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Coronary computed tomography angiography (CCTA) is increasingly the 
cornerstone in the management of patients with chronic coronary syndromes. This 
fact is reflected by current guidelines, which show a fundamental shift towards non-
invasive imaging  - especially CCTA. The guidelines for acute and stable coronary 
artery disease (CAD) of the European Society of Cardiology from 2019 and 2020 
emphasize this shift. However, to fulfill this new role, a broader availability in adjunct 
with increased robustness of data acquisition and speed of data reporting of CCTA 
is needed. Artificial intelligence (AI) has made enormous progress for all imaging 
methodologies concerning (semi)-automatic tools for data acquisition and data 
post-processing, with outreach toward decision support systems. Besides onco- and 
neuroimaging, cardiac imaging is one of the main areas of application. Most current AI 
developments in the scenario of cardiac imaging are related to data postprocessing. 
However, AI applications (including radiomics) for CCTA also should enclose data 
acquisition (especially the fact of dose reduction) and data interpretation (presence 
and extent of CAD). The main effort will be to integrate these AI-driven processes 
into the clinical workflow, and to combine imaging data/results with further clinical 
data, thus  - beyond the diagnosis of CAD- enabling prediction and forecast of 
morbidity and mortality. Furthermore, data fusing for therapy planning (e.g., invasive 
angiography/TAVI planning) will be warranted. The aim of this review is to present a 
holistic overview of AI applications in CCTA (including radiomics) under the umbrella 
of clinical workflows and clinical decision-making. The review first summarizes and 
analyzes applications for the main role of CCTA, i.e., to non-invasively rule out stable 
coronary artery disease. In the second step, AI applications for additional diagnostic 
purposes, i.e., to improve diagnostic power (CAC = coronary artery classifications), 
improve differential diagnosis (CT-FFR and CT perfusion), and finally improve 
prognosis (again CAC plus epi- and pericardial fat analysis) are reviewed.
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1. Introduction

Despite major advances in prevention, diagnosis, and treatment 
over the last decades, cardiovascular disease remains by far the number 
one cause of morbidity and mortality for both men and women 
worldwide, accounting for over 17 million deaths per year (1). The 
number of annual global deaths is expected to rise up to 24 million by 
2030 (2, 3), thus imposing a huge challenge to global healthcare systems.

Although invasive coronary angiography currently remains the 
standard for the diagnosis and treatment of coronary artery disease 
(CAD), non-invasive imaging becomes increasingly important in the 
diagnostic workup. Especially cardiac computed tomography (CT), 
namely CT coronary angiography (CCTA) will become increasingly 
important to rule out CAD within the next few years, current guidelines 
having pushed CCTA to the frontline in the assessment of stable 
coronary syndromes (4, 5). Consequently, the radiologists’ workload will 
experience further increase, and questions arise regarding the handling 
of the increasing workload, the availability, expertise, radiation exposure, 
and the reimbursement of CCTA.

Artificial intelligence (AI), including Machine Learning (ML) and 
Deep Learning (DL) as well as related techniques extracting quantitative 
information from radiological images such as radiomics might be ideally 
suited to solve these challenges. Possible improvements by AI for CCTA 
encompass data acquisition, image post-processing, and interpretation, 
the latter in the way of decision support systems (6), as well as risk 
stratification. By this, AI in CCTA has the potential to improve patient 
management through an increase in the accuracy and efficiency of 
diagnosis and treatment planning.

AI can be  used to automatically identify and characterize 
abnormalities in CCTA scans, such as calcified or non-calcified plaques, 
stenoses (narrowing of the coronary artery), and other features of 
interest. AI can also be  used to predict the likelihood of future 
cardiovascular events, based on the characteristics of the abnormalities 
present in the CT images. This can help clinicians to identify patients 
who may be  at higher risk and take steps to prevent or mitigate 
these events.

A rapidly increasing number of publications deal with the role of AI 
in CCTA (Figure 1). However, some publications are orchestrated in the 
shape of great debates pushing pros and cons forward (7, 8), or 
concentrate on single aspects of CCTA such as imaging the coronary 
tree (9, 10), CT fractional flow reserve (FFR) (11, 12), epicardial adipose 
tissue (EAT) (13), or multimodality imaging machine learning (ML) 
applications (14). Only some reports so far span the horizon from basics 
to clinical practice and concentrate on future applications (15–17).

The aim of this review is to present a holistic overview of AI 
applications in CCTA (including radiomics) under the umbrella of 
clinical workflows and clinical decision-making. The review first 
summarizes and analyzes applications for the main role of CCTA, i.e., 
to non-invasively rule out stable coronary artery disease. In the second 
step, AI applications for additional diagnostic purposes, i.e., to improve 
diagnostic power (CAC = coronary artery classifications), improve 
differential diagnosis (CT-FFR and CT perfusion), and finally improve 
prognosis (again CAC plus epi- and pericardial fat analysis) are reviewed.

Following a short introduction to the technical basics of ML and 
radiomics, three parts/steps will be presented for each topic. Firstly, 
applications that are already integrated into daily clinical workflows (but 
might not be recognized as already “active”), secondly, applications that 
are at the barrier to clinical application, and thirdly, applications that 
might be realized in the near future and are highly awaited.

2. Technical basics

2.1. Machine learning basics

ML mimics humans’ most valuable skill, the ability to learn and 
improve from data. Based on previously gathered information, generic 
models detect patterns and use them to infer values for new data (18). 
This allows for solving various tasks without the need to explicitly 
program problem-specific algorithms.

Depending on the degree and type of supervision, three subtypes 
of ML can be  distinguished: supervised learning, unsupervised 
learning, and reinforcement learning (Figure 2) (19). Unsupervised 
learning aims to analyze data and detect hidden structures and 
correlations without solving a specific task or predicting endpoints. The 
other two types are used to solve specific tasks (like predicting 
endpoints) and differ in the type of supervision. Supervised learning 
reproduces given labels from the data, with the label types and 
completeness depending on the actual problem. In contrast, direct 
labels are avoided for reinforcement learning, and positive and negative 
feedback from the environment is utilized instead. Independently from 
the subtype, the final performance of an ML solution depends on the 
complexity, quality, and amount of available data. In contrast, 
reinforcement learning utilizes positive and negative feedback from the 
environment instead. An example of this is learning to move a robot, 
where the correctness of each movement depends on the final result 
which can then be used as feedback.

Independently from the subtype, the final performance of an ML 
solution depends on the complexity, quality, and amount of 
available data.

A recently very successful subsection of ML is Deep Learning 
(DL). DL models consist of multiple artificial neurons, typically 
organized in layers. The high flexibility in the connection of neurons 
or layers allows the adaptation to different tasks and data 
representations (18). This allows not only to address a wide range of 
applications but also the combination of data representation learning 
and task learning, efficiently enabling the usage of raw data and 
omitting the need for hand-crafted features (20). As a consequence, 
the advent of DL significantly increased the accuracy and applicability 
of learning-based solutions, especially in image-based domains (21). 
Here, Convolutional Neural Networks (CNNs), which incorporate the 
idea of learning convolutional filters for feature learning proved to 
be  especially successful, like the well-known UNet (22) and the 
derived UNETR architecture (23).

Besides network architecture, the performance of a DL model is also 
defined by other parameters like the training algorithm or the loss/cost 
function. The networks are usually iteratively improved by reducing the 
loss within parts of the training data, the so-called batches. This process 
is repeated for the next epoch, once all data has been used. The loss 
function defines the task of the network by rating the quality of the 
output and possibly includes additional measures for enforcing sparsity, 
considering unlabeled data, or ensuring robustness. Together with the 
architecture these configuration parameters are responsible for the 
performance of a deep learning solution (24).

2.2. Radiomics basics

Radiomics is another technical principle to deal with imaging data, 
although there is some overlap with the field of ML illustrated above. 
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Radiomic analyses use the data which can be  extracted from the 
distribution and/or co-occurrence of pixel grey levels encoded in 
medical images of all modalities. It thereby allows for quantitative 
image analysis and the potential extraction of novel imaging biomarkers 
to get more information about tissue structure and the underlying 
histopathological phenotype, which otherwise would be not accessible 
through pure visual image inspection (25–27).

Radiomics allows quantifying differences in image intensity, shape, 
or texture (28, 29) and thus might be  able to overcome the usual 
subjective nature of image interpretation. The extracted information is 
then processed via ML (since innumerable radiomic features can 
be extracted nowadays, which makes radiomics a “big data” approach) 
to enhance the existing clinical data for improved diagnosis, prognosis, 
or assessment of treatment response.

Radiomic analyses are performed via a step-wise workflow 
including patient scheduling and image acquisition/reconstruction, 
image segmentation and processing, and finally extraction of radiomics 
features from different feature matrices, consecutive data analysis, and 
building of predictive models for improved diagnostic or prognostic 
assessment, which is illustrated in Figure 3.

3. Clinical applications of machine 
learning, artificial intelligence, and 
radiomics for CCTA

3.1. The mainstay of CCTA: Coronary artery 
disease

CCTA is likely to become the future standard method to exclude 
stable CAD (5). Given the associated considerable increase in workload, 
there is a high need for automation along the entire imaging workflow. 
Potential applications for AI arise in several ways: (i) in data acquisition 
including patient scheduling and preparation, (ii) in data post-
processing, and (iii) in data interpretation.

While AI-based approaches are established and available or at least 
proposed for data acquisition, these are largely lacking for patient 
preparation. AI-based models for automatic detection of ECG signals 
(ideally integrated into the patient table) as well as suggestions for scan 
planning based on patient geometry (involving 3D cameras) are already 
at hand. Apart from that, ML could be used to prove proper indication 
for CT examination and facilitate patient scheduling using cluster 

FIGURE 1

Overview of different applications of artificial intelligence, machine learning, and radiomics in coronary CT angiography.

FIGURE 2

Different types of Machine Learning. Unsupervised Learning detects patterns. Supervised learning uses direct annotation of the data, while reinforcement 
learning interacts with an environment and learns using rewards for individual actions to solve specific tasks.
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algorithms as well as automated reminders to reduce no-shows. 
Immediate exam preparation includes the appropriate decision of 
correct premedication (which includes both the administration of beta 
blockers and nitroglycerin) as well as the evaluation of respective 
contraindications since these are essential to achieve optimal scan 
conditions. Until now, no robust AI model has been proposed to support 
these crucial preparation steps.

A wide variety of protocols are available for data acquisition. Their 
selection depends on the examination conditions, especially the heart 
rate. Today’s modern scanners already offer AI-based protocol 
suggestions. However, these do not yet fully take into account patient 
geometry (e.g., the presence of obesity). Comprehensive protocol 
proposals are desirable, which might offer prospective as well as 
retrospective data acquisition, optimized scan and reconstruction 
algorithms for dose reduction (e.g., type of iterative or AI-based 
reconstruction), AI-based noise reduction, or improved spatial and 
temporal resolution. Even state-of-the-art dual-source CT scanners 
only allow for a minimum temporal resolution of 68 ms, far below what 
is necessary to allow optimal coronary image acquisition. Looking at 
modern spectral CT scanners, AI-based algorithms that consider the 
spectral information itself as additional information (e.g., as a 4th 
dimension of the dataset) currently are still missing. This will change 
with the help of AI-based algorithms. Conversely, Lyu et  al. have 
demonstrated the feasibility of estimating dual-energy information 
from conventional single-energy CT datasets utilizing a combination 
of fully sampled low-energy data and a single-view high-energy 
projection (30).

AI-based algorithms are already available for largely automated 2D 
and 3D reformations of the coronary tree. However, manual interaction 
of technicians and/or radiologists is still necessary regarding the 
representation in standard coronal and sagittal views. AI-based 

algorithms now allow the automated generation of curved multiplanar 
reformations or so-called stretched coronaries.

Recently, the first reports have been published on the AI-based 
automated detection of coronary stenoses in CCTA (31–33). In a 2021 
retrospective, multi-center study, the diagnostic accuracy and 
generalizability of an established DL-based fully automated algorithm 
in detecting coronary stenosis on CCTA has been shown to perform 
non-inferior to expert readers in detecting coronary stenoses ≥50% 
(34). In the vessel-based evaluation, the DL algorithm had a higher 
sensitivity (65.7%) and negative predictive value (NPV) (78.8%) than 
human expert readers. In 2022, a substudy from the CREDENCE 
(Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants 
of Myocardial IsChEmia) trial retrospectively analyzed a Food and Drug 
Administration–cleared cloud-based software that performs AI-enabled 
coronary segmentation, lumen and vessel wall determination, plaque 
quantification and characterization, and stenosis determination in order 
to detect the presence of ≥50% and ≥ 70% stenosis, respectively (32). 
The authors could demonstrate rapid and accurate identification and 
exclusion of high-grade stenosis with a close agreement to blinded, core 
lab–interpreted quantitative coronary angiography (per-patient 
sensitivity, specificity, PPV, NPV, and accuracy of 94, 68, 81, 90, and 
84%, respectively, for ≥50% stenosis, and of 94, 82, 69, 97, and 86%, 
respectively, for detection of ≥70% stenosis).

While current CCTA reporting is mainly based on visual estimation 
of coronary stenosis grade, Hong et al. reported a DL model to accurately 
and quantitatively measure the stenosis grade in diseased coronary 
segments in comparison to an expert reader (35). The future use of such 
models thus might enable a faster and more accurate quantitative 
assessment of coronary stenoses.

The recent update of the CAD-Reporting and Data System (CAD-
RADS) 2.0 (36) underlines the feasibility of standardized data reporting 

FIGURE 3

The Radiomics workflow for coronary CT angiography.
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including follow-up instructions. While CAD-RADS 2.0 is relatively 
robust to subjective reader bias, proposed AI models predicted the 
CAD-RADS level in close agreement with expert readers (37). 
Regarding the follow-up recommendations, AI models have surpassed 
CAD-RADS in the discrimination of patients with and without 
subsequent adverse events (38).

The association of radiomics- and AI-derived features with other 
risk factors in CAD in the long-term view might be of particular interest. 
Kolossvary et al. performed a study using radiomics-based precision 
phenotyping, indicating that conventional risk factors, cocaine use, and 
HIV infection each had different effects on CT angiographic 
morphologic changes in coronary atherosclerosis over a follow-up 
period of 4 years (39). Eslami et al. trained a radiomics-based ML model 
to predict cardiovascular events in the Framingham Heart Study (40). 
In addition, several studies have been published over the past few years 
highlighting the potential of ML (using or not using radiomics) for 
outcome prediction in CAD (41–44).

3.2. Coronary calcium quantification

From a clinical perspective, coronary calcium detection and 
quantification both have a checkered history. Initially promoted as one 
of the essential building blocks for detection and prognostication in 
CAD (45), the importance of coronary calcium quantification was 
subsequently cast into doubt. In recent years, a renaissance occurred. 
However, it is still controversial whether coronary calcification can 
be used as a gatekeeper. Certainly, lipid-rich plaques cannot be detected 
without contrast administration. However, studies show that a threshold 
of an Agatston score of 400 is associated with a high significance of 
cardiac morbidity and mortality.

Conventionally, coronary calcium scoring is performed using high-
pitch ECG-gated scanning to enable imaging within one breath-hold. 
Automated detection of calcified plaques using these dedicated scan 
protocols is well-established (46) but often needs manual revision to 
generate a robust Agatston score for risk stratification.

Since a high number of native chest CT scans are obtained without 
using ECG-gating or fixed tube voltage, AI models that can predict the 
Agatston score on these scans would be desirable. Amongst others, a 
promising model has been proposed that can generalize coronary 
artery calcium scores in different native CT scans with and without 
ECG gating, yielding predictions with high accordance across all 
different exam types of CT (47), surpassing the need for a specific 
calcium scoring exam.

The advances in dual-energy and photon-counting detector CT 
scanners furthermore suggest the use of virtual non-contrast-enhanced 
images from a conventional CCTA for the detection of calcification to 
obviate the need for additional radiation dose (48). In a recent study, 
dedicated PureCalcium reconstructions from CCTA outperformed 
CAC scoring in VNC (49). It is desirable to establish robust models for 
the fully automatic CAC scoring, here.

3.3. Coronary plaque characterization

CCTA can not only be  used for the quantification of plaque 
burden, but also for the determination of plaque characteristics and 
identification of high-risk plaques, in order to aid in further 
treatment. Low attenuation, positive remodeling, spotty calcifications, 

and Napkin-ring sign are established features for the 
reviewing radiologist.

In clinical routine, the objective characterization of plaques apart 
from the expert’s visual evaluation is still lacking. It is obvious that 
radiomics and DL should be feasible for this task, as has been proposed 
in several studies. In a comparison of visual and histogram-based 
plaque analysis with a proposed Radiomics-based ML approach, the 
authors could demonstrate a higher discriminatory power for the 
identification of advanced atherosclerotic lesions in CCTA (50). 
Furthermore, it was possible to determine radiomic features that 
exhibit a discriminatory potential between NRS and non-NRS plaques 
(51) and culprit or highest-grade non-culprit lesions from lesions in 
stable CAD (52, 53). Similarly, several studies used radiomics to 
distinguish vulnerable plaques in acute coronary syndrome from 
visually similar plaques in a population without coronary syndrome 
(54, 55).

The mentioned techniques currently are far from clinical 
implementation. Yet, these data promise great heuristic tools to raise the 
importance of CCTA to a new level.

3.4. CT-FFR

From a clinical perspective, CT-FFR is excellent because it 
provides insights into hemodynamics (relevance of coronary stenoses) 
beyond morphology. After initial very positive publications and 
assessments in clinical studies, the clinical value of CT-FFR and FFR 
measurement as a whole has recently been questioned (56). The closer 
the studies come to clinical practice, the more inconsistent their 
conclusions, and the effect of additional hemodynamic analysis seems 
to be relativized.

Currently, an automated determination of CT-FFR is possible by 
means of AI-based algorithms (57, 58), but this has so far only been 
certified by one provider with a time lag and considerable additional 
costs. For patent reasons, other ML-based algorithms offered on-site so 
far have only been approved for use in research settings. However, those 
are fast and robust and allow a rapid 3D overview of coronary 
hemodynamics (59). Figure 4 demonstrates the results of an ML-based 
CT FFR algorithm, which allows a rapid 3D overview of coronary 
anatomy with a color-coded annotation of hemodynmic altered coronary 
segments. However, these analyses are not yet integrated into the clinical 
workflow, and automated fused transfer to CCTA has not yet occurred.

Apart from dedicated ML and AI models trained to estimate 
coronary FFR, also radiomics approaches exist to predict the 
hemodynamic significance of coronary stenosis. For example, Wen 
et  al. used an approach focusing on peri-coronary adipose tissue 
characteristics and showed, that the combination of CCTA and a 
decision tree radiomics model achieved significantly higher diagnostic 
performance (AUC: 0.812) than CCTA alone (AUC: 0.599, p = 0.015) 
for predicting the hemodynamic significance of coronary stenosis as 
compared to invasive FFR (60). Several studies used radiomics features 
to identify hemodynamically significant coronary artery stenoses, using 
invasive FFR as the reference standard (61, 62). Li et  al. could 
demonstrate superiority over a conventional model trained on 
quantitative parameters such as plaque volume, and remodeling index 
(61). Denzinger et al. used plaque characterization based on DL and 
radiomics for predicting the revascularization decision as indicated by 
invasive FFR (reaching an AUC of 0.88 for a combined DL/radiomics 
model) (63).
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3.5. CT perfusion

From a clinical perspective, imaging and measurement of 
myocardial CT perfusion are promising because they can unmask 
hemodynamically significant coronary stenoses that will benefit from 
invasive treatment. Nevertheless, the high dose requirement of current 
dynamic CT perfusion protocols remains problematic, thus highlighting 
the need for improved analysis of myocardial perfusion information 
from routine coronary CT angiography datasets as well as approaches 
that utilize AI-based algorithms to generate interpretable images from 
low-dose dynamic perfusion data.

Recent work by Zreik et al. (64) and van Hamersvelt et al. (65) has 
attempted to circumvent the need for dynamic imaging by applying 
DL to learn myocardial enhancement patterns associated with the 
presence of hemodynamically significant stenosis in epicardial 
coronary arteries as defined by invasive FFR. The combination of 
measuring the degree of luminal narrowing with DL analysis of the 
left ventricular myocardium in intermediate-degree coronary stenosis 
resulted in improved diagnostic performance for the identification of 
patients with functionally significant coronary artery stenosis. The 
proposed method resulted in improved discrimination (AUC = 0.76) 
compared to classification based on DS only (AUC = 0.68). The 
application of DL to CT image reconstruction has also led to 
significant improvements in the quality of low-dose CT dynamic 
myocardial perfusion. Takafuji et  al. (66) recently proposed a 
DL-based method that is capable of reducing image noise by 
approximately 20% when compared to more conventional hybrid 
iterative reconstruction techniques, which potentially translates into 
further radiation dose savings.

Another important issue in CT dynamic perfusion imaging is the 
occurrence of spurious CT myocardial blood flow values due to the 
misregistration of temporal frames. Recent work by Lara-Hernandez 
et al. (67) attempted to address this issue by proposing DL-based image 
registration. They found their proposed method to be  capable of 
registering dynamic cardiac perfusion sequences by reducing local tissue 
displacements of the left ventricle without affecting image quality, in 
particular the absolute CT (HU) values of the entire CT sequence. 
Furthermore, the DL-based approach required a much shorter 
processing time of a few seconds compared to conventional image 
registration methods.

Finally, analogous to CT-FFR and coronary calcium quantification, 
there is still a lack of integration of CT myocardial perfusion imaging 
into the clinical (structured) reporting workflow, and it is expected that 
AI algorithms will aid in facilitating this in the near future.

3.6. Scar imaging

Non-invasive detection of the presence and transmurality of 
myocardial scar is one of the most important applications of modern 
cross-sectional cardiovascular imaging. Arguably, CCTA has lagged 
significantly behind other modalities such as nuclear imaging techniques 
and most notably, cardiac magnetic resonance (CMR) imaging due to 
the much lower contrast between scar tissue, viable and normal 
myocardium. However, ML offers significant opportunities to close 
this gap.

Singh et al. (68) described good to excellent results utilizing CNNs 
to detect subendocardial scarring from delayed-enhancement CCTA 

FIGURE 4

CT-FFR Case of a 78 years-old patient with significantly calcified plaques in the proximal LAD. CCTA results (upper row MIP reconstruction (left), curved 
(middle), and orthogonal (right) 2D-reconstructions) yielded inconclusive results concerning obstructive CAD or not; CT-FFR (lower row semiautomatic 
preprocessing (left), 2D/3D color-coded overview (right - LAD area magnified)) demonstrates a significant (< 0.8) reduction of hemodynamics in the LAD.
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scans with 91% sensitivity, 88% specificity, and 89% accuracy in 
comparison to human expert segmentations. Their approach consisted 
of combining CNN-based automated segmentation of the left ventricle 
with topological data analysis for geometric scar feature extraction. 
More recently, O’Brien et al. (69) utilized a radiomics approach for a 
fully-automated detection of left ventricular scarring at delayed-
enhancement CCTA. Of the 93 radiomics features that were calculated, 
approximately two-thirds were significantly associated with the presence 
of myocardial scar. The 100 kV images produced the best ML classifier, 
a support vector machine with an AUC of 0.88. The ground truth in this 
study consisted of CMR-based segmentations of left ventricular scar 
co-registered to delayed-enhancement CT to estimate scar regions. This 
study provides additional proof of concept that radiomics techniques 
have the potential to supplement image evaluation by human experts, 
as well as present encouraging results of the ability of ML to make image 
evaluation less subjective.

Although these methods need to be further developed and validated 
in independent cohorts, they do provide proof of concept that delayed-
enhancement CT imaging is feasible for the detection of left ventricular 
myocardial scarring with good accuracy.

Besides, also first radiomics approaches have been used for the 
detection of myocardial scars in non-contrast as well as contrast-
enhanced CT imaging (70–73), which need to be  validated in 
future studies.

4. Prognostic information In The 
epicardial adipose tissue

Epicardial adipose tissue (EAT) is recognized as a key regulator of 
cardiovascular health and disease (74). EAT is a metabolically active 
depot of visceral adipose tissue (74), and it is a biomarker of visceral 
(metabolically unhealthy) obesity (75). Indeed, EAT volume measured 
using various manual tools on CT imaging, has been related to CAD, 
atrial fibrillation (AF) (76), and even all-cause (including non-cardiac) 
mortality.

Although EAT volume can be  estimated using various imaging 
modalities (ultrasound, MRI, etc.), CCTA provides the non-invasive 
gold standard for its quantification due to its excellent spatial resolution. 
Manual quantification is laborious and currently falls outside the scope 
of routine CCTA interpretation. In recent work, a DL approach has been 
applied to automate the quantification of EAT volume, with excellent 
precision and extremely high speed (seconds). Fully automated 
measurement of EAT volume incorporated into the routine 
interpretation of CCTA promises to significantly improve the risk 
stratification of patients, across several important clinical outcomes, 
such as predicting future atrial fibrillation (post-operative after cardiac 
surgery, paroxysmal or permanent in the general population), MACE 
and most importantly, non-cardiovascular mortality in large outcomes 
cohorts like SCOTHEART and ORFAN. An image with the output of 
such a DL network for automated measurement of EAT volume is 
provided in Figure 5.

Beyond EAT volume measurement, it is now known that 
perivascular adipose tissue (PVAT) surrounding the coronary arteries 
has the ability to respond to paracrine inflammatory signals from the 
coronary artery, activating local lipolysis and inhibiting adipogenesis in 
a radial way around the arterial wall (79). These 3D changes in PVAT’s 
composition can serve as a surrogate for vascular inflammation. A 
recently developed method uses automated segmentation and adipose 

tissue features extraction from the perivascular space to first segment 
PVAT around the coronary arteries, and then to quantify 3D changes in 
attenuation gradients corrected for several technical and local 

A

B

D

E

C

FIGURE 5

The deep learning network for automated segmentation of the EAT 
allows ultra-fast segmentation of the pericardium and by thresholding 
the adipose tissue between the pericardium and the myocardium 
(within the window of −30 to −190 HU) it allows accurate 
quantification of EAT volume (A). Using a deep learning network, 
we can automatically segment the perivascular adipose tissue (PVAT 
around the coronary arteries (images from CaRi-Heart® device, Caristo 
Diagnostics) (B), from which we can extract radiomic information to 
best describe tissue characteristics driven by fibrosis, angiogenesis, or 
inflammation derived from the vascular wall (C). By performing RNA 
sequencing on human vascular biopsies, we can generate 
transcriptomic signatures of different types of vascular inflammation in 
the vascular wall, which cause different changes in the perivascular 
space, depending on the degree of lipolysis, fibrosis, angiogenesis, and 
edema they trigger in the adjacent perivascular space (D). 
Radiotranscriptomic phenotyping of PVAT, includes using the 
transcriptomic signatures established via RNA sequencing as the 
ground truth of machine learning exercises that lead to the 
construction of radiomic signatures to best match the transcriptomic 
ground truth (E). Images from West et al. JACC CVI (in press) (A), 
Oikonomou E et al. Eur Heart J 2019 (77) (B,C), and Kotanidis C et al. 
Lancet Digital Health 2022 (78) (D,E).
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harmonization factors, allowing the calculation of the perivascular Fat 
Attenuation Index (FAI), a marker of coronary inflammation (79) with 
high prognostic value for future cardiovascular events (80, 81). This 
approach allows accurate prediction of cardiovascular risk in clinical 
practice, particularly when it is combined with information on 
atherosclerotic plaque burden (coronary plaque volume and 
composition), coronary inflammation (FAI Score for each coronary 
artery) and the patient’s risk factors, to calculate the patient’s absolute 
risk for a future cardiac event (80).

More recently, analysis of the radiomic profile of PVAT and the 
application of ML has led to the generation of more sophisticated 
biomarkers for the deep phenotyping of this adipose tissue depot (77). 
Different types of vascular inflammation can give different texture 
changes in PVAT, driven by perivascular edema, lipolysis/
adipogenesis, fibrosis, and angiogenesis (74). By using tissue biopsies 
and RNA sequencing to generate the “ground truth” for these changes, 
one can train radiomic signatures of PVAT to dissect the type of 
vascular inflammation of interest. The field of “radiotranscriptomics” 
has emerged to describe the process of training radiomic signatures 
against the transcriptomic profile of the tissue (77). Such a 
radiotranscriptomic signature of PVAT analyzed from routine 
CCTAs, the Fat Radiomic Profile (FRP), was externally tested in the 
CRISP-CT (81) & SCOT-HEART cohorts (82) demonstrating the very 
high ability to predict future MACEs beyond traditional risk factors, 
coronary calcium score, coronary stenosis, and HRP features on 
CCTA (Figure 5) (77). A similar approach was tested successfully for 
detecting unstable coronary plaques from CCTA (51, 52, 83). Even 
more recently, a radiotranscriptomic signature of acute cytokine-
driven vascular inflammation quantified in the internal mammary 
arteries using CCTAs or non-gated CTPAs was found to be able to 
detect patients with vascular inflammatory involvement, who had an 
8-fold increase of their risk for in-hospital mortality and activation of 
systemic thrombosis after COVID-19 infection (Figure 5) (78). Such 
ML/radiotranscriptomic approaches, that leverage the hidden 
information within the transcriptome of the perivascular space, are 
expected to change our capacity to use PVAT as a window into 
vascular biology and cardiovascular risk prediction in the immediate 
future (see Figure 5).

5. Economic aspects

Despite all of the promising technical developments described 
above, there presently is a dearth of data evaluating the economic impact 
of AI techniques in routine clinical care. In general, it has been shown, 
that radiologists are willing to invest in AI-based assistance tools (81% 
investment probability in a recent study (84)). Interestingly, they 
preferred applications immediately supporting routine tasks like 
detection of abnormalities or diagnostic screening over applications that 
are focused on process efficiency, such as, e.g., via reduction of scan 
time (84).

Although data from cardiac imaging are still lacking, studies from 
other fields of imaging already hint at the potential economic impact of 
AI on radiology. For breast cancer detection, for example, it could 
be shown that the radiologist’s workload might decrease as much as by 
half in case commercial AI-based software assistance is used (85). This 
then could lead to either an overall decreased workload of the imaging 
specialist or – much more likely – to higher study volumes processed by 
the individual doctor (86). Thus, clinicians’ productivity is likely to 

improve when AI is used. If poorly implemented though, AI may also 
cause clinicians’ workload even to increase (87). Proper implementation 
will thus be a central aspect when developing and integrating novel AI 
tools into the clinical workflow.

The viewpoint of this group of authors is that AI tools need to 
be rigorously evaluated in clinical trials using a conceptual framework 
similar to that used for evaluating for example new medication. It is 
highly unlikely that stakeholders and especially payers will provide 
financial reimbursement for the use of these tools if their use does not 
lead to better outcomes or lower costs. Although there is a tremendous 
array of potential opportunities to apply AI to CCTA, it is incumbent 
upon the radiological and cardiovascular imaging communities to 
design and carry out high-quality trials to demonstrate the purported 
benefits. Only then will AI realize its full potential.

6. Legal aspects

Continuous technical progress is driving the implementation of AI 
into radiology practice. However, the impact of AI on the specialty is 
hampered by several legal and ethical hurdles. Various national regulatory 
authorities such as the United  States Food and Drug Administration 
(FDA) and the European Medicines Agency (EMA) as well as many others 
around the world are currently developing guidance governing the clinical 
use of medical-grade AI applications. These regulatory agencies collaborate 
in the International Coalition of Medicines Regulatory Authorities 
(ICMRA), which sets out recommendations to help regulators address the 
challenges that the use of AI poses for global medicines regulation. Main 
recommendations include the need to apply a risk-based approach to the 
assessment and regulation of AI; strengthened governance structures to 
oversee algorithms and AI deployments, closely linked to the benefit/risk 
of clinically used software and medicinal products; and the development 
of guidelines for AI development, validation and use with medicinal 
products in areas such as data provenance, reliability, transparency and 
understandability, pharmacovigilance, and real-world monitoring of 
device functioning (88).

A recurring question is whether and how an AI tool can be held 
accountable for its activities. Since software is unlikely to be liable, the 
ultimate legal responsibility will rest with the human user or even 
developer. It is important to note that a full diagnosis often cannot 
be conclusively provided by an AI tool. Incomplete diagnoses, false-
positive as well as false-negative predictions can cause serious errors in 
the treatment chain; depending on the error, a misdiagnosis can lead to 
economic burdens, mental stress, or – in the worst-case scenario - even 
the death of a patient. Provided that the error was recognizable to an 
expert, it is obvious that the responsibility is attributed to the user, in this 
case, the radiologist.

Given the current limitations of AI in terms of generalizability, bias, 
and accuracy the FDA, Health Canada, and the United  Kingdom’s 
Medicines and Healthcare products Regulatory Agency (MHRA) have 
jointly identified 10 guiding principles that can inform the development 
of Good Machine Learning Practice (GMLP) (89). One of the most 
important core tenets of their approach to approving commercial 
products is that the focus should be placed on the performance of the 
human-AI Team. In other words, these agencies require a “human in the 
loop” approach in which AI algorithms are designed to function in 
tandem with human experts who oversee the output of AI algorithms, 
rather than fully autonomous AI systems that currently still suffer from 
serious limitations with the potential for significant clinical harm.
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However, in many complex AI applications and especially in 
radiomics, the features that influence the prediction of the AI model are 
hardly recognizable by the imaging specialist anymore. A 
misinterpretation, for example in plaque characterization can then 
hardly be overruled by a human expert.

As long as it is not legally clarified who is responsible for errors 
caused by AI applications, its role will not go beyond that of a supporting 
tool, which still must be supervised by clinicians. If the responsibility for 
predictions made by an AI ultimately even lies with the imaging 
specialist, predictions made by AI will continue to be  included in 
findings only with reservations.

7. Limitations

Although great progress has been made in the past decade, the 
presently used methods for AI development still suffer from significant 
shortcomings such as narrow scope which results in failure to recognize 
outlier cases and the potential for misdiagnosis, susceptibility to 
adversarial attacks, and the inability of AI to incorporate intuition, 
cognition and abstract reasoning. An excellent discussion of these 
limitations can be found in the recent special report by Ng et al. (90). 
These limitations need to be addressed urgently in order to clinically 
deploy AI with confidence.

8. Conclusion

AI-based algorithms for CCTA are partly already an integral part of 
many clinical applications and involve data acquisition, post-processing, 
and interpretation. In an analogous way to the setting in oncologic imaging 
AI-applications for CCTA are still somewhat behind. Improvements for 
integration of new AI-based applications into the clinical workflow are 
mandatory (which will vice versa increase usability and decrease costs), as 
well as the integration of already established structured reporting templates 
(CAD-RADS). The main target should be an all-in-one application for 
CCTA beyond specialized imaging centers.
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