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Aortic aneurysms, including abdominal aortic aneurysms (AAAs), is the second
most prevalent aortic disease and represents an important cause of death
worldwide. AAA is a permanent dilation of the aorta on its infrarenal portion,
pathologically associated with oxidative stress, proteolysis, vascular smooth
muscle cell loss, immune-inflammation, and extracellular matrix remodeling and
degradation. Most epidemiological studies have shown a potential protective
role of diabetes mellitus (DM) on the prevalence and incidence of AAA. The
effect of DM on AAA might be explained mainly by two factors: hyperglycemia
[or other DM-related factors such as insulin resistance (IR)] and/or by the effect
of prescribed DM drugs, which may have a direct or indirect effect on the
formation and progression of AAAs. However, recent studies further support that
the protective role of DM in AAA may be attributable to antidiabetic therapies
(i.e.: metformin or SGLT-2 inhibitors). This review summarizes current literature
on the relationship between DM and the incidence, progression, and rupture of
AAAs, and discusses the potential cellular and molecular pathways that may be
involved in its vascular effects. Besides, we provide a summary of current
antidiabetic therapies which use could be beneficial for AAA.
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1. AAA and DM

Aortic aneurysms, including abdominal aortic aneurysms (AAA), is the second most

prevalent aortic disease following atherosclerosis, affecting approximately 1%–2% of all 65-

year-old men and therefore, representing an important cause of death worldwide (1). AAA is

a local dilatation of the abdominal aorta larger than 3 cm or exceeding by 50 per cent the

normal aortic diameter (2) and is pathologically associated with oxidative stress, proteolysis,

extracellular matrix (ECM) remodeling and degradation, vascular smooth muscle cell

(VSMC) loss and immune-inflammatory responses (3, 4) (Figure 1). A significant change in

the management of patients with AAA has occurred during the last 15–20 years, which has

improved mortality rates after surgery treatment (5). In addition, screening programs and

changes in sociodemographic and social trends, is helping reducing rupture incidence and

mortality rates (1, 6–8). AAAs are often asymptomatic until rupture and incidentally detected

by ultrasound, x-rays, or CT scans when patients are examined for a non-related reason.

Several risk factors for AAA have been identified including aging, male sex, hypertension,

dyslipidemia, and smoking (9). Prior studies have failed to identify specific treatments for

AAA and randomized clinical trials have supported surgery (open or endovascular surgery)

only in patients with large (aortic diameter > 5–5.5 cm) or symptomatic AAAs (2, 10).
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FIGURE 1

Pathological processes in type 1 and/or type 2 diabetes potentially affecting AAA progression.
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Diabetes Mellitus (DM), a disease which is characterized by

chronic hyperglycemia, induces nephropathy and microvascular

disease, and represents a major risk factor for cardiovascular

disease (CVD) (80 percent of deaths among those with DM) (11,

12). Type 1 DM (T1DM) and Type 2 DM (T2DM) have

abnormally elevated blood glucose levels as main characteristic of

the disease but differ in many other aspects. While T1DM is

primarily the result of autoimmune destruction of pancreatic

beta cells, T2DM is characterized by the loss of insulin

sensitivity, deficiency in insulin secretion and is frequently linked

to obesity (13). Although DM is one of the main risk factors for

CVD, most epidemiological studies have described its potential

protective role on the prevalence and incidence of AAA (14–18).

For non-post-operative data, most studies suggest the

protective role of DM in AAA (14). Meta-analysis of prospective

studies demonstrate that people with DM have lower prevalence

of AAA (19–22) and that people with DM and small AAAs

(aortic diameter between 3 and 5 cm) have slower AAA

progression (22–24). The VIVA trial showed an inverse

relationship between HbA1c blood levels and AAA growth rate

(24). A recent study in 250 subjects showed that patients with

DM have more than a 35 percent reduction in the median AAA
Frontiers in Cardiovascular Medicine 02
growth rates despite having more severe concomitant vascular

comorbidities (25). A retrospective study on the relationship

between DM and AAA rupture showed that patients with DM

and AAA are significantly less likely to present AAA rupture or

to die from AAA rupture when compared to nondiabetic patients

with AAA (26). However, the authors of this study suggested

that the protective effect on AAA could be due to DM itself or

to the pharmacological treatments of DM. According to these

results, a meta-analysis of 9 studies of AAA rupture and 2

studies of non-rupture symptomatic AAA demonstrated that DM

was associated with lower prevalence of AAA rupture (18).

Although DM and/or antidiabetic drugs seems to exert a

protective effect on the vascular wall, their effect on the post-

operative cardiovascular outcomes after open surgery in patients

undergoing AAA repair is more controversial. In this sense, a

recent nationwide study in France identified T1DM as a risk

factor of post-operative mortality in patients undergoing AAA

repair (27). Some reports show increased post-operative mortality

in patients with DM compared to controls (22, 28). However,

some others report lower mortality (19). The adjusted analysis in

a Swedish nationwide observational study showed that patients

with DM have significantly lower risk of total and cardiovascular
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mortality after acute aortic repair, whereas rates of cardiovascular

events, acute myocardial infarction and stroke did not differ

between groups (29). There are also some studies which show no

differences in post-operative mortality between patients with and

without DM (17, 30–32). One of those studies showed that

patients with DM had higher rates of acute myocardial infarction

and major adverse cardiovascular events after elective open AAA

repair than those without DM, despite not finding differences in

post-operative mortality (31).

The research on the protective role of DM in AAA has been

mainly tested on animal models. To our knowledge, these studies

have been mainly performed in models of T1DM (15).

Streptozotocin-induced T1DM shows a protective effect in AAA

induced by either by elastase infusion in the abdominal aorta of

C57BL/6 mice or by Angiotensin II (Ang II) infusion in

apolipoprotein E knock-out (ApoE−/−) mice (33, 34). Dr.

Zhonglin Chai’s group demonstrated that cell division

autoantigen 1 (CDA1) is upregulated in DM and enhances TGF-

β signaling, including the vasculature (35). In this study, the

authors demonstrated that deletion of CDA1 in mice with DM

decreased TGF-β signaling and reduced ECM accumulation,

which would revert the protective effect of DM and then,

contribute to aneurysm formation (36, 37). Importantly,

stimulation of TGF-β signaling prevents AAA (38, 39) and

blockade of TGF-β accelerates AAA development (39, 40). Thus,

the protective effect of CDA1 could be explained by its effect on

TGF-β signaling. A recent study in mice has suggested the

potential contribution of dysregulated prolyl hydroxylase domain

(PHD) containing proteins to DM mediated AAA suppression

(41). The authors proposed that AAA attenuation in the setting

of DM was derived from enhanced aneurysmal angiogenesis as a

consequence of dysregulated PHD activity. On the other hand,

mice models of T2DM present hyperglycemia and insulin

resistance (IR), often associated with obesity (42), which fairly

recapitulates human disease. However, to our knowledge,

although Tanaka et al. studied the effect of T2DM on carotid

aneurysm (by using KK-Ay mice), no mouse experiments have

been performed to study the effect of T2DM on AAA, which

implies a lack of information on the potential mechanisms by

which DM would exert protective effect on AAA.

In spite of the commented clinical and experimental evidence

suggesting a protective role of DM in AAA, a Mendelian

randomized analysis recently demonstrated that lifelong genetic

predisposition to T2DM does not protect against AAA (43).

Moreover, human diabetic arteries have intrinsic properties

potentially related to AAA development, such as increased

stiffness (44), endothelial dysfunction (45, 46) and calcifications

(47). In this respect, DM due to the combination of hyperglycemia

(T1 and T2DM) and obesity and IR (T2DM) could lead to

pathological vascular remodeling through mechanisms including

oxidative stress, inflammation and ECM degradation (Figure 1).

In the next sections, we will show the discrepancy between some

studies showing a protective role of DM in AAA with others

supporting the potential contribution of DM-related factors to

pathological mechanisms involved in AAA development.
Frontiers in Cardiovascular Medicine 03
1.1. Hyperglycemia and AAA

Hyperglycemia, a common risk factor for T1DM and T2DM,

drives inflammation and reactive oxygen species (ROS)

production, impairing endothelial cell and VSMC function (48–

52). In addition, hyperglycemia accelerates senescence in

endothelial cells (52, 53), VSMCs (54, 55), endothelial

progenitor cells (56) and mesenchymal stem cells (57), which

contributes to vascular dysfunction. Hyperglycemia induces

changes in VSMC responses to vascular injury (55), which have

been described to be mediated, at least in part, by β3 integrin

signaling (55) and by suppression of insulin receptor substrate-

1-mediated p53/KLF4 complex stabilization (58). DM and

chronic hyperglycemia drive advanced glycation end products

(AGE) production, activates glucose autooxidation and inhibits

the production of antioxidant agents, all together influencing

the activation of circulating and resident cells of the vascular

wall. Thus, diabetes would be expected to be a risk factor for

the development of AAA. However, hyperglycemia has been

shown to stabilize the collagen network by generating a thicker

aortic wall which exert a protective effect on the wall stress in

the abdominal aorta of patients with DM (23, 59). In this

regard, accumulation of collagen IV is commonly observed in

human diabetic arteries (60, 61), while its deficiency is

associated with AAA development (62). Moreover, circulating

collagen IV degradation fragments correlated with AAA

progression in the VIVA cohort (62). Furthermore, Golledge

et al. suggested that the progression of AAA is slower in

patients with diabetes through changes in monocyte-ECM

interactions (23). Moreover, an study in AAA biopsies obtained

from diabetic and nondiabetic patients suggested that cross-

linking AGEs play a protective role in AAA progression in

diabetic patients (63). Besides, Miyama et al. showed that

hyperglycemia reduces progression of AAA disease in two

models of elastase and Ang II infusion in mice (34). This study

demonstrated that insulin treatment attenuates this protective

effect. Identifying the mechanisms by which hyperglycemia

exert a protective role against AAA formation and progression

would contribute to the development of novel clinical therapies

for AAA disease.
1.2. Obesity and AAA

Observational studies, interventional studies and post-hot

analysis of clinical trials demonstrate that T2DM long-term

glucose fluctuation is correlated with an increased risk of micro-

and macro-vascular complications (64–71). However, it is

conceivable that long-term variability of other DM-related risk

factors (insulin levels, blood pressure, dyslipidemia, heart rate,

body weight, and serum uric acid) may be involved in the

development of AAA.

Obesity is a major health problem worldwide and is a major

risk factor of the pathophysiology of T2DM and weight gain,

promotes diabetes progression and is associated with worse
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glycemic control. Obesity is a risk factor for human AAA (72–74).

The Physician’s Health Study showed that, relative to men with

body mass index (BMI) < 25, overweight (BMI = 25–30) and

obese (BMI ≥ 30) men had 30%–70% higher risk of developing

AAA (75). The same prospective analysis in the Physicians’

Health Study showed that despite obesity was associated with a

higher risk of AAA, the history of DM tended to associate with

a lower risk of diagnosed AAA, particularly over longer follow-

up. Increased adipose tissue mass has been shown to promote

the two main defects of diabetes: IR and beta-cell dysfunction.

A study on a Swedish population found that the risk of AAA

was 30% higher in individuals with increased waist

circumference (abdominal adiposity) (76). Moreover, patients

with metabolic syndrome have a more than two fold increased

risk for the development of T2DM, cardiovascular morbidity

and mortality (77, 78). A recent study in 354 patients

concluded that metabolic syndrome proportionally aggravates

the progression of AAA (79). Interestingly, although the

rupture rate was significantly higher and the survival rate

significantly lower in patients with metabolic syndrome, the size

of AAA was significantly smaller in patients with DM

compared to patients with no DM (despite being metabolic

syndrome more prevalent in the DM group) (79).

Regional differences in periaortic adipocytes and their

differential ability to promote chemokine release, macrophage

infiltration, and proinflammatory cytokine expression was

related to enhanced AAA risk in obesity. The presence of

adipocytes in the vascular wall is associated with AAA

development and/or rupture (74). One of the main features in

AAA pathogenesis is inflammation, which is often associated

with the excess of PVAT. The amount of PVAT is higher in the

aortas of patients with AAA (80). However, the molecular

influence of PVAT on AAA has not been well described.

Adipose tissue depots produce proinflammatory adipokines

(leptin, TNFα and resistin) which have been suggested to have

a role on AAA development. On the other hand, adiponectin,

an adipokine which is positively involved in glucose and lipid

systemic homeostasis, is decreased in the context of obesity

(81). Interestingly, experimental AAA models have shown that

adiponectin infusion reduces vascular inflammation, prevents

vascular infiltration of macrophage and attenuates AAA

development (82, 83). A recent systematic review and meta-

analysis of animal and human observational studies, concluded

that, although leptin and adiponectin upregulation do not affect

AAA in animal models, studies in humans showed that resistin

and leptin serum levels together with the amount of PVAT were

higher in patients with AAA compared to control (84).

Besides autocrine and paracrine effect of fat tissue, adipocyte

metabolism and molecular signaling might influence AAA

development. It has been shown that genetic deletion of Ang II

type 1a receptor in PVAT reduces AAA formation in ApoE−/−

mice (85). In 3T3-L1 adipocytes, Ang II inhibits insulin-

stimulated IR and IRS-S tyrosine-phosphorylation, Akt activation,

and glucose uptake (86). However, not only adipocytes but also

other types of cells within the adipose tissue have been suggested

to have a role on the progression of AAA. In this sense,
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macrophages within the adipose tissue are key in the

inflammatory process of AAA due to their role on the

degradation of the ECM (72). Diet-induced obesity as well as the

leptin-deficient (ob/ob) genetic mouse model of obesity promotes

macrophage infiltration in PVAT surrounding abdominal aortas

and further increases Ang II-induced AAAs (72).

Although obesity is known to be one of the main risk factor of

T2DM, the inverse correlation of DM with AAA could suggest a

protective role of obesity against AAA. However, as mentioned

before, adiposity has been implicated in other pathogenic

mechanisms of relevance to AAA, suggesting that the

relationship between obesity and AAA may be complex. Specific

studies on the effect of DM with or without DM are needed to

elucidate the contribution of both diseases on the

pathophysiology of AAA.
1.3. Insulin resistance and AAA

Multiple studies have highlighted the association between DM

and AAA. However, no conclusive studies have been done to

elucidate the link between IR, one of the most important

characteristics of T2DM, and the incidence and progression of

AAA.

Systemic IR can cause vascular dysfunction and accelerate

vascular disease in people with DM and metabolic syndrome

(87–89). A clinical study shows an association of AAA diameter

with IR (90). In this study, C-peptide, insulin concentrations and

IR index (HOMA2 IR) were significantly higher in patients with

AAA > 5 cm compared to those with AAA < 5 cm. IR might

promote incidence and AAA progression by systemic factors

(dyslipidemia, hyperglycemia, inflammation) as well as by the

disruption of insulin signaling in endothelial cells, VSMCs and/

or macrophages. Interestingly, insulin receptor-mediated

signaling pathways in these cells are down-regulated in

hyperinsulinemic environment (88, 91). In this sense, altered

insulin signaling might be due to down regulation of insulin

receptor signaling or by the excessive insulin receptor signaling

(87). Studies in endothelial cells suggest that downregulation of

insulin receptor may contribute to vascular remodeling in an

insulin resistant environment (91, 92). A recent study focused on

macrophages as potential responsible of the potential protective

effect of DM on AAA showed that stimulation of macrophages

with serum from patients with DM and AAA increase

macrophage metabolism (based on differences in extracellular

acidification and the expression of genes involved in glycolysis

and lipid oxidation), which is accompanied by a shift towards an

anti-inflammatory state (93). IR is accompanied by

hyperinsulinemia and literature suggests that insulin modulates

the inflammatory response in macrophages. In this regard, most

of the studies show that insulin enhances inflammatory response

and secretion of inflammatory cytokines (94, 95). However, there

are also studies showing no effect on cytokine production by the

macrophages in response to insulin, or even demonstrate the

potential anti-inflammatory effect of insulin (96–98). Although

there are several published studies on the mechanism of IR
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vascular remodeling, it remains unexplored whether endothelial,

VSMC and macrophage IR affects the incidence and progression

of AAA.
2. Oral antidiabetic drugs and AAA

Treatment of patients with DM includes lifestyle modifications

(mainly healthy diet and exercise), together with a proper

pharmacologic therapy (99–101) (Table 1). Drugs used to treat

patients with T2DM have a variety of mechanisms by which they

lower glucose levels (102), with different molecular targets and

potential uses for other diseases. Recent available literature shows

protective effects of some antidiabetic drugs on the incidence and

progression of AAA (Figure 2).
2.1. Metformin and AAA

Studies on metformin treatment suggest that this drug may

reduce CVD independently on its effect on improving glucose

control (103–107). One of the mechanisms that have been

proposed for this protective effect of metformin is through its

action via phosphorylation of AMP-activated protein kinase
TABLE 1 Antidiabetic drugs used in AAA patients.

Class of antidiabetic
medication (route
of administration)

Medicine class Active ingredient

Oral Sulfonylureas Chlorpropamide,
Tolazamide, Tolbutamide,
Acetohexamide, Glipizide,
Glyburide, Gliclazide,
Glimepiride,
Glibenclamide

Meglitinides Repaglinide and
Nateglinide

Biguanides Metformin, Metformin
XR (extended release)

Thiazolidinediones Rosiglitazone,
Pioglitazone

α-Glucosidase inhibitors Acarbose, Miglitol and
Yoglibos

Dipeptidyl peptidase-4
(DPP-4) inhibitors

Sitagliptin, Saxagliptin,
Vildagliptin, Linagliptin
and Alogliptin

Type-2 sodium-glucose
co-transporter (SLGT2)
inhibitors

Dapagliflozin,
Canagliflozin,
Empagliflozin and
Ertugliflozin

Dopamine agonist Bromocriptine

Bile acid sequestrant Colesevelam

Injectable Glucagon-like peptide
(GLP-1) analogues

Dulaglutide, Exenatide,
Semaglutide, Albiglutide,
Liraglutide and
Lixisenatide

Gastric inhibitory
polypeptide (GIP) and
GLP-1 receptor agonist

Tirzepatide

Amylin mimetic Pramlintide

Insulin

Frontiers in Cardiovascular Medicine 05
(AMPK) (108), which affects several glucose-activated lipogenesis

genes and GLUT4 transporter. Experimental models have shown

that metformin is effective in limiting AAA progression in both

DM and normoglycemic conditions. Two experimental studies

showed a protective effect of metformin on AAA formation

through a decrease in proinflammatory cells in the vascular wall

and a reduction in proinflammatory cytokines (109, 110). A

recent study in an experimental AAA model in mice showed that

metformin reduced autophagy in AAA through Atg7, suggesting

this molecule as a potential mediator of the protective effect of

metformin in AAA (107). Besides, vascular calcification is

associated with T2DM and increases the risk of cardiovascular

morbidity and mortality. Pharmacological administration of

metformin alleviate arterial calcification through AMPK-activated

autophagy (111). In fact, it has been previously suggested that

the epidemiologic evidence of the protective role of DM in AAA

may be attributable to antidiabetic therapy with metformin (110).

Metformin suppresses experimental AAAs and reduces

enlargement rate of clinical AAAs (110, 112–115). The findings

of association between metformin prescription and AAA growth

rates showed that treatment with metformin in T2DM patients

was associated with a reduced AAA growth in three different

cohorts of approximately 1,700 patients that were analyzed by

different imaging protocols (116). A systemic review and meta-

analysis of 10 studies showed that patients with T2DM that were

treated with metformin had slower annual AAA growth rate

compared with T2DM patients without metformin. In a

nationwide analysis of diabetic Veterans Affairs patients,

prescription for metformin was associated with decreased AAA

enlargement (112). The mechanism by which metformin may

exert a protective effect on AAA may be related to its anti-

inflammatory and antioxidant effect on the vasculature (109, 110,

114, 117–119) and/or to its effect on the ECM remodeling (120).

Metformin treatment also reduced the frequency of rupture of

AAA (121). Therefore, the translational potential use for

metformin therapy is beyond the treatment of DM. Interestingly,

Golledge et al. recently started a clinical trial [Metformin

Aneurysm Trial (MAT)] to elucidate whether metformin reduces

the risk of serious complications of AAA (122). The primary

outcome of the MAT trial is the proportion of AAA events:

rupture-related mortality or need for surgical repair. The

secondary outcomes include AAA growth, major adverse

cardiovascular events, and health-related quality of life. Another

recent clinical trial (The Metformin for Abdominal Aneurysm

Growth Inhibition [MAAAGI] trial started on February 2020,

and had to be paused during the COVID-19 pandemia (123). In

this trial, primary efficacy will be assessed by difference in AAA

diameter determined by computed tomography after five years

vs. at baseline. Secondary outcomes will be AAA volume and

ultrasound diameter growth, rupture and elective repair AAA

events, quality of life, and health economic assessment. The

Limiting AAA with Metformin trial (LIMIT) started on February

2022 (124). The primary outcome will be the change in maximal

orthogonal diameter of the infrarenal aorta after two years vs. at

baseline and secondary outcomes will include profile of adverse

cardiovascular events, all-cause mortality, change in serological
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FIGURE 2

Antidiabetic agents and AAA. Summary of the mechanisms by which biguanides (103–124), sulfonylureas (131), thiazolidinediones (125–130), dipeptidyl
peptidase inhibitors (DDP-4) inhibitors (149, 151–155, 158), glucagon-like peptide-1 (GLP-1) analogues (145–149, 156–158) and type-2 sodium-glucose
co-transporter (SGLT2)-inhibitors (133–144) exert a protective effect on AAA (data from experimental and clinical studies).
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markers of hepatic, hematopoietic and renal function within

others. Thus, there will be very valuable data about metformin

effect on AAA within the next years.
2.2. Thiazolidinediones and AAA

Several studies with pioglitazone have suggested a beneficial

effect on CVD. These antidiabetic agents exhibit anti-

inflammatory effects by reducing the levels of TNF-α (125, 126).

Jones et al. demonstrated in an experimental model of Ang II-

induced AAA that rosiglitazone treatment reduce inflammation

and increase the aortic wall thickness by increasing collagen

production. Besides, administration of rosiglitazone in mice

inhibited Ang-II-mediated activation of JNK, thereby reducing

the formation of aneurysms (127). It has been shown that

pioglitazone decreases visceral adipose tissue, reduces cholesterol

and triglycerides blood levels, increases HDL cholesterol, reduces

hyperinsulinemia and IR, improves endothelial dysfunction and

inflammation, risk factors for AAA development and progression

(128). Thus, pioglitazone may have direct or indirect effect on

AAA disease. A model of Ang II-induced AAAs in ApoE-

deficient mice showed that suprarenal aortic expansion was

significantly reduced by the treatment with pioglitazone

compared to the control group (129). A study with rosiglitazone,

another peroxisome proliferator-activated receptor-gamma

agonist, showed that pretreatment or posttreatment with
Frontiers in Cardiovascular Medicine 06
rosiglitazone reduced aortic expansion and rupture in the same

animal model of AAA (130).
2.3. α-Glucosidase inhibitors and AAA

Few studies with α-glucosidase inhibitors have demonstrated

protective cardiovascular effects of these hypoglycemic drugs. A

nested case–control analysis using the database extracted from

Taiwan’s national health insurance research database showed that

alpha-glucosidase inhibitors was not associated with aneurysm

events (131). In this study, incidence of AAA was lower in those

receiving metformin, sulfonylurea, and TZD, but not dipeptidil

peptidase-4 (DPP4) inhibitors and alpha-glucosidase inhibitors.

Further studies on acarbose effects on AAA disease in patients

with and without DM are needed.
2.4. SLGT2 inhibitors and AAA

SGLT2 is a glucose transporter located in the proximal tubules

of the kidneys, which is responsible for the reabsorption of the

majority of the filtered glucose entering the tubules (132).

Clinical and experimental data suggest that SGLT-2 inhibitors

have beneficial effects in cardiovascular and metabolic diseases

such as nonalcoholic steatohepatitis (133, 134), obesity (135–

137), heart failure (138), and atherosclerosis; however, little is
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known about the effect of SGLT-2 inhibition on AAA. A recent

study evaluates the effect of oral chronic treatment with

empagliflozin, an SGLT-2 inhibitor, on AAA induced by Ang II

infusion in mice (141). This study shows that empaglifozin

treatment reduced the suprarenal aortic diameter independently

of blood pressure effects. Besides, empagliflozin diminished

elastin degradation, neovessel formation, macrophage infiltration

and expression of CCL-2 [chemokine (C-C motif) ligand 2] and

CCL-5 [chemokine (C-C motif) ligand 5], VEGF (vascular

endothelial growth factor), MMP-2 and MMP-9 at the AAA

lesion. In vitro studies with empaglifozin shows that this

inhibitor reduces leukocyte-endothelial cell interactions and

chemokine release induced by Ang II in human aortic

endothelial cells (141). A more recent study on the effect of

dapaglifozin on AAAs in a elastase-induced AAA experimental

model (142) demonstrated that the daily treatment with

dapagliflozin beginning one day prior to elastase infusion and for

14 days results in a significantly reduced aneurysmal aortic

expansion. Besides, dapagliflozin reduced aortic accumulation of

macrophages, CD4+ T cells, and B cells, attenuated medial

VSMCs loss and reduced neovessel density. An experimental

study demonstrated that administration of empagliflozin reverts

angiotensin II-induced dissecting AAA in mice (143) possibly by

reducing the expression of inflammatory chemokines, VEGF,

MMP-2 and MMP9, and by reducing macrophage infiltration

into the aortic wall. Empagliflozin reduces the activation of

vascular p38 MAPK and NF-κB, which have been implicated in

the development of AAA (143, 144).
2.5. GLP-1 analogs and AAA

The incretin hormone, GLP-1 is an intestinal hormone and

neuronal peptide which is involved in glucose-induced insulin

secretion and participates, together with GIP, in regulating

glucose metabolism, energy homeostasis, control of appetite,

gastrointestinal motility and trophicity. However, experimental

and clinical studies have shown beneficial effects of these

hormones in other pathologies and GLP-1-based therapy have

been shown to prevents aneurysm formation in vivo (145, 146).

While there is a wide knowledge of the role of GLP-1 in the

context of ischemic cardiac disease, very little is known about its

effect in AAA. The beneficial effect of GLP-1 in AAA might be

due to its effect on the mechanisms implicated in AAA

formation/progression, such as inflammation, oxidative stress,

and proteolytic activity. A recent study speculates that the

proteoglycan syndecan-1 (Sdc-1), whose expression is regulated

by intracellular targets of the GLP-1 receptor (GLP-1R),

modulates pro-inflammatory processes, and has a protective role

in AAA (147). In this sense, GLP-1R activation in aortic VSMCs

reverts Ang II induced reduction of Sdc-1 expression. Besides,

experimental studies in both elastase and calcium chloride and

Ang II-induced AAA, treatment with the GLP-1 agonist

(lixisenatide and sitagliptin respectively) reduced AAA

development, decreased macrophage infiltration and TNFα

mRNA and MMP-9 expression in the aorta (148, 149).
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DPP-4 inhibitors inhibits the proteolytic enzyme DPP-4 which

degrades GLP-1, therefore prolonging the action of GLP-1 and

resulting in enhanced glycemic control (150). Several recent

studies in humans have aimed to investigate the role of DPP-4 in

AAA pathogenesis. Lu et al. showed that plasma levels of DPP-4

were increased in patients with AAA and the increase was

correlated with the diameter of the AAA. Besides, these authors

studied the role of sitagliptin, a DPP-4 inhibitor, in a model of

AAA induced by Ang II-infusion in mice. The incidence of AAA

formation was significantly lower in mice treated with sitagliptin.

Specifically, administered sitagliptin in Ang II-infused mice

exhibited decreased expansion of the suprarenal aorta, reduced

elastin lamina degradation of the aorta, and diminished vascular

inflammation by macrophage infiltration (149). Noda et al.

demonstrated that vildagliptin, another DPP-4 inhibitor,

significantly diminished the formation of AAA and reduced

expression of MMP-2, MMP-9, and IL-6 an experimental model

of calcium chloride-induced AAA (151). An experimental study

with teneligtip showed that AAA formation was significantly

reduced in the treated group compared with the control group.

Teneligtip also retarded AAA growth, reduced elastin

degradation and reduced macrophage infiltration (152). Similarly,

a rat model of AAA showed that alogliptin attenuates aneurysm

formation and aortic dilatation ratio via an antioxidative effect

(reduction of ROS formation), and reduced MMP2 and MMP-9

expression levels in the aortic tissue (153). Two different studies

with the non-selective DPP-4 inhibitor MK0626 in murine

models of AAA demonstrated a reduced AAA formation in the

treated group compared to the control group that was related

with changes in the ECM (154, 155).

A decreased infiltration of macrophages in the aortic wall may

be, at least in part, responsible of the protective effect of GLP-1

analogs on AAA formation and progression (156). Studies in

mice have shown that TNFα expression levels are increased in

aneurysm tissue compared with healthy aortic tissues.

Pharmacological and genetic inhibition of TNFα expression

decreases AAA and, therefore, the protective effect of GLP-1R

agonists limiting AAA development might be due to its effect on

TNFα expression (157). Similarly, administration of GLP-1

agonist or DPP-4 inhibitors reduces the expression of MMP-2

and MMP-9 in the aorta. This effect may account for the

protective effect of these drugs on preserving the ECM and

therefore, on reducing the progression of AAA (158).
3. Conclusion

Although some DM-related factors might protect against AAA

formation and progression (e.g., hyperglycemia-modulation of

ECM), most features of DM disease are part of the risk factors

which are associated with CVD and, most likely, contribute in

some degree to the development of AAA. Most published

reviews on the association of DM and AAA do not emphasize

differences between T1DM and T2DM. In fact, experimental
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investigation on the study of T2DM and AAA in T2DM mouse

models are lacking. Analyzing the differences between the effect

of T1DM and T2DM on the formation and progression of AAA

may help elucidating the question of whether DM is protective

for AAA. Besides, the relationship between AAA and insulin

resistance and/or the pre-diabetic state is poorly understood and

needs further investigation. Furthermore, the ability of adipose

tissue and its secreted adipokines to modulate the vascular

environment may require more attention since increased

adiposity is one of the main features in T2DM. At the same

time, some of the clinical studies linking a protective role of DM

in the incidence and progression of AAA do not specify whether

those patients are receiving antidiabetic treatments. In addition,

controversial results between non-postoperative and postoperative

data reveal non-conclusive evidence of the protective effect of

DM per se in AAA. The main challenge in these studies in

humans is the availability of patients with AAA with no previous

drug prescription.

It is being established that the protective effect against AAA is,

at least in part, dependent on the pharmacological treatments used

for DM. In this regard, recent available literature shows clear

protective effects of antidiabetic drugs (metformin, SGLT2-

inhibitors, incretin-based therapies, among others) on the

incidence and progression of AAA. Although some of these

drugs have recently been introduced and cannot explain old

observations, other antidiabetic agents such as metformin have

been used before and may explain, at least in part, the AAA

progression in patients with DM. In addition, new data from

specific clinical trials will be available within the next years that

will help elucidating the mechanisms by which these drugs

protect against AAA.
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