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Background: There is a paucity of data on artificial intelligence-estimated
biological electrocardiography (ECG) heart age (AI ECG-heart age) for predicting
cardiovascular outcomes, distinct from the chronological age (CA). We
developed a deep learning-based algorithm to estimate the AI ECG-heart age
using standard 12-lead ECGs and evaluated whether it predicted mortality and
cardiovascular outcomes.
Methods: We trained and validated a deep neural network using the raw ECG
digital data from 425,051 12-lead ECGs acquired between January 2006 and
December 2021. The network performed a holdout test using a separate set of
97,058 ECGs. The deep neural network was trained to estimate the AI ECG-
heart age [mean absolute error, 5.8 ± 3.9 years; R-squared, 0.7 (r= 0.84, p < 0.05)].
Findings: In the Cox proportional hazards models, after adjusting for relevant
comorbidity factors, the patients with an AI ECG-heart age of 6 years older than
the CA had higher all-cause mortality (hazard ratio (HR) 1.60 [1.42–1.79]) and
more major adverse cardiovascular events (MACEs) [HR: 1.91 (1.66–2.21)],
whereas those under 6 years had an inverse relationship (HR: 0.82 [0.75–0.91]
for all-cause mortality; HR: 0.78 [0.68–0.89] for MACEs). Additionally, the
analysis of ECG features showed notable alterations in the PR interval, QRS
duration, QT interval and corrected QT Interval (QTc) as the AI ECG-heart age
increased.
Conclusion: Biological heart age estimated by AI had a significant impact on
mortality and MACEs, suggesting that the AI ECG-heart age facilitates primary
prevention and health care for cardiovascular outcomes.
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ECG age, heart age, biological ageing, artificial intelligence, mortality, hospitalization,
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Abbreviations

CVD, cardiovascular disease; CA, chronological age; ECG, electrocardiography; AI, artificial intelligence; AI
ECG-heart age, AI-estimated biological ECG heart age; MSE, mean squared error; MACE, major adverse
cardiovascular events; HR, hazard ratio; EF, ejection fraction.
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1. Introduction

Increasing age is the strongest determinant of mortality and

cardiovascular disease (CVD) (1). Chronological age (CA) is the

number of years that have passed since birth. In contrast,

biological age, caused by a gradual accumulation of impairments

to the body’s cells and tissues, also known as the physiological

and functional age, is distinct from CA (2). However, biological

aging may be evaluated over a longer time than CA if biological

processes, tissues, and organs age at a faster-than-average rate

(3). CVD frequently proceeds asymptomatically for many years,

contributing significantly to mortality, cardiovascular clinical

outcomes, and related pathological processes (4). Therefore,

biological age should be included in CVD risk assessments,

particularly for primary prevention. Although several biomarkers

of biological age, including the biochemical, molecular, and

genetic biomarkers, have been identified, it remains unclear

which best measures aging (5). It might be challenging for

healthcare service users to interpret the hazards of multiple

biochemical, molecular, and genetic biomarkers regarding

primary prevention. As the paradigm shifts from treatment-

centered to prevention-centered medicine, a demand exists for an

alternative strategy that healthcare users can readily understand

and apply to prevent CVD (6).

Twelve-lead electrocardiography (ECG) is a screening tool for

heart disease. Although ECG interpretation requires expert

knowledge and experience, artificial intelligence (AI)-enhanced

ECG using deep neural networks may discover incomprehensible

signals and patterns to humans, making it a robust, non-invasive
FIGURE 1

Creation of the study datasets. ECG, electrocardiography.
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biomarker. In addition, the AI-based ECG may predict mortality,

arrhythmias, heart failure, valvular heart disease, and electrolyte

abnormalities (7–13). Recent studies (8, 13, 14) regarding AI-

based ECG have reported that biological age is distinct from the

CA. However, data on the AI-estimated biological ECG heart age

(AI ECG-heart age) for predicting cardiovascular outcomes are

still lacking. We previously presented (10) a new deep-learning

network employing digitized ECG raw data. In this study, we

investigated whether AI ECG-heart age prediction using large-

scale 12-lead ECG raw data could predict cardiovascular-related

hospitalization and cardiovascular rates.
2. Materials and methods

2.1. Study design and patient selection

We used 12-lead ECG data, mostly from patients at the Health

Examination Center, Inha University Hospital. Overall, 226,476

adults (age ≥18 years) who underwent standard 12-lead ECG

(men, 118,559; 52.3%, mean age 47.2 ± 20.6 years) from January

2006 to December 2021 were retrospectively included. Figure 1

shows the use of training, validation, and test set cases within

this population. We extracted the XML raw data of all ECGs and

used it for deep learning. Furthermore, all ECGs were collected

using a GE-Marquette ECG machine (Marquette Tools,

Milwaukee, WI, USA). Raw data were stored as XML documents

using the MUSE data management system for databases. This

study was non-invasive and did not require patient consent; the
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study protocol was approved by the Institutional Review Board of

Inha University Hospital (2021-10-006) and adhered to the

principles of the Declaration of Helsinki. In addition, the ethical

committee of Inha University Hospital approved all analyses, and

the STARD guidelines were employed.
2.2. Development of an AI-based ECG heart
age model

The model receives eight leads (I, II, V1, V2, V3, V4, V5, and

V6) of ECG data (sampling rate, 500 samples/s) taken for 10 s as

input and output AI-estimated ECG heart age. Notably, the

values from the remaining four leads (III, aVR, aVL, and aVF)

were not included as inputs, as they can be mathematically

derived using the values of leads I and II. The initial input values

were weighed to important features through Multi-head attention

and learned through bi-directional long short-term memory

model blocks (Figure 2). The model loss function is the mean

squared error, and the optimizer is the Adam (learning rate =

0.001, β = 0.9).
2.3. Clinical outcomes analysis

We applied the AI ECG-heart age algorithm to the test set and

investigated its relationship with clinical outcomes, including all-

cause death, cardiovascular-related mortality, and major adverse

cardiovascular events (MACE). Based on 5.8 ± 3..9 years of the

mean absolute error (MAE) in our data, we classified patients

into three groups based on their AI-estimated ECG age: those

who were ≥6 years older than the CA, those who were within 6

years of the CA, and those who were ≤6 years younger than the CA.
FIGURE 2

Overview of an artificial intelligence-based age prediction algorithm using a 1
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2.4. Statistical analysis

Continuous and categorical variables are reported as mean ±

standard deviation and percentage and frequency, respectively.

Categorical variables were compared using chi-square tests, and

continuous variables were compared using one-way analysis of

variance (ANOVA) for each of the groups. Univariate

correlations between variables were assessed by Pearson’s

correlation coefficients (r). Linear regression analyses were

performed to assess the relationships between AI-ECG heart age

and ECG findings including PR interval, QRS duration, QT

interval and QTc. In addition, we performed Cox proportional-

hazard regression analysis to assess the clinical impact of the

difference between biological heart age as predicted by AI and

CA. For all variables, p < 0.05 was considered statistically

significant. All statistical analyses were performed using the

statistical package for the social sciences (version 26.0; IBM

Corp., Armonk, NY, USA) and Python.
3. Results

3.1. Baseline characteristics of the study
population

Table 1 summarizes the baseline characteristics, comorbidities

of the training set, development of the internal validation datasets

and holdout test sets, and ECG findings. The mean age of the study

population was 47.2 ± 20.6 years, and 52.3% were men. The mean

body mass index was 24.3 ± 13.7 kg/m2. The proportions of

hypertension (HTN), diabetes mellitus (DM), heart failure (HF),

and stroke were 5.2%, 4.0%, 1.1%, and 3.8%, respectively. The

heart rate per minute was 80.5 ± 41.4, and the PR interval, QRS
2-lead electrocardiogram. ECG, electrocardiography.
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TABLE 1 Characteristics of the patients and electrocardiographic findings in the training, validation, and test sets.

Characteristics Training set (n = 171,522) Validation set (n = 20,637) Test set (n = 34,317) p-value
Chronological age, years 47.11 ± 20.67 46.12 ± 20.54 48.13 ± 20.79 <0.05

Sex, male, n (%) 87,467 (50.9) 10,457 (50.6) 20,635 (51.3) 0.2

Height, cm 163.06 ± 10.64 163.39 ± 9.73 162.97 ± 9.83 0.55

Weight, kg 64.02 ± 14.33 64.56 ± 13.72 63.83 ± 16.64 0.36

BMI, (kg/m2) 24.36 ± 14.73 24.37 ± 13.0 24.02 ± 9.29 0.52

Obesity (BMI ≥ 25 kg/m2), % 3,660 (2.29) 462 (2.4) 907 (2.41) 0.46

DM, n (%) 6,301 (3.94) 768 (4.01) 1,623 (4.23) <0.05

HTN, n (%) 8,241 (5.16) 1,005 (5.26) 2,041 (5.43) 0.07

Dyslipidemia 4,691 (2.93) 535 (2.80) 1,103 (2.93) 0.54

HF, n (%) 1,788 (1.12) 225 (1.17) 512 (1.36) <0.05

Stroke (ischemic, hemorrhagic)/TIA), n (%) 6,089 (3.81) 717 (3.75) 1,536 (4.09) <0.05

MI, n (%) 1,458 (0.91) 184 (0.96) 363 (0.96) 0.48

Vascular disease (PAOD), n (%) 1,218 (0.76) 139 (0.72) 300 (0.79) 0.55

CKD, n (%) 2,263 (1.41) 231 (1.20) 613 (1.63) <0.05

ECG findings

Heart rate, bpm 80.22 ± 30.88 79.59 ± 41.01 82.15 ± 43.67 <0.05

PR interval, ms 159.98 ± 28.21 159.68 ± 28.80 159.61 ± 28.34 <0.05

QRS duration, ms 92.57 ± 16.07 92.67 ± 15.97 92.83 ± 17.36 <0.05

QT interval, ms 393.76 ± 41.68 394.13 ± 40.53 393.30 ± 43.49 <0.05

QTc, ms 432.36 ± 34.07 430.72 ± 33.11 434.79 ± 36.32 <0.05

P wave axis 48.68 ± 23.6 48.58 ± 23.47 48.47 ± 24.16 <0.05

R wave axis 40.30 ± 39.38 41.29 ± 38.46 39.72 ± 40.38 <0.05

T wave axis 46.08 ± 40.07 45.13 ± 37.66 47.26 ± 42.60 <0.05

Values are expressed as n (%) or means ± standard deviations. p-value of ANOVA or χ2 test among the training, validation, and test datasets. BMI, body mass index; bpm,

beats per minute; CKD, chronic kidney disease; DM, diabetes mellitus; ECG, electrocardiography; HF, heart failure; HTN, hypertension; MI, myocardial infarction; PAOD,

peripheral arterial occlusive disease; QTc, the corrected QT Interval; TIA, transient ischemic attack.
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duration, and corrected QT Interval (QTc) were 159.8 ± 28.3,

92.6 ± 16.3, and 432.6 ± 34.4, respectively.
3.2. Relationship between CA and the
AI-estimated biological ECG heart age

We developed an AI algorithm using raw ECG data set

comprising 522,109 ECGs (226,476 patients) to estimate the

biological heart age. The training and internal validation sets

were allocated at an 8:2 ratio [380,992 (171,522 patients) and

20,637 (44,059 patients) ECGs for the training set and internal

validation set, respectively]. In addition, we performed external

validation using a holdout test set [97,058 ECGs (34,317

patients)] from January 2006 to December 2021 (Figure 1). For

the holdout data set, MAE of the difference between the CA and

AI-estimated biological ECG age was 5.8 ± 3.9 years with an R-

squared of 0.7 (r = 0.84, p < 0.05). Figure 3 shows a heat map of

the CA vs. AI-estimated biological ECG age.
3.3. AI-estimated biological ECG age and
prediction of cardiovascular outcomes

Figure 4 shows the adjusted cumulative incidence curves from

the age and sex-adjusted Cox proportional model for all-cause

mortality and cardiovascular outcomes. The relationship between

the difference between the AI-estimated ECG age and CA and
Frontiers in Cardiovascular Medicine 04
the mortality and cardiovascular outcomes is graphically shown

using penalized B-spline curves fitted to the Cox proportional

hazards model in the overall population and sex-stratified

population, respectively (Supplementary Figure S1). The spline

curves according to the gap between the AI-ECG heart age and

CA and the hazard ratio (HR) of the all-cause mortality and

cardiovascular outcomes are presented in Supplementary

Figure S1. A non-linear J-shaped association was found in the

gap between the AI-ECG heart age and CA variables and the all-

cause mortality and CVD. Univariate Cox regression models

showed significant hazard ratios (HRs) for chronological age,

gender, DM, HTN, HF, stroke, myocardial infarction (MI), and

chronic kidney disease (CKD), as well as AI-ECG heart age in

predicting all-cause and cardiovascular-related outcomes.

Notably, a 5-year increase in AI-ECG heart age was associated

with HRs ranging from 1.28 (1.24–1.31), p < 0.05] to 1.45 (1.31–

1.62), p < 0.05] for all-cause mortality and cardiovascular-related

mortality, respectively (Supplementary Table S1). In the Cox

proportional hazards models, after adjusting for relevant

comorbidity factors, the patients with an AI-biological ECG age

of ≥6 years greater than the CA had higher all-cause mortality

[HR: 1.60, (1.42–1.79), p < 0.05], cardiovascular-related mortality

[HR: 2.20 (1.42–3.42), p < 0.05], cardiovascular hospitalizations

[HR: 1.93 (1.67–2.22), p < 0.05], and MACE [HR: 1.91, (1.66–

2.21), p < 0.05]. Although when the ECG age was ≤6 years

younger than the CA, the risk of all-cause mortality [HR: 0.82

(0.75–0.91), p < 0.05], cardiovascular hospitalizations [HR: 0.77

(0.67–0.88), p < 0.05], and MACE [HR: 0.78 (0.68–0.89), p < 0.05]
frontiersin.org
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FIGURE 3

Correlation between the AI-estimated biological ECG heart age and chronological age shown via a heat map. AI, artificial intelligence; ECG,
electrocardiography; MAE, mean absolute error.
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decreased; however, the risk of cardiovascular-related mortality was

not statistically significant [HR: 0.87 (0.61–1.25), p = 0.46]

(Table 2).
3.4. Analysis of ECG features based on
AI-ECG heart age

We analyzed the ECG features based on the AI-ECG heart age

and observed a significant increase in the PR interval, QRS

duration, QT interval, and QTc interval as the AI ECG-heart age

increased (all p for trend <0.05, Supplementary Figure S2).

Specifically, we observed a significant increase in the mean PR

interval (155.38 ± 21.53 ms to 173.54 ± 36.97 ms), mean QRS

duration (from 90.48 ± 11.48 ms to 97.82 ± 24.79 ms), mean QT

interval (392.02 ± 32.61 ms to 413.26 ± 49.18 ms), and mean QTc

(422.79 ± 25.29 ms to 451.47 ± 40.62 ms) in individuals with an

AI-ECG heart age between 40 and 70 years or older

(Supplementary Table S2).
Frontiers in Cardiovascular Medicine 05
4. Discussion

4.1. Main findings

We developed a deep neural network to estimate AI-ECG heart

age using digital raw data from a large-scale 12-lead standard ECG.

The AI algorithm indicated that the discrepancy between the AI-

ECG heart age and CA was associated with all-cause mortality,

cardiovascular mortality, and MACE after adjusting for relevant

cardiovascular risk factors. Moreover, the analysis of ECG

features demonstrated significant changes in PR interval, QRS

duration, QT interval, and QTc interval as AI ECG-heart age

increased.
4.2. Biomarkers for estimating biological
age

Biological age (BA) has been suggested as an alternative to

CA to assess the precise aging states of individuals with
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1137892
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 4

(A) Adjusted cumulative incidence curves for all-cause mortality. (B) Adjusted cumulative incidence curves for cardiovascular-related mortality. (C)
Adjusted cumulative incidence curves for cardiovascular hospitalizations. (D) Adjusted survival curves for MACE. MACE, major adverse cardiovascular
events.
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various “multiple clock” biological aging. Different biological

measures have been studied to construct more comprehensive

models of the aging process compared with CA (15).

Regarding molecular and cellular biomarkers, BA can be

estimated using telomere length, deoxyribonucleic acid

methylation age, epigenetic clock, inflammatory markers, and

transcriptomic-, proteomic-, and metabolomics-based

biomarkers, among others in the blood, urine, or feces (16,

17). The age-related structural and functional changes include

increased arterial stiffness and atherosclerosis (characterized by

accumulation of lipid-rich plaque in the intima and may result

in an acute myocardial infarction or stroke). In addition, the

carotid-to-femoral pulse wave velocity, blood pressure,

endothelial dysfunction, intimal thickening, coronary artery

calcium score of the heart, and other variables may be used to

quantify these aging-related alterations, which are key

contributors to atherogenesis (16–22). The composite

biomarker predictors were developed by combining the
Frontiers in Cardiovascular Medicine 06
molecular, physiological, biochemical, structural, and

functional factors, such as the Klemera–Doubal Method

Biological Age and Frailty indices (23). A novel method has

been recently reported for a phenotypic assessment of

cardiovascular aging using cardiovascular magnetic resonance

radiomics measures of ventricular shape and myocardial

character (24). Although various biomarkers of biological age

have been studied, the association with age-related diseases is

not as robust as anticipated (23). Therefore, further studies are

needed to evaluate, improve, and create more accurate aging

biomarkers. Since many variables, including genetics, lifestyle,

environment, and other factors, might affect the risk of

cardiovascular morbidity and mortality, recommendations for

primary cardiovascular prevention based on risk assessment

results for diseases associated with aging should be based on

biological age rather than CA. Accordingly, ideal biological age

indicators should be easily accessible, safe, reliable, and

accurately predict morbidity and mortality.
frontiersin.org
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TABLE 2 Hazard ratios of clinical outcomes.

All-cause mortality Cardiovascular-
related mortality

Cardiovascular
hospitalization

MACE

Adjusted by age and sex HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Age gap ≥6 years 1.56 (1.39–1.75) <0.05 2.19 (1.41–2.74) <0.05 2 (1.74–2.31) <0.05 1.99 (1.73–2.30) <0.05

−6 years <Age gap <6 years 1 (reference) NA 1 (reference) NA 1 (reference) NA 1 (reference) NA

Age gap ≤−6 years 0.88 (0.80–0.97) <0.05 0.89 (0.60–1.27) 0.53 0.71 (0.62–0.81) <0.05 0.71 (0.63–0.82) <0.05

Adjusted by age, sex, DM, and HTN HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Age gap ≥6 years 1.58 (1.41–1.78) <0.05 2.20 (1.42–3.41) <0.05 1.97 (1.71–2.27) <0.05 1.95 (1.69–2.25) <0.05

−6 years <Age gap <6 years 1 (reference) NA 1 (reference) NA 1 (reference) NA 1 (reference) NA

Age gap ≤−6 years 0.86 (0.78–0.95) <0.05 0.87 (0.61–1.25) 0.46 0.75 (0.66–0.88) <0.05 0.76 (0.66–0.87) <0.05

Adjusted by age, sex, DM, HTN,
HF, stroke, MI, and CKD

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Age gap ≥6 years 1.60 (1.42–1.79) <0.05 2.20 (1.42–3.42) <0.05 1.93 (1.67–2.22) <0.05 1.91 (1.66–2.21) <0.05

−6 years <Age gap <6 years 1 (reference) NA 1 (reference) NA 1 (reference) NA 1 (reference) NA

Age gap ≤−6 years 0.82 (0.75–0.91) <0.05 0.87 (0.61–1.25) 0.46 0.77 (0.67–0.88) <0.05 0.78 (0.68–0.89) <0.05

The table presents the hazard ratios (HR) according to the differences between AI-ECG heart age and chronological age. The HR summarizes the Cox regression models

after adjusting relevant risk factors. AI, artificial intelligence; CI, confidence interval; CKD, chronic kidney disease; DM, diabetes mellitus; ECG, electrocardiography; HF,

heart failure; HTN, hypertension; HR, hazard ratio; MACE, major adverse cardiovascular events; MI, myocardial infarction; NA, not applicable.

Baek et al. 10.3389/fcvm.2023.1137892
4.3. AI-ECG heart age for predicting CVD
outcomes

The 12-lead ECG, which is a rapid, simple, reproducible, and

inexpensive point-of-care test, is the most used examination for

screening and evaluating CVDs (10, 11). ECG is the oldest

enduring examination of the heart, excluding the stethoscope,

which records the heart’s electrical activity of voltage vs. time

(25, 26). This examination detects electrical changes resulting

from the depolarization and repolarization of the myocardium

(27). ECG pattern changes have been described in aging and

various cardiac disorders, including cardiac rhythm irregularities,

myocardial ischemia and infarctions, ventricular hypertrophy,

heart failure, and electrolyte complications (27, 28).

The cardiovascular system may undergo structural and

functional changes as the myocardium increases in stiffness

because of fibrosis and hypertrophy through aging (29).

ECG reveals these structural abnormalities, which are

frequently accompanied by structural changes in extracardiac

tissues, such as the chest shape, emphysema, and/or increased

adiposity (29).

There are frequent changes in the aging electrocardiogram. An

increased QRS amplitude, leftward QRS axis, QS pattern due to

anatomical changes in heart position, fascicle fibrosis, and senile

intraseptal fibrosis, regardless of coronary artery disease or

ventricular structural remodeling, are examples of chamber

modifications (30). Aging frequently results in repolarization

alterations, which are the flattening and depression of the ST

segment in the left lateral precordial leads (31). Excluding QT

prolongation due to medications, such as antipsychotics,

amiodarone, tricyclic antidepressants, antihistamines, and

antibiotics, QT prolongation may be increased, but it remains

within the normal range in healthy individuals (29).

Furthermore, since these medications are frequently used in older

patients, they can be considered. Fibrocalcific alterations in the

conduction system cause delays and blockades (32).
Frontiers in Cardiovascular Medicine 07
Some studies used complicated multiple linear regression

models that used features of the aging ECG parameters to

determine the “ECG heart age.” (33, 34) A recent study has used

supervised machine learning and Bayesian statistical approaches

to determine the ECG heart age (34). However, these approaches,

which use visual and expert analysis measurements, such as the

heart rate, R-to-R, P-wave, PR, QRS, QT, and QTc interval

durations, as well as the conventional ECG amplitudes and axes,

have some components that make it challenging for healthcare

personnel to apply these models. Although ECG interpretation

requires expert knowledge and experience, the AI-ECG using

deep neural networks may discover signals and patterns that are

incomprehensible to humans, making it a robust, non-invasive

biomarker. Deep learning-based ECG analysis provides several

advantages in this respect. Large-scale ECG data are an ideal

medical tool for deep neural networks.

Recent studies have indicated that ECG analyses utilizing deep

learning approaches to AI-based ECG may predict mortality,

cardiac arrhythmias, cardiac function, heart failure, valvular heart

disease, and electrolyte abnormalities (7–12, 35, 36). By

comparing the ECG age calculated via deep neural networks to

the CA, new information on mortality and CVD risk factors has

recently been derived (8, 13, 36). However, since there is no true

gold standard for heart age, more studies and data are needed.

Our AI-ECG heart age might provide intuitive information for

medical examiners and patients to quickly and easily understand

heart health.

CVD frequently progresses without symptoms for many years,

making an important contribution to mortality, cardiovascular

clinical outcomes, and associated pathological processes (27).

Many risk factors for CVD could be reduced by lifestyle

modifications such as quitting smoking, changing one’s diet, and

increasing one’s physical activity. The format of the heart age

presentation could help patients understand and motivate them

regarding their CVD risk (35). Patients changing their lifestyles

can contribute to patient-centered care that positively affects the
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outcome of long-term CVD. In addition, this concept can provide

patients and their physicians with further tailored cardiac health

information in engaged and motivated patients, which would

contribute to the earlier implementation of a better healthy

lifestyle.
4.4. Predictive value beyond traditional risk
factors

Our study revealed that not only traditional risk factors such

as chronological age, gender, DM, HTN, HF, stroke, MI, and

CKD, but also AI-ECG heart age, were significantly associated

with all-cause and cardiovascular-related outcomes. These

findings indicate that including AI-ECG heart age may enhance

the prognostic value of conventional risk factors for mortality

and cardiovascular outcomes. Therefore, AI-ECG heart age may

have the potential to serve as an additional and valuable

predictor of adverse cardiovascular events beyond the

traditional risk factors alone. After adjusting for the relevant

risk factors, our study demonstrated that the AI-ECG heart age

is associated with all-cause mortality, cardiovascular mortality,

and MACE. Lima et al. (8) reported that patients with an ECG

age of >8 years greater than the CA have a 1.9-fold higher

mortality rate. Attia et al. (14) demonstrated that left

ventricular dysfunction and CVD-related comorbidities such as

hypertension and coronary artery disease have a significantly

higher proportion in patients with an AI-ECG predicted age of

>7 years of the CA. Another study reported that patients with

an age gap ≥1 standard deviation had higher all-cause mortality

and CVD mortality than those whose ECG-derived age was

within 1 standard deviation of their CA (13). The MAE of the

CA and ECG age in the study by Chang et al. (36) was 6.899

years, and participants with an ECG age of >7 years compared

with the CA had a 3.16-fold risk (95% confidence interval:

1.72–5.78) and 1.59-fold risk (95% confidence interval: 1.45–

1.74) for all-cause mortality in two different cohorts. In our

study, the MAE of the difference between the CA and AI-

estimated biological ECG age was 5.8 ± 3.9 years with an R-

squared of 0.7 (r = 0.84, p < 0.05). However, when the ECG age

was 6 years younger than the CA, the risks of all-cause

mortality [HR: 0.82 (0.75–0.91), p < 0.05], cardiovascular

hospitalization [HR: 0.77 (0.67–0.88), p < 0.05], and MACE

[HR: 0.78 (0.68–0.89), p < 0.05] decreased, but the risk of

cardiovascular-related mortality was not statistically significant

[HR: 0.87 (0.61–1.25), p = 0.46]. We could not determine the

precise process by which the AI-ECG heart age was predicted

due to the peculiarities of the deep neural networks.

Nonetheless, it was interesting that our study results were

consistent and similar to those of other deep learning-based

ECG age studies despite the different data sets.

The Centers for Disease Control and Prevention in the United

States reported the heart age, which is the calculated age of a

person’s cardiovascular system based on the traditional risk

factors, from the Framingham Heart Study (37). In the survey,

participants with a calculated heart age of ≥5–7 years than their
Frontiers in Cardiovascular Medicine 08
CA had a 75% increased risk of myocardial infarction, heart

failure, or stroke throughout the survey. Interestingly, the

biological heart age, based on the AI-ECG rather than the

traditional risk factors, consistently increased the mortality at an

age gap of approximately 5–8 years. These findings show the

possibility that the AI-ECG heart age based on the ECG is

comparable to the Framingham risk score for CVD. However,

despite the traditional and robust scoring system, Framingham

risk scoring for predicting the risk of future cardiac events at the

population level does not consider direct physiological

information using the questionnaire with indirect tests. Predicted

heart age shows regional differences by income level according to

a recent study that assessed predicted heart age using individual-

level data from 41 World Health Organization STEPS surveys

across multiple countries (38).
4.5. Future research directions for AI-ECG
heart age

Our study demonstrated that as the AI-ECG heart age

increased, there were significant alterations in PR interval, QRS

duration, QT intervals, and QTc. This suggests that as

individuals biological age, there may be changes in their cardiac

conduction system and ventricular depolarization and

repolarization, which are reflected in ECG changes (39–41).

Incorporating AI ECG heart age as a new biomarker could

potentially improve risk assessment and guide more effective

preventive interventions in patients. It is important to note that

although these ECG changes may be age-related, they may also

be influenced by other factors such as medication use, underlying

medical conditions, and lifestyle factors. Further studies are

needed to confirm the association between ECG features and AI-

ECG heart age and to evaluate the clinical implications of these

findings for predicting cardiovascular outcomes. Additionally, it

would be valuable to investigate whether the changes in ECG

features associated with AI-ECG heart age could be used to

identify individuals at higher risk for cardiovascular disease and

to develop interventions to mitigate this risk.

Our study found a non-linear J-shaped association between the

gap in the AI-ECG heart age and CA variables and all-cause

mortality and cardiovascular risk. Although the exact mechanism

is unknown, it has been shown in various medical phenomena

(42, 43). Interestingly, the overall J- and linear patterns of the

association appear to vary slightly linearly with sex. A higher risk

of arrhythmias and diastolic dysfunction in women suggests a

relationship between postmenopausal estrogen deficiency and sex

hormones (44). Moreover, an animal study suggests that estrogen

deficiency may affect diastolic dysfunction through various

pathways, including enhanced cardiac remodeling, left ventricular

hypertrophy, and increased arteriosclerosis (45). This study’s

findings suggest the role of sex hormones, including estrogen

deficiency, in the etiology of male and female ECG differences.

These sex differences appear to result from different linear

patterns of cardiovascular outcomes in the AI-ECG age.

Furthermore, it has been reported that applying AI to ECG
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allows for robust detection of the patient’s sex (36). However,

further studies are needed to better understand the AI-ECG age

according to the nature of sex differences.
4.6. Limitations

First, this retrospective study was conducted at a tertiary

university hospital that comprised mostly healthy Koreans.

Although different races and ethnicities were excluded, our

results were similar to those of previous AI-ECG age studies,

suggesting that the AI-ECG might function regardless of

ethnicity. Therefore, larger studies that include diverse races

and ethnicities are warranted. Second, considering the inherent

constraints of deep neural networks, it was difficult to reach an

established definitive “cause-and-effect” conclusion, and there

were also technical issues. We conducted training, validation,

and holdout testing using >500,000 refined digitalized ECG raw

data to minimize these hurdles. Third, the older people in the

dataset may not have been a representative sample of the

overall population. Therefore, our study may have overlooked

the sick and fragile older people. Fourth, since no true gold

standard exists for the biological heart age, we could not

compare our AI-ECG-based heart age predictions to those of

the traditional heart age scoring system or other AI-ECG age

studies. Consequently, further research with an acceptable gold

standard for heart age is required. Fifth, diagnostic codes were

used by the claims database to define the diagnoses due to the

nature of the hospital claims data. Several comorbidities and

cardiovascular outcomes were based on the International

Classification of Diseases codes, which may not always be

accurate. Therefore, we plan to integrate ECG data into the

nationwide health insurance database to address these issues in

the future.
5. Conclusions

We developed an AI-ECG age algorithm using large-scale 12-

lead ECG data to determine biological age. The difference

between the AI-ECG age and CA showed a predictive

capability for all-cause mortality, cardiovascular-related

mortality, cardiovascular hospitalization, and MACE.

Therefore, our model could be useful in understanding and

motivating patients regarding their CVD risk, potentially

leading to better lifestyle modification to improve the primary

prevention of CVD. However, further studies are needed to

examine the usefulness of the AI-ECG heart age model in

clinical practice.
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