROSPERO CRD42022322024.
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1. Introduction

HIV continues to be a major global health issue. At the end of

2020, there were approximately 37.7 million people living with

HIV (PLWH), with 1.5 million people becoming newly infected

with HIV (1). The widespread usage of highly active antiretroviral

therapy (HAART) drastically reduced death rates and potential

years of life lost (2). However, as life expectancy increases, non-

AIDS-defining illnesses are becoming increasingly common causes

of death, with cardiovascular disease (CVD) accounting for a

sizable portion (3, 4). CVDs, a set of heart and blood vessel

disorders, are the leading causes of mortality worldwide. An

estimated 17.9 million individuals died from CVDs in 2019,

accounting for 32% of all global fatalities (5). According to a meta-

analysis that included 793,635 participants from 73 studies, the

relative risk (RR) of CVD among PLWH was 2.16 [95% confidence

interval (CI), 1.68–2.77] compared to non-HIV-infections (6). In

addition, it was indicated that HIV infection is a risk-enhancing

factor for CVD (7). Moreover, ART may have a negative

association with an increased risk of CVD events, especially among

PLWH with other risk factors for cardiovascular disease (8, 9). As

a result, the prediction and treatment of CVD are becoming even

more important issues in current HIV management (4).

Prediction models are useful tools for estimating the probability

or risk of specific future occurrences based on the combination of

multiple predictors (10, 11). They aid clinicians in making

therapeutic decisions and determining subsequent steps in

therapy (12). CVD risk prediction is crucial to treatment

guidelines and CVD control (13). Using prediction models is

beneficial to make patients aware of their condition and to

encourage them to adopt a healthy lifestyle (12). A substantial

number of prediction models for various cardiovascular outcomes

have been established for the general population, such as the

Framingham Risk Score (FRS) (14), the Systematic COronary

Risk Evaluation (SCORE) (15), and the pooled cohort equations

of the American Heart Society/American score (PCE) (16). The

usefulness of most of the models remains unclear because of

methodological shortcomings, incomplete presentation, and lack

of external validation (17).

Considering other potential factors driving CVD risk among

PLWH, HIV-specific CVD prediction models have been developed,

such as the Data collection on Adverse Effects of Anti-HIV Drugs

Study risk equation (D:A:D) (18). Several CVD prediction models
02
developed for the general population have also been validated in

PLWH. However, the findings of model performance conflicted.

Delabays et al. indicated that general models were valid to predict

CVD for PLWH. Adding HIV-specific factors to scores did not

result in a clinically significant improvement (19). In contrast,

Triant et al. recommended adding HIV-related factors because

general algorithms consistently underestimate the risk of CVD for

PLWH (20). Whether HIV-specific models perform better than

general models remains unknown. There is no consensus on

optional CVD risk models for PLWH.

Soares et al. conducted a systematic review to summarize the

CVD prediction models used for PLWH (21). However, they

only considering studies published before January 31, 2021.

Additionally, Soares et al. did not perform a subgroup analysis to

ensure that the CVD risk prediction model treated subgroups

(such as geographic region, race, and age) fairly in PLWH. The

fairness of prediction models is crucial for promoting health

equity, as ignoring differences in social determinants of health

can result in inaccurate risk stratification in vulnerable groups,

further exacerbating existing inequities (22).

Therefore, we aimed to systematically summarize multivariable

prediction models for CVD risk among PLWH. Specific objectives

included, first and foremost, objectively appraising the risk of bias

in papers. Second, we conducted a meta-analysis on discrimination

to estimate and compare the models’ performance quantitatively.

This review was conducted in accordance with the guidelines of

the Checklist for critical Appraisal and data extraction for

systematic Reviews of prediction Modelling Studies (CHARMS)

(23). The protocol was registered on PROSPERO

(CRD42022322024). The Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines

were used to guide the reporting of our review (24).
2. Methods

2.1. Search strategy

We conducted a three-step search to identify both published

studies and gray literatures. First, keywords and search terms

were captured from an initial limited search via PubMed/

MEDLINE. This informed the development of the search strategy

with the help of a librarian. Second, a comprehensive search was
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conducted using the following databases: PubMed/MEDLINE,

MEDLINE (Ovid), Embase (Ovid), CINAHL (EBSCO), and Web

of Science. Gray literatures were searched via Google Scholar and

Baidu. In PubMed/MEDLINE, we searched for papers in English

using MeSH terms ([“HIV” OR “Acquired Immunodeficiency

Syndrome” OR “HIV infections”] AND [prognosis OR survival

OR mortality OR risk]) combined with the title/abstract

keywords ([“progn*” OR “predic*” OR “risk” OR “model*”]

AND [“HIV” OR “AIDS” OR “Acquired Immunodeficiency

Syndrome” OR “PLWH”] AND [“machine learning” OR

“artificial intelligence” OR “algorithm”] AND [“cardiovascular

disease” OR “CVD” OR “cardiovascular event*” OR“main

cardiovascular adverse event”OR “MACE”]). The search was

limited to studies from inception to January 2022. The full

search strategies for each database are presented in

Supplementary Appendix S1. Finally, references in all included

studies were manually reviewed to supplement the database search.
2.2. Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) studies that assessed

risk models that predicted the short-term or long-term risk of

cardiovascular disease among PLWH. Cardiovascular disease in

our review included coronary heart disease (CHD), myocardial

infarction (MI), stroke, and other heart and blood vessel

disorders (5). (2) Studies that developed new models, conducted

external validation of an existing model, and/or updated an

existing model. (3) Studies published in English or Chinese. No

restrictions were made on the setting (e.g., inpatients,

outpatients), prediction horizon (how far ahead the model

predicted), or predictors or outcomes. Cross-sectional studies

were excluded. Studies that merely carried out risk factor analysis

without modeling were further excluded.
2.3. Study screening and selection

All identified citations were imported into EndNote X8

(Clarivate Analytics, PA, United States) to remove duplicates.

Two reviewers (JY & ZZ) independently carried out screening

and selection. First, titles and abstracts were screened to ascertain

potentially relevant studies. Next, we screened the full texts and

identified studies that met the inclusion and exclusion criteria.

Discrepancies were discussed between two reviewers until a

consensus was reached after referring to the protocol.
2.4. Quality appraisal

We appraised the quality of the included articles by using the

Prediction model Risk Of Bias ASsessment Tool (PROBAST),

which is an assessment tool developed specifically for diagnostic

and prognostic prediction model studies (25). Two reviewers (JY

& ZZ) assessed the risk of bias and applicability respectively. For

the assessment of risk of bias, four domains (participants,
Frontiers in Cardiovascular Medicine 03
predictors, outcome, analysis) with a total of twenty signaling

questions were judged. Each signaling question was answered as

“yes”, “probably yes”, “probably no”, “no”, or “no information”.

Based on the answers to the signaling questions, we used our

own judgment to rate the domains as high (−), low (+), or

unclear (?) risk of bias. We assessed applicability by using the

same first three domains but without signaling questions. Finally,

we rated the overall ROB and applicability as high (−), low (+),

or unclear (?). Any disagreement was discussed between the two

reviewers until a consensus was reached.
2.5. Data extraction

Two reviewers (JY & ZZ) independently extracted information

from the included papers, including the authors, year, location,

study design, study population, predicted outcomes, predictors,

sample size, missing data, modeling method, method of validation,

and predictive performance. We extracted data separately for each

model when a study described multiple models. Any disagreement

was discussed, and a consensus was reached.
2.6. Data synthesis

We performed descriptive analysis to summarize the

characteristics of the models. If a model was validated in two or

more studies, we applied a random effects meta-analysis model to

evaluate discrimination performance (26). Since different studies

reported different discrimination metrics, either by Harrell’s C-

statistic or by area under the curve (AUC), we further pooled them

separately. Due to the variability in the validation population,

differences in outcome and predictor definitions across studies, and

the non-normal distribution of the C-statistic between studies, we

transformed the C-statistic using a logit transformation (27). When

confidence intervals were not available, we approximated them by

using the standard normal distribution (28). We considered

C-statistics in the range of 0.50–0.59 to indicate poor, 0.60–0.69 to

indicate moderate, 0.70–0.79 to indicate acceptable, 0.80–0.89 to

indicate very good, and 0.90 or greater to indicate excellent

discrimination (29). The I2 statistics were used to quantify the

heterogeneity of the studies. In addition, subgroup analyses were

performed in terms of sample size, age, and follow-up. The

validation cohort was defined as “Mainly White” if more than 50%

of the population was white. Since all the studies encompass both

white and black individuals, the term “Mainly” was used instead of

specifying either “White” or “Black”. Analyses were performed in

Stata 17.0 (College Station, TX).
3. Results

3.1. Inclusion of studies

A total of 6,192 records were obtained from the databases.

After removal of duplicates, the titles and abstracts of 3,901
frontiersin.org
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articles were screened. The full texts of 76 articles were reviewed,

and 63 articles were excluded because they did not meet the

predefined inclusion criteria. Finally, 13 articles were included in

our systematic review (Figure 1) (19, 20, 30–40).
3.2. Characteristics of eligible studies

Table 1 shows the characteristics of the included studies.

Overall, 17 different models were derived from 13 studies (19, 20,

30–40). There were six HIV-specific models, including the D:A:D

model (2010), the D:A:D (2010) 10-year version model, the

updated full D:A:D (2016) model, the updated reduced D:A:D

(2016) model, the HIV MI-1, the HIV MI-2 models. The other 11

models were developed for the general population and validated in

PLWH, including the FRS (2004), FRS for CVD risk (2008), FRS
FIGURE 1

Flow diagram of the selection process.
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for CHD risk (1998), FRS adjusted for Colombia, FRS adaptation

for the Spanish population (REGICOR), FRS developed specifically

for the Italian population by Progetto CUORE, the Prospective

Cardiovascular Munster Study (PROCAM), SCORE, SCORE 2,

SCORE adjusted for national data (SCORE-NL), and PCE.

In total, four studies (20, 32–34) described the development

process of prediction models, and 13 studies (19, 20, 30–40)

conducted model external validation. Four studies were carried

out in the United States (20, 30, 32, 39), followed by Italy (n = 2)

(31, 37), Switzerland (n = 1) (19), Colombia (n = 1) (35), Spain

(n = 1) (36), Germany (n = 1) (38), and Netherlands (n = 1) (40),

with two being multicenter studies from several countries

(33, 34). The sample size ranged from 369 (31) to 32,663 (34).

The number of prediction events varied from 8 (35) to 1,393

(40). Twelve studies were mostly conducted on males, while one

study (20) included only male participants.
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TABLE 1 Characteristics of the included studies.

Author,
Year

Country Study Design Sample Size Age (years) Male Follow-up Number of
Outcome
Events

Anikpo, 2021 US Prospective cohort
Validation only: D:A:D (2016)
reduced model

1,029 Median: 45.0
(35.0–52.0)

70% Baseline: 2 years; Follow-
up until 2019.12.31

78

Delabays,
2021

Switzerland Prospective cohort
Validation only: D:A:D (2010),
SCORE2, PCE

6,373 Mean: 40.6 ± 9.0 71.60% Baseline: 7 years; Mean
follow-up time: 13.5 ±

4.1 years

533

De Socio,
2017

Italy Prospective cohort
Validation only: FRS CVD (2008),
SCORE, Italian “Progetto Cuore”

369 Mean: 43.0 ± 9.0 62.90% Baseline:: 1 year;
Median: 10 years

34, 9, 21,
respectively

Feinstein,
2017

US Prospective cohort
Development: HIVMI-1, HIVMI-2;
Validation: PCE

HIVMI: 19,829,
PCE: 11,288

Mean: 41.3 81.90% Mean follow-up: 4.1
years, censored at 10

years

HIVMI: 353, PCE:
247

Friis-Møller,
2010

Europe,
Australia

Prospective cohort
Development: D:A:D (2010)
Validation: FRS CHD (1998), FRS
CVD (2008)

22,625 Median: 40.0
(35.0–47.0)

74.10% Median baseline: 2000.7
Median follow-up years:
4.80 (3.04–7.00) years

CVD/CHD/MI
events: 663/554/

387

Friis-Møller,
2016

Europe,
Australia

Prospective cohort
Development: D:A:D (2016) full
and reduced model Validation: FRS
CVD (2008)

32,663 Median: 39.0
(33.0–46.0)

74% Median follow-up time:
5.7 (2.9–8.8) years

Follow-up until 2011.2.1

1,010

García-Peña,
2021

Colombia Prospective cohort
Validation only: D:A:D (2010), FRS
(2004), FRS CVD (2008), FRS
Adjusted for Colombia, SCORE,
PROCAM, PCE

808 Mean: 35.0 88% At least 5 years 8

Herrera, 2016 Spain Prospective cohort
Validation only: FRS CHD (1998),
REGICOR

641 Mean: 45.7 ± 9.5 81.65% Baseline: 0.5 year
Follow-up until 2013.6
Mean follow-up: 10.2

years

38

Raggi, 2016 Italy Prospective cohort
Validation only: DAD (2016), FRS
CVD (2008), PCE

2,550 Median: 45.0
(42.0–49.0)

66% Mean follow-up: 6.5
years

69

Schulz, 2021 Germany Prospective cohort
Validation only: FRS CHD (1998),
SCORE, PCE

626 totally; 470,
567, 464,
respectively

Mean: 53.0,
53.0, 53.0,
respectively

89.40%, 89.20%,
89.70%,

respectively

Mean follow-up time:
4.5, 4.6, 4.6 years,

respectively

57, 44, 46,
respectively

Thompson-
Paul, 2016

US Prospective cohort
Validation only: D:A:D (2010), D:A:
D (2010) 10-year version, FRS CVD
(2008), PCE, SCORE

2,283 Median: 42.2
(36.4–48.4)

75.90% Baseline: 8 years;
Censored: 2013.9.30
Median follow-up 6.6

(3.3–10.4) years

220, 199, 151, 18,
respectively

Triant, 2018 US Prospective cohort
Validation: FRS CHD (1998), FRS
CVD (2008), PCE; Developed new
models based on HIV cohort

1,272 Mean: 51.2 ± 8.7 100% Baseline: 3 years; Median
follow-up time: 4.4 years

hard CVD: 48;
ASCVD: 78

van Zoest,
2019

Netherlands Prospective cohort
Validation only: D:A:D (2016),
D:A:D (2010) 10-year version,
SCORE-NL, FRS CVD (2008), PCE

16,043, 15,986,
15,866, 16,070,
respectively

Median: 43.0
(36.0–50.0)

82.40% Median follow-up: 5.4
(2.5–9.0), 5.4 (2.5–9.0),

5.3 (2.5–8.9), 5.4
(2.5–9.0) years

Censored at 10 years at
the earliest

478, 1,138, 1,393,
955

D:A:D, Data collection on Adverse Effects of Anti-HIV Drugs Study risk equation; FRS, Framingham Risk Score; REGICOR, FRS adaptation for the Spanish population;

PROCAM, the PROspective CArdiovascular Munster study; SCORE, Systematic COronary Risk Evaluation; SCORE-NL, SCORE adjusted for national data; PCE, pooled

cohort equations of the American Heart Society/American score.

Yu et al. 10.3389/fcvm.2023.1138234
Among four development studies, three (20, 33, 34) used

backward selection to remove nonsignificant predictors, whereas

the other one (32) did not report a specific strategy for variable

selection. Strategies dealing with missing data varied, including

excluding participants with missing data (34) and using single

imputation (32); one study did not describe a strategy (33).

Among 13 validation studies, nine studies reported both the

calibration and discrimination performance of the models (19,

20, 30–34, 39, 40). Two studies reported only discrimination (35,
Frontiers in Cardiovascular Medicine 05
38), one study reported only calibration (37), and one study did

not report model performance (36). Discrimination was reported

as Harrell’s C-statistic in six studies (20, 30, 34, 39, 40) and AUC

in five studies (19, 31, 33, 35, 38). A variety of methods were

used to report the calibration performance of the models,

including the observed-expected ratio (n = 5) (30, 31, 33, 39, 40),

Hosmer–Lemeshow test (n = 3) (19, 34, 39), calibration plot

(n = 3) (30, 32, 40), Greenwood-Nam-D’Agostino (GND) test

(n = 3) (20, 32, 40), and Brier score (n = 1) (19).
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3.3. Risk of bias

Figure 2 shows a summary of the risk of bias and applicability

for all included studies. All of the included studies had a high risk of

bias. Ten studies (76.9%) (19, 20, 30–32, 36, 37, 40) were considered

to have a low risk of bias in the predictor domain, and all the

included studies (19, 20, 30–40) were considered to have a low

risk of bias in the outcome domain. The risk of bias related to the

participant domain was high in seven studies (53.8%) (30, 33–35,

38–40), mainly because they excluded participants with missing

data. Twelve studies were judged to have high risk of bias in the

analysis domain (19, 20, 30–33, 35–40). Nine studies ignored or

dealt with model overfitting in an inappropriate manner (18, 30–

32, 35–39). Seven studies had lower-than-reasonable numbers of

participants with the events (20, 30, 31, 35–38). Ten studies did

not report the methodologies for continuous and categorical

predictor transformation (19, 20, 31, 32, 35–40).
3.4. HIV-specific models

Table 2 shows the characteristics of six HIV-specific models

(32–34, 39, 40). In total, four models were developed in
FIGURE 2

Risk of bias and applicability of the included studies.
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multicenter studies (33, 34, 39, 40), while the remaining two

models were developed in the US (32). Four models could be

used in all age groups (33, 34, 39, 40). Three models were

developed to predict the 5-year risk of CVD, including the D:A:D

(2010), updated full D:A:D (2016) and reduced models, whereas

the other three models were for 10-year risk prediction. For the

modeling methods, three models utilized Cox proportional

hazards modeling (32, 34), two used Poisson regression modeling

(33, 39, 40), and one used lasso and ridge regression (32).

In total, 24 predictors were considered. Age, sex, family history of

CVD, systolic blood pressure, Smoking, total cholesterol, high-density

liptein cholesterol, and diabetes mellitus (n = 4) (33, 34, 39, 40) were

the most common predictors, followed by current abacavir use (n =

3) (34, 39, 40). HIV-specific risk factors were included in four

models: three models included current abacavir usage (33, 39, 40),

two models included CD4 count (34) and exposure to lopinavir/

ritonavir and indinavir (33, 39, 40), and one model included

cumulative protease inhibitor (PI) exposure (34) and cumulative

nucleoside reverse transcriptase inhibitor (NRTI) exposure (34).

The definitions of CVD outcomes revealed considerable

heterogeneity. All six models included myocardial infarction (MI)

(32–34, 39, 40), followed by coronary heart disease (CHD) death,

carotid artery endarterectomy, invasive coronary artery

procedure, and stroke (n = 4) (33, 34, 39, 40).
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TABLE 2 Predictors and outcomes of six HIV-specific models.

D:A:D (2010) for
5-year risk (33)

D:A:D (2010) for
10-year risk (39,

40)

Full D:A:D model
(2016) for 5-year

risk (34)

Reduced D:A:D
(2016) model for
5-year risk (34)

HIV MI-1
(32)

HIV
MI-2
(32)

Population Geographic region Europe, Argentina,
Australia, US

Europe, Argentina,
Australia, US

Europe, Argentina,
Australia, US

Europe, Argentina,
Australia, US

US US

Age limits Not defined Not defined Not defined Not defined 40–79 years old 40–79
years old

Predictors Age √ √ √ √ △ △

Sex √ √ √ √ △ △

Ethnicity - - x x △ △

Family history of CVD √ √ √ √ - -

SBP √ √ √ √ △ △

Smoking √ √ √ √ △ △

Use of
antihypertensive drugs

- - - - △ △

TC √ √ √ √ △ △

HDL-C √ √ √ √ △ △

DM √ √ √ √ △ △

TGs x x x x - -

Glucose - - x x - -

CD4 count x x √ √ △ △

HIV RNA (HIV viral
load)

x x x x △ △

BMI x x x x - -

Antiretroviral therapy - - - - △ △

Cumulative cART - - x x - -

Cumulative PI
exposure

x x √ x △ △

Cumulative NRTI
exposure

- - √ x - -

Exposure to lopinavir/
ritonavir

√ √ x x - -

Exposure to indinavir √ √ x x - -

Current abacavir use √ √ √ x - -

Lipodystrophy x x x x - -

HIV exposure category x x x x - -

CVD
endpoints

Carotid artery
endarterectomy

Y Y Y Y N N

CHD death Y Y Y Y N N

Invasive coronary
artery procedure

Y Y Y Y N N

MI Y Y Y Y Y Y

Stroke Y Y Y Y N N

Prediction
horizon

5 years 10 years 5 years 5 years 10 years 10 years

Modeling
methods

Poisson regression
model

Poisson regression
model

Cox model Cox model Lasso and ridge
regression

Cox
model

(√), predictor included in the final prediction model; (x), predictor not included in the final prediction model and excluded during modeling; (-), predictor was not

considered before modeling; (△), predictor included in primary factor but did not report eventually included factor.

D:A:D, Data collection on Adverse Effects of Anti-HIV Drugs Study risk equation; CVD, cardiovascular disease; SBP, systolic blood pressure; TC, total cholesterol; HDL-C,

high-density liptein cholesterol; DM, diabetes mellitus; TGs, triglycerides; HIV, human immunodeficiency virus; BMI, body mass index; cART, combination antiretroviral

treatment; PI, protease inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; CHD, coronary heart disease.
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3.5. Meta-analysis of prediction models

Figure 3 shows the results of the meta-analysis of the eight

models. We conducted meta-analysis only on model

discrimination. Calibrations were not synthesized due to

inconsistent and inadequate data. In total, eight models were

validated more than once and included in the meta-analysis. Two

validation studies were removed from the meta-analysis because
Frontiers in Cardiovascular Medicine 07
they did not report C-statistics or AUCs (36, 37). The FRS CVD

model (2008) was the most widely validated model (n = 7) (20,

31, 33–35, 39, 40), followed by the PCE model (n = 6) (20, 32,

35, 38–40), the D:A:D model (2010) (n = 4) (19, 33, 35, 39), and

the SCORE (n = 4) (31, 35, 38, 39). In the meta-analysis, the

pooled estimated C-statistic/AUC was 0.76 (95% CI: 0.72–0.81,

I2 = 84.8%) for the D:A:D (2010), 0.75 (95% CI: 0.70–0.79, I2 =

82.4%) for the D:A:D (2010) 10-year risk version, 0.77 (95% CI:
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FIGURE 3

Meta-analysis of the C-statistic for the CVD prediction models in PLWH.
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0.74–0.80, I2 = 82.2%) for the full D:A:D (2016) model, 0.74 (95%

CI: 0.68–0.79, I2 = 86.2%) for the reduced D:A:D (2016) model,

0.71 (95% CI: 0.61–0.79, I2 = 87.9%) for the FRS CHD model

(1998), 0.74 (95% CI: 0.70–0.78, I2 = 87.8%) for the FRS CVD

model (2008), 0.72 (95% CI: 0.67–0.76, I2 = 75.0%) for the PCE
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model, and 0.67 (95% CI: 0.56–0.77, I2 = 51.3%) for the

SCORE. However, there were no significant differences between

any of the model pairings. Table 3 shows the results of the

meta-analysis of C-statistics and AUC respectively. Overall, all

of the models showed an acceptable discrimination.
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TABLE 3 Meta-analysis of the Harrel’s C-statistic and AUC respectively of the CVD models for PLWH.

Models Number of Studies
using Harrel’s-C

statistic

Logit
C-statistic

I2, % Number of
Studies using

AUC

Logit_AUC I2, % Effect
model

D:A:D (2010) (19, 33, 35, 39) 1 0.800
(0.564, 1.036)

0 3 1.277
(1.048, 1.506)

79.7 Random

D:A:D (2010)-10 years (39, 40) 2 1.092
(0.835, 1.349)

82.4 Random

D:A:D (2016) the full model
(34, 39, 40)

3 1.223
(1.040, 1.406)

82.2 Random

D:A:D (2016) the reduced model
(30, 34, 39)

3 1.044
(0.738, 1.350)

86.2 Random

FRS CHD (1998) (20, 33, 38) 1 0.754
(0.428, 1.080)

0 2 0.947
(0.343, 1.374)

91.3 Random

FRS CVD (2008) (20, 30, 33–35,
39, 40)

4 0.914
(0.670, 1.158)

92.2 3 1.440
(0.983, 1.896)

57.9 Random

PCE (20, 32, 35, 38–40) 4 0.993
(0.809, 1.177)

72.6 2 1.095
(−0.427, 2.616)

72.2 Random

SCORE (31, 35, 38, 39) 1 0.364
(−0.201, 0.962)

0 3 0.914
(0.195, 1.633)

61.4 Random

Total 19 1.006
(0.912, 1.101)

86.6 13 1.124
(0.963, 1.285)

77.1 Random

AUC, area under the curve; D:A:D, Data collection on Adverse Effects of Anti-HIV Drugs Study risk equation; FRS, Framingham Risk Score; SCORE, Systematic COronary

Risk Evaluation; PCE, pooled cohort equations of the American Heart Society/American score.
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3.6. Subgroup analysis

To explore potential inequities in prediction models and sources

of heterogeneity, we conducted subgroup analyses for sample size,

age, and follow-up period (Table 4). The discrimination of PCE

was significantly better in the group aged ≤40 years than in the

groups aged 40–45 years (P = 0.024) and ≥45 years (P = 0.010).

The discrimination of the full D:A:D (2016) model was

significantly better in the group with sample size ≥10,000 than in

the group with sample size 1,000–10,000 (P = 0.0076).

We conducted subgroup analysis to compare different models

in North America (20, 30, 39) and Mainly White (20, 33, 34, 39,

40) population separately because all models were validated in

these two groups. No significant differences were found (P >

0.05). In both groups, only the SCORE performed poorer than

the other models in terms of discrimination, with a C-statistic of

0.59 (0.45, 0.73). No models were developed or validated in Sub-

Saharan Africa and the Asia region.
4. Discussion

This systematic review identified 17 prediction models for

predicting CVD risk among PLWH. Among them, six were HIV-

specific models. All included studies were rated as having a high

risk of bias against the PROBAST checklist. Only eight models

were externally validated at least once. These were included in the

meta-analysis, and all of them showed acceptable discrimination.

The FRS was the most widely validated model. Most prediction

models had acceptable discrimination. The full D:A:D (2016)

model performed the best in terms of discrimination, followed by

D:A:D (2010) and PCE. However, there were no significant

differences between any of the model pairings. We also found
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that differences in model discrimination existed when they were

stratified by geographic region, sample size, and age.

The full D:A:D (2016) model had higher discrimination for

PLWH. However, it remained at a high risk of bias as they only

included participants with complete information on all predictors.

It is inappropriate to exclude participants with missing data

directly. Missing data could be divided into missing completely at

random (MCAR), missing at random (MAR), and missing not at

random (MNAR) (41). MCAR and MAR are less problematic,

but they seldomly occur (24, 41). Consequently, complete case

analysis could lead to selection bias, and the characteristics of

participants may differ from those with missing data. A

nonrandom sample subset could frequently generate considerable

bias that cannot be overcome in estimating model parameters and

yielding predictive performance (24, 41, 42). Currently, common

strategies for handling missing data include zero imputation,

mean imputation, and multiple imputation (43). Multiple

imputation is often regarded as a preferred method for avoiding

selection bias and statistical power loss (24, 44). Furthermore, it is

advisable to consider combining unsupervised and supervised

learning methods for imputation (42). Strategies for handling

missing data should be chosen with caution depending on the

intended application of the prediction model (41).

The D:A:D cohort was the largest HIV cohort in our study. A

large sample size was one of the key points in developing robust

models that would be more reliable for application in new datasets

(45). In contrast, nearly half of the included studies (n = 7) (20,

30, 31, 35–38) had limited sample sizes and numbers of outcome

events. For development studies, the sample size should ensure at

least 10 events per candidate predictor parameter. For studies

validating prediction models, a minimum of 100 events and 100

nonevents are suggested (24). A small sample size may result in

model overfitting and inaccurate predictions (45, 46).
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TABLE 4 Subgroup analysis of the C-statistics of the CVD prediction models for PLWH.

Subgroup Number of Studies Logit C-statistic
(95% CI)

Model I2, % P for heterogeneity P for trend

Sample Size
D:A:D (2010) ≤1,000 1 2.442 (1.654, 3.230) Random 0.2104

1,000–10,000 2 1.000 (0.639, 1.360) Random 87.1 0.005

≥10,000 1 1.203 (1.084, 1.321) Random

D:A:D (2016) the full model 1,000–10,000 1 0.895 (0.650, 1.140) Random 0.0076*

≥10,000 2 1.329 (1.262, 1.397) Random 0 0.936

D:A:D (2016) the reduced model 1,000–10,000 2 0.898 (0.717, 1.079) Random 0 0.6 0.1359

≥10,000 1 1.283 (1.197, 1.368) Random

FRS CVD (2008) ≤1000 2 1.744 (1.093, 2.396) Random 17.7 0.27 0.0263*

1,000–10,000 2 0.649 (0.501, 0.797) Random 0 0.788

≥10,000 3 1.164 (1.105, 1.224) Random 5.2 0.348

PCE ≤1,000 2 1.095 (−0.427, 2.616) Random 72.2 0.058 0.7699

1,000–10,000 2 0.812 (0.629, 0.995) Random 0 0.319

≥10,000 2 1.139 (1.044, 1.234) Random 0 0.624

SCORE ≤1,000 3 0.914 (0.195, 1.633) Random 61.4 0.075 0.4669

1,000–10,000 1 0.364 (−0.234, 0.962) Random

Age
D:A:D (2010) ≤40 2 1.759 (0.551, 2.967) Random 89.2 0.002 0.324

40–45 2 1.000 (0.639, 1.360) Random 87.1 0.005

D:A:D (2016) the full model ≤40 1 1.331 (1.250, 1.412) Random 0.6590

40–45 2 1.124 (0.703, 1.544) Random 89.5 0.002

FRS CVD (2008) ≤40 3 1.199 (1.099, 1.300) Random 32.9 0.225 0.4033

40–45 3 1.051 (0.659, 1.444) Random 90.8 <0.0001

≥45 1 0.619 (0.354, 0.885) Random

PCE ≤40 1 2.091 (0.487, 3.695) Random 0.0078*

40–45 2 1.083 (0.951, 1.215) Random 43.7 0.169

≥45 1 0.640 (0.413, 0.868) Random 0 0.384

SCORE 40–45 2 0.778 (−0.049, 1.605) Random 71.9 0.059 0.3616

≥45 1 0.490 (0.103, 0.877) Random

Follow-up
FRS CVD (2008) ≤5 years 2 0.924 (0.352, 1.495) Random 93.5 <0.0001 0.3445

5–10 years 3 0.996 (0.750, 1.242) Random 92.6 <0.0001

PCE ≤5 years 3 0.797 (0.436, 1.159) Random 80.3 0.006 0.3763

5–10 years 2 1.048 (0.800, 1.297) Random 71.8 0.06

Models validated in North America 44.9 0.046 0.1852

D:A:D (2010) 1 0.690 (0.640, 0.740) Random

D:A:D (2010) 10-year version 1 0.720 (0.680, 0.760) Random

D:A:D (2016) the full model 1 0.710 (0.660, 0.760) Random

D:A:D (2016) the reduced model 2 0.711 (0.674, 0.748) Random 0 0.598

FRS CHD (1998) 1 0.680 (0.610, 0.750) Random

FRS CVD (2008) 2 0.657 (0.624, 0.690) Random 0 0.786

PCEs 3 0.715 (0.669, 0.761) Random 63.8 0.063

SCORE 1 0.590 (0.450, 0.730) Random

Models in mainly white populations 83.1 <0.001 0.2990

D:A:D (2010) 2 0.733 (0.656, 0.810) Random 87.7 0.004

DAD (2010) 10-year version 2 0.749 (0.700, 0.797) Random 81 0.022

D:A:D (2016) the full model 3 0.775 (0.745, 0.797) Random 79 0.009

D:A:D (2016) the reduced model 2 0.756 (0.695, 0.817) Random 82.2 0.018

FRS CHD (1998) 2 0.733 (0.641, 0.826) Random 84.3 0.012

FRS CVD (2008) 5 0.728 (0.694, 0.762) Random 89.3 <0.001

PCE 4 0.731 (0.696, 0.765) Random 70.2 0.018

SCORE 1 0.590 (0.450, 0.730) Random

D:A:D, Data collection on Adverse Effects of Anti-HIV Drugs Study risk equation; FRS, Framingham Risk Score; SCORE, Systematic COronary Risk Evaluation; PCE, pooled

cohort equations of the American Heart Society/American score.

*P values <0.05.
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Current models applied for PLWH lack HIV-specific predictors.

This might be attributed to the fact that the majority of prediction

models are developed for the general population. According to our

review, frequently used traditional CVD risk predictors included

age, smoking status, systolic blood pressure, total cholesterol, and

diabetes mellitus. Common HIV-specific predictors included

abacavir usage, CD4 count, and exposure to lopinavir/ritonavir

and indinavir. Previous studies presented multiple factors that

drive the risk of CVD among PLWH (47). Decreased CD4 T-cell

counts and increased HIV RNA have been demonstrated to be

linked to increased CVD rates (47, 48). A persistently lower or

inverted CD4/CD8 ratio has emerged as an independent predictor

of CVD risk (48). Analysis from observational studies showed

that most PIs, such as ritonavir-boosted darunavir/ritonavir, are

associated with progressively increased CVD risk, and the effect is

cumulative (49, 50). The results of D:A:D cohort indicated that

the incidence rate ratio of using ritonavir-boosted darunavir was

1.59 (95% CI: 1.33–1.91, per 5 years of additional use) compared

to non-use (50). Our review indicated that the full D:A:D model

(2016) performed better than the reduced model (C-statistics:

0.775 vs. 0.739). This might be due to the reduced model leaving

out ART covariates, such as PI and NRTI exposure. We

recommend including CD4 counts and the CD4/CD8 ratio, as

well as ART covariates (PI and NRTI exposure) as potential

predictors in future studies that aim to develop HIV-specific

models. In addition, it is critical to understand the role of HIV-

specific inflammation and immune activation in conferring CVD

risk (48, 51–53). Few models contained immunological-related

factors, such as soluble markers of interleukin-1 (IL-1) (53). The

feasibility and effectiveness of adding immunological-related

factors into models still remain to be assessed. Further study is

needed to add HIV-specific predictors to models.

Among published models, most used univariate or multivariate

regression analysis and no validation process. The performance of

the prediction model would be overestimated if there was no

internal or external validation process (54). Internal validation is

beneficial to provide a more accurate assessment of model

performance in new subjects (54). External validation is necessary

to determine a model’s reproducibility and generalizability to

populations with different characteristics (55). Models that have

not been validated should not be recommended for clinical use.

We suggest that future studies validate the multiple existing HIV-

specific models and compare their performance head to head.

Calibration, one of the important aspects of validating model

performance, has remained underreported in many published

studies. Calibration refers to the accuracy of absolute risk

estimates by comparing how similar the predicted risk to the

true (observed) risk in different risk strata (56). It could be

assessed in various ways, including the Hosmer–Lemeshow test

(H–L test), calibration-in-the-large, Brier score, Cox intercept

and slope, and integrated calibration index (57, 58). Although the

H–L test was one of the most common proxies for calibration

measures, we should consider its limitations, including its

vulnerability when increasing the sample size and the arbitrary

number of groups (55, 57). We recommend that future studies

combine multiple calibration measures to assess the model
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calibration more comprehensively and to promote comparability

of model calibration across studies.

Our subgroup analysis revealed differences in the model’s

discrimination when stratified by age. We found that the model’s

discrimination degraded with age. Age is an important

independent risk factor for CVD (59). Aging is always

accompanied by changes in the heart and vascular system. In

addition, older individuals are more susceptible to drug

interactions and side effects (60). Frailty, a common symptom in

older people, may also be associated with an increased risk of

CVD and CVD mortality (61, 62). These characteristics of older

adults may lead to changes in the relationship between risk factors

and CVD outcomes. Specific CVD risk models for older PLWH

should be developed and validated in the future. In addition, the

majority of models were developed and validated in America and

Europe, whereas there was a lack of models from Asia and Africa.

As global statistics revealed, Sub-Saharan Africa and the Asia have

the highest burden of HIV-associated CVD (63). Models should

be adapted to these regions and validated further in the future due

to differences in race/ethnicity, healthcare systems, and lifestyle.
5. Limitations

There are several limitations of our study. First, we included only

studies that were in English or Chinese. Articles in other languages

should be summarized in future reviews. Second, most data for

model development and validation came from developed countries.

Caution should be used when applying our findings to individuals

from different regions. Third, we conducted a meta-analysis only

on discrimination rather than calibration. This is because of the

inadequate reporting of calibration in the validation studies.
6. Implications for practice

The full D:A:D (2016) model had higher discrimination for

PLWH. In addition, the findings indicated that model performance

was associated with age. In clinical practice, health professionals

should revalidate models if the population, region, or age to which

they are applied is different from the original study. Moreover,

only eight models were validated more than once. Models that

have not been thoroughly validated are not useful for clinical

practice. Health professionals should focus on developing,

updating, and validating HIV-specific models and report them in

accordance with the Transparent Reporting of a multivariable

prediction model for Individual Prognosis Or Diagnosis (TRIPOD)

guidelines. Specific CVD risk models for older PLWH, as well as

models for Sub-Saharan Africa and the Asia region should be

established that CVD risk and prevalence vary in different regions

due to culture, local economy and health care policy.
7. Conclusion

Our systematic review summarized the prediction models for

CVD in PLWH and conducted a meta-analysis on model
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1138234
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Yu et al. 10.3389/fcvm.2023.1138234
discrimination performance. All of the models showed acceptable

discrimination. The full D:A:D (2016) model performed the best in

terms of discrimination, followed by D:A:D (2010) and PCE.

However, all these models were assessed as having a high risk of

bias. Future studies should adhere to the TRIPOD guidelines to

ensure the quality and applicability of the models. Researchers

should focus on developing and validating CVD models for PLWH.

Specific CVD risk models for older PLWH, as well as models for

Sub-Saharan Africa and the Asia region should be established.
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