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The renin-angiotensin system (RAS) is a major classic therapeutic target for

cardiovascular diseases. In addition to the circulating RAS, local tissue RAS has

been identified in various tissues and plays roles in tissue inflammation and tissue

fibrosis. (Pro)renin receptor (PRR) was identified as a new member of RAS in 2002.

Studies have demonstrated the effects of PRR and its soluble form in local tissue

RAS. Moreover, as an important part of vacuolar H+-ATPase, it also contributes

to normal lysosome function and cell survival. Evidently, PRR participates in the

pathogenesis of cardiovascular diseases and may be a potential therapeutic target

of cardiovascular diseases. This review focuses on the effects of PRR and its soluble

form on the physiological state, hypertension, myocardial ischemia reperfusion

injury, heart failure, metabolic cardiomyopathy, and atherosclerosis. We aimed to

investigate the possibilities and challenges of PRR and its soluble form as a new

therapeutic target in cardiovascular diseases.
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1. Introduction

As a classic and pivotal target for the treatment of cardiovascular diseases (CVD), the renin-
angiotensin system (RAS) has received sustained and extensive attention. The importance of
circulating RAS in the regulation of fluid homeostasis and cardiovascular disease has been well
acknowledged. Circulating RAS principally contains two axes. The classic axis is composed of
renin, angiotensinogen (AGT), angiotensin (Ang) I, angiotensin-I-converting enzyme (ACE),
and Ang II. The non-classical RAS axis, which mainly consists of ACE2, Ang 1–7, and Mas
receptor (MasR), antagonizes the classical axis and has a protective role (1). The imbalance of the
two axes is an important factor in the occurrence and development of CVD caused by circulating
RAS (1). In recent years, local RAS that appears in tissue has also aroused widespread concern in
studies; it is widely involved in sympathetic outflow, tissue inflammation, oxidative stress, tissue
fibrosis and a series of pathological processes, promoting CVD progression in conjunction with
circulating RAS (2). (Pro)renin receptor (PRR) was identified as a new member of the local
RAS by Nguyen et al. in 2002 (3). During the past decade, an increasing number of studies
have revealed that PRR is involved in cardiovascular disease progression as part of the local
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RAS (4). In our research, we further found that PRR participates in
the pathogenesis of diabetic cardiomyopathy (DCM) (5), alcoholic
cardiomyopathy (6), and aneurysm (7).

Cardiovascular disease is a common health issue and has been
a major limiting lifetime factor. As one of the leading causes of
death globally, it has contributed to nearly 40% of deaths in the
aging population (8). Mortality has shown a declining trend in recent
years. Nevertheless, the incidence of CVD is increasing year by year,
especially in high-income countries. Age is the main risk factor
for CVD; worse, the world’s elderly population is experiencing an
unprecedented increase, and by 2030, it is estimated that the elderly
population will reach approximately 20% of the total population; in
China, this number is forecasted to reach 30% (9), which places a huge
burden on the social economy. In recent years, significant progress
has been made in the management of cardiovascular diseases;
however, patients with CVD still have high mortality rates and low
quality of life. Hence, there is an urgent need to search for new
therapeutic targets and establish more effective treatment strategies.

In this review, we mainly summarized the role and controversies
of PRR and its cleaved product soluble PRR in cardiovascular
pathogenesis and their prospective guiding roles in further research
and clinical application.

2. Biochemical characteristics of PRR
and sPRR

2.1. PRR

(Pro)renin receptor, also known as ATP6AP2, is a single-pass
transmembrane protein composed of 350 amino acids. It consists
of an N-terminal extracellular domain composed of a hydrophobic
region (amino acids 1-16), a transmembrane domain and a short
cytoplasmic domain (3, 10). The gene that codes PRR is located on
the X chromosome (Xp11.4). Full-length PRR expression was found
to be higher in thyroid, brain, kidney, adrenal, endometrium, heart,
appendix and 18 other tissues and lower in pancreas and salivary
gland (11), and it is mainly present on endomembrane systems,
including vacuolar membranes and plasma membranes (10).

As PRR was first reported, it was found to facilitate AGT cleavage
and increase angiotensin (Ang) II production and function (3, 12).
The binding of (pro)renin to the PRR triggers a conformational
change and non-proteolytic activation of (pro)renin, resulting
in Ang I being derived from AGT (Figure 1A). ACE further
converts Ang I to Ang II. This discovery may explain the issue
of how the low level of renin maintains a high level of Ang II
activity in the brain (13) and make PRR a new member of the
RAS system. It was clear that the effect of PRR enhancing the
generation and action of Ang II in the brain plays a role in
neurogenic hypertension (4, 14). However, compared with the Ang
II-dependent pathway of PRR, the intracellular signaling molecules
activated by PRR independent of Ang II might be more important
in inflammation and fibrosis of the myocardium, kidney, and
other tissues in pathologic conditions and have received more
attention. When binding with (pro)renin, PRR directly activates
the downstream intracellular signaling pathways, including the
extracellular signal-related protein kinase (ERK) 1/ERK2 pathway,
p38 mitogen-activated protein kinases (p38MAPKs)–heat shock

protein (HSP) 27 pathway and phosphatidylinositol 3-kinase–p85α

(PI3K-p85α) pathway, independent of Ang II (15–17) (Figure 1B).
This process triggers a sequence of cascade reactions and ultimately
upregulates a series of nuclear factors, which are important
contributors to tissue injury and fibrosis in disease (18–20, 21).
However, some researchers overexpressed PRR in normal mice, no
increase in blood pressure and no tissue damage were observed
(22). This might indicate that PRR is not a primary initiator
of tissue damage but exacerbates tissue injury in pathological
conditions (22).

A truncated form of PRR named M8.9 was found to be an
accessory protein of vacuolar H + -ATPase (V-ATPase) and plays a
critical role in V-ATPase biogenesis (23, 24) (Figure 1D). Previous
studies showed that abnormal cytoskeleton and impaired autophagy
caused by the deletion of PRR significantly affected cell survival
(23, 25). These studies might suggest that the deletion of PRR
is more lethal than the overexpression of PRR. Although it is
still controversial whether moderate knockdown of PRR under
pathological conditions will lead to lysosomal dysfunction and
autophagy impaired, apparently the best option would be to block
PRR without affecting M8.9, and not knockdown gene expression.

Interestingly, Cruciat et al. (26) found that PRR is an important
component of the Wnt receptor complex together with Frizzled,
V-ATPase and a low-density lipoprotein receptor-associated protein
6 (LRP6) and participates in the activation of Wnt/β-catenin
signaling, which contributes to cell development and may participate
in tissue fibrosis (Figure 1C). This discovery provides another
possible mechanism for the physiological and pathological effects
of PRR.

2.2. sPRR

In addition to M8.9, in 2009, a 28-kDa soluble (pro)renin
receptor (sPRR) was found in plasma (27). These findings might
indicate that the full-length PRR is cleaved by some means.
However, the generation of sPRR remains controversial. Cousin
et al. (27) reported that PRR was cleaved by furin in the trans-
Golgi, which generates a 28-kDa sPRR and an additional 10-kDa
fragment. However, there is no evidence that the 10-kDa fragment
is M8-9, the accessory protein of V-ATPase. In contrast, another
study found that metalloproteinase ADAM19 mediates the shedding
and cleavage of PRR in Golgi and generates 29 kDa NTF-PRR
and CTF-PRR (28), which may suggest furin is not the only
cleavage protein of full-length PRR. Recently, Nakagawa et al. (29)
found that the cut site of sPRR fits well to the cleavage site of
Site-1 protease (S1P), a member of the subtilisin-like proprotein
convertase family. Through the use of specific S1P knockdown,
they proposed that full-length PRR was first cleaved by S1P and
further cleaved by furin to generate sPRR, which was secreted
extracellularly (29). Furthermore, an animal experiment confirmed
that inhibition of S1P effectively reduced the sPRR level in Ang
II–induced hypertension mice (30), which may suggest that S1P
is the rate-limiting protein in the production of sPRR. Multiple
clinical studies have confirmed the relevance of sPRR and some
diseases, including gestational diabetes (31), essential hypertension
(32), chronic heart failure (33), and renal damage (34); however, the
physiological function and pathological mechanism of sPRR have not
been elucidated to date.
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FIGURE 1

The biochemical function of PRR. (A) PRR convert AGT to Ang I through binding with (pro) renin, independent of renin. (B) When bind with renin and
(pro) renin, PRR promotes multiple intracellular pathways, include ERK1/ERK2 pathway, p38MAPKs-HSP 27 pathway and PI3K-AKT pathway, and further
promotes downstream transcription factors expression. (C) PRR constitutes Wnt receptor complex together with Frizzled, H + -ATPase and LRP6, takes
part in Wnt/β-catenin pathway. (D) The truncated form of PRR named M8.9 is an important part of H+-ATPase, contributes to normal lysosomal function.

3. The roles of PRR and sPRR in
cardiovascular diseases

3.1. Physiological state

In physiological state, PRR was discovered high expression in
human brain, heart, kidney and colon (11). There are sufficient
evidences suggested that PRR plays an important role in cell
proliferation and cell cycle progression (35–37). This effect might be
associated with Wnt/β-catenin (35). There are numerous literature
reports on the essential role of Wnt/β-catenin in cell survival and
proliferation, cell fate and movement (38). As part of Wnt receptor
complex, PRR knockdown impairs cell proliferation and normal
morphogenesis both through canonical and non-canonical Wnt/PCP
signaling pathway, which leads to neurodevelopmental abnormalities
in mice (35). Wanka et al. also demonstrated that PRR knockdown
decreases cell proliferation and a cell cycle arrest in the G0/G1
phase in renal As4.1 cells (36). Moreover, another study showed
that PRR overexpression facilitates cell proliferation in hippocampal
neural stem cells (37). This finding provides further evidence of
the above research.

As mentioned above, the truncated form of PRR is an important
accessory protein of V-ATPase. V-ATPases are proton-pumping

membrane proteins that drive protons into the lumen of lysosomes
using ATP hydrolysis’ free energy (39). It contributes to maintaining
the acidic environment of lysosome, and provides a conducive
environment for lysosomal hydrolase activity (39). Kinouchi et al.
confirmed PRR ablation decreases the expression of V0 subunits of
V-ATPase and caused V-ATPase function impairment (23). Their
further study demonstrated that full-length PRR participants in
V-ATPase biogenesis. M8.9 might be just a residue after cleavage of
full-length PRR (24). Therefore, PRR is important in maintaining
normal function of lysosome in physiological state. Deletion of PRR
results in lysosomal acidification disorder and impaired autophagy,
and finally leads to cell death (25).

(Pro)renin receptor was first been found as a new member of
RAS. Existing studies demonstrate that PRR is involved in local RAS
both through Ang II-dependent and -independent ways. However,
whether PRR can mediate tissue inflammation and fibrosis by
local RAS under physiological conditions remains controversial.
Moilanen et al. overexpressed PRR by adenovirus in normal rat
hearts and observed cardiac hypertrophy, extracellular matrix fibrosis
and reduced cardiac ejection fraction, accompanied by activation
of the ERK1/2 and p38MAPK-HSP27 pathways (40). They also
suggested that PRR stimulated the p38 MAPK-HSP27 pathway at
least partially through Ang II (40). Another research found that
specific overexpression of PRR in normal mice hearts caused atrial
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fibrillation and cardiac remodeling via ERK1/2 (41). In contrast
to these studies, some studies overexpressed PRR in the heart and
were unable to notice myocardial injury or cardiac fibrosis (22).
They proposed that PRR may aggravate tissue damage caused by
inflammation or diabetes, but not to be the primary initiator (22).
Batenburg et al. demonstrated that only overexpression (pro)renin
but not PRR can stimulated intracellular signaling pathway (42).
They also suggested that the low (pro)renin level in normal
tissue was not enough to activate PRR (42). Moilanen et al.
overexpressed PRR by recombinant adenoviruses that carry rat PRR
genes (40). Comparatively, Rosendahl et al. constructed PRR gene
overexpression mice to up-regulate PRR expression (22). Different
methods and times of PRR overexpression may be responsible
for the discrepant results. But this still lacks evidence and needs
further research.

Altogether, under physiological states, in contrast to the
controversial results of tissue damage and fibrosis caused by PRR,
its importance for maintaining cell survival cannot be disputed.
Therefore, downregulation of PRR gene expression is dangerous.
Clinical treatment targeting PRR should focus on its blockers.

3.2. Hypertension

Since the PRR was first reported (3), considerable research
has revealed the association between PRR and hypertension. PRR
participates in the pathogenesis of hypertension as part of local RAS
rather than system RAS. Therefore, PRR is involved in hypertension
through different mechanisms in different tissues.

3.2.1. Brain PRR
There is continued debate about the effect of the renin–

angiotensin system in the brain because the lower expression level
of renin in the brain might not be sufficient to generate and activate
Ang II (43, 44). The discovery of PRR provided novel insight into
the controversy.

Shan et al. (45) noticed that PRR silencing in supraoptic nucleus
(SON) improved blood pressure in spontaneously hypertensive rats,
and overexpression of PRR in SON stimulated vasopressin (AVP)
secretion in normotensive rats but did not influence blood pressure.
Furthermore, they coincubated PRR and AGT, which verified PRR’s
ability to facilitate Ang II generation (45). Soon after, another study
showed that knockdown of PRR in the brain decreased blood pressure
and reduced angiotensin II type 1 receptor (AT1) and AVP levels
in Ang II–dependent hypertensive mice (4, 46). In salt-sensitive
hypertensive mice, neuron-specific PRR knockout prevented the
generation of Ang II in the brain (47). These studies demonstrated
that PRR may play an important role in the regulation of the brain
RAS system and water balance through AVP. This was corroborated
by later studies in humans (48). However, these studies all denied
that PRR overexpression increased blood pressure (BP) and heart rate
(HR) under physiological conditions (4, 22, 45). This contradiction
might be partially due to limited (pro)renin secretion resulting
in lower PRR activity and insufficient activation of intracellular
signaling pathways under physiological conditions, so overexpression
cannot significantly increase PRR activity. Its weak BP elevating
effect might be compensated by other BP regulation mechanisms.
Intracerebroventricular infusion of (pro)renin in normotensive mice
could increase BP (47). This result provided supporting evidence

for the viewpoint. Interestingly, Villar-Cheda et al. showed that an
Ang II (100 nM) treatment of MES 23.5 dopaminergic neurons
increase the mRNA expression levels of PRR (49). This effect can be
reversed by losartan (49). Ang II combined with AT1R can increase
the expression of PRR, which may partly explain why PRR plays an
important role in Ang II–dependent hypertension.

Except for the RAS, the autonomic nervous system is more
integral to blood pressure regulation. Central sympathetic activity
plays a key role in raising BP (50). Neuroinflammation and oxidative
stress in the rostral ventrolateral medulla contribute to increased BP
and mediate spontaneous hypertension (51–54). PRR has been found
to be expressed in multiple cardiovascular-relevant brain regions
(19, 55), including the solitary tract (NTS), supraoptic nucleus
(SON), and hypothalamic paraventricular nucleus (PVN). Therefore,
most subsequent studies focused on exploring the mechanism of
PRR, which mediates hypertension through neuroinflammation and
oxidative stress in nerve cells, independent of Ang II. Peng et al. (14)
developed adeno-associated viral coding for human PRR to transfect
neuronal cells in vitro and found that AAV-PRR increased NADPH
oxidase (NOX) 2 and NOX4 mRNA levels via the MAPK/ERK1/2
intracellular signaling pathway independent of Ang II, which
further stimulated reactive oxygen species (ROS) production and
accumulation. They subsequently constructed a neuro-specific hPRR
(Syn-hPRR) overexpression mouse model to demonstrate in vivo that
PRR elevated BP via the ERK-NOX mechanism (56). Huber et al.
(55) also verified this result and suggested that ROS accumulation
in the PVN mediated by PRR stimulated sympathetic activation,
which further caused increased arterialBP. Moreover, Hu et al. (57)
found that the blood pressure-raising effect may be associated with
the NOD-like receptor family pyrin domain containing (NLRP)
3 inflammasomes. These are multiprotein complexes that lead to
the release of the proinflammatory cytokines interleukin 1 beta
(IL-1β) and IL-18 (58). NLRP3 can be activated by a variety of
stimuli (59, 60), including the accumulation of ROS and damaged
mitochondria (61, 62). Based on this, Hu et al. (57) elucidated that
ROS accumulation caused by PRR triggers NLRP3 activation and
facilitates M1 proinflammatory phenotype switching of microglia.
These studies revealed the BP regulatory effect of PRR through
neuroinflammation and oxidative stress in the brain, independent of
Ang II. This is another mechanism of PRR-mediated BP regulation
in the brain and may provide a new direction for the treatment of
neurological hypertension.

3.2.2. Kidney PRR
It is well known that the kidney is a crucial organ in blood

pressure regulation and fluid balance. Studies have affirmed that
PRR promotes local renin–angiotensin system activation in the renal
medulla and collecting duct (63–66). However, the mechanisms in the
kidney might be different from those in the brain.

Cyclooxygenase (COX) 2, as a rate-limiting enzyme in the
conversion of arachidonic acid to prostaglandins, is a classic and
important therapeutic target in the clinic (67). It also shows a
certain effect in increasing renin activity in the kidney (68). Soon
after the discovery of PRR, research reported that the mRNA
expression of COX2 in the renal cortex increased in human PRR
gene-transgenic rats (69). This result suggested that there is a modest
association between PRR and COX2 expression. Gonzalez et al. (70)
demonstrated that PRR facilitated COX2 expression independently of
Ang II in rat renal inner medullary cells via ERK1/2 activation. Their
further investigation found that PRR and COX2 expression levels
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were both increased in the renal medulla and contributed to blood
pressure elevation in Ang II-dependent hypertensive mice. A COX2
inhibitor partially rescued blood pressure at 14 days (71). This finding
suggested that COX2 expression mediated by PRR may contribute
to Ang II-dependent hypertension. Interestingly, some researchers
suggested that COX2 elevated PRR expression through the COX2-
derived product prostaglandin (PG) E2 in the renal medulla of
Ang II-dependent hypertensive mice (72). Then, they illustrated that
the prostaglandin e-prostanoid 4 (EP4) receptor might be a crucial
contributor to this process as a PGE2-specific receptor (73). These
results indicated that there may be positive feedback between PRR
and COX2 (74), and it played an important role in Ang II-dependent
hypertension. Furthermore, aquaporin 2 (AQP2), which mediates
urine concentration and water retention, might be a downstream
target of PRR activated by PGE2-EP4, and this sequence is induced
by AVP (75). As mentioned earlier, AVP can be upregulated by PRR
in the brain, which indicates that there may be more complicated
feedback of PRR in blood pressure regulation.

The sodium reabsorption function of renal tubules plays a
significant role in vascular volume homeostasis and blood pressure
regulation. PRR has been found to be expressed in the proximal
tubules (PT), medullary thick ascending limbs (MTAL), and
collecting ducts (CD) (63, 76). Peng et al. (77) first reported that PRR
induced the expression and activation of renal medullary α-epithelial
sodium channels (α-ENaC) in Ang II-dependent hypertensive rats.
A similar result that PRR increased blood pressure via α-ENaC
was confirmed in obesity-induced hypertension rats (78). The study
also suggested that the activation of α-ENaC might occur through
the activation of serum/glucocorticoid-regulated kinase 1 (SGK-1),
the primary regulator of α-ENaC, via the PI3K-AKT pathway (78).
Shortly after that, Xu et al. (66) corroborated that high fructose
increased PRR expression, which stimulated sodium/hydrogen
exchanger 3 and Na/K/2Cl cotransporter upregulation and caused
salt-sensitive hypertension. In connection with the activation effect
of AQP2, these results provide evidence for the role of PRR in the
retention of water and sodium and blood pressure regulation through
ion transporters in renal tubules.

However, as an essential accessory protein of V-ATPase, the
absence of PRR leads to severe impairment in the function of
V-ATPase (23, 24, 79, 80). Downregulation of important ion
transporters caused by V-ATPase dysfunction was confirmed in
nephron-specific PRR knockout mice and further resulted in renal
concentration defects and distal renal tubular acidosis (79). V-ATPase
dysfunction caused by PRR absence commonly occurs prenatally
in PRR knockouts (23, 79), which suggests that appropriate PRR
blockade in the therapy of hypertension may not lead to a
serious adverse consequence in adults, but further experiments are
required for validation.

3.2.3. Plasma sPRR
Clinical research has revealed that in essential patients, levels of

serum sPRR levels correlated positively with serum creatinine levels,
but had no correlation with BP (32). In recent years, since S1P was
verified as a new cleavage site of full-length PRR, the effect of S1P-
driven sPRR was uncovered in hypertension model mice. Wang et al.
(30, 81) demonstrated that S1P blockade improved Ang II-induced
hypertension by decreasing the activation of ENaC and AQP2 in the
kidney, and this effect was reversed by intravenous administration
of recombinant sPRR. This finding suggested that S1P-derived sPRR
might be involved in the pathogenesis of hypertension. Other

researchers infused recombinant sPRR (30 µg/kg·day) in high fat-
fed male mice and observed impaired baroreflex sensitivity and
sympathetic outflow, which increased BP (82). Furthermore, to
exclude the potential influence of S1P knockout and clarify the
effect of S1P-derived sPRR, Ramkumar et al. (83) used CRISPR–
Cas9 to specifically mutate the cleavage site of the PRR, and
plasma sPRR levels were virtually undetectable, which reduced BP
and decreased renal injury in Ang II-induced hypertension mice.
Interestingly, another study suggested that sPRR might directly bind
and activate the AT1 receptor, which caused increased blood pressure
and endothelial dysfunction in obesity-related hypertensive mice
(84). This finding implies that Ang II is not the only way to activate
AT1R and can help to further understand the RAS system. These
findings suggest the potential of sPRR in the diagnosis and therapy
of hypertension, warranting further investigation.

3.3. Myocardial ischemia reperfusion injury

Myocardial ischemia reperfusion injury (MIRI) often occurs
after myocardial infarction reperfusion therapy and causes further
injury. Liu et al. (85) treated cardiomyocyte cells (H9C2) with
2h of hypoxia followed by 6 h of reoxygenation to mimic
ischemic-reperfusion injury in vitro and found that PRR expression
was upregulated. PRR small interfering RNA reduced p38-MAPK
activation and decreased hypoxia/reoxygenation-induced apoptosis
via p38-MAPK (85). Furthermore, some researchers demonstrated
that PRR overexpression increased apoptosis and autophagy in H9C2
cells treated with hypoxia/reoxygenation condition (86). They first
proposed that this effect may occur through the Wnt/β-certain
pathway because a Wnt inhibitor (DKK-1, 20 ng/ml) reversed the
above effects (86), though this result has not been validated in vivo.

3.4. Heart failure and cardiac remodeling

3.4.1. PRR
At present, reports on the study of PRR in heart failure are scarce.

In 2012, Rademaker et al. (87) evaluated PRR blockade handle region
peptide (HRP) (1, 5, and 25 mg) in sheep with heart failure and found
that PRR blockade decreased atrial pressure and Ang II levels and
improved renal function. Another study showed that PRR blockade
(HRP, 0.3 mg/kg) attenuated fibrosis and hypertrophy by decreasing
ERK1/2 activation and TGF-β expression in mice, ameliorating
heart failure caused by chronic kidney disease, with no effect on
autophagy (88). Moreover, the latest literature reports that PRR
blockade reduced ROS generation and endoplasmic reticulum stress
and increased cAMP levels. These biological processes attenuate
cardiac remodeling in heart failure (89). These studies are consistent
in that PRR blockade improved systolic blood pressure and reduced
ventricular preload in chronic heart failure mice. The mechanism of
the antihypertensive effect of PRR blockade and knockdown in heart
failure is still not clear but might be associated with the lower level
of local Ang II production. Moreover, PRR blockade has no effect
on autophagy, which means that its effects on lysosomal function
and cell survival should not be contraindicative. These findings are
encouraging for the possible clinical application of PRR blockade.

However, our recent study indicated that in mice with heart
failure induced by transverse aortic constriction (TAC) surgery,

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2023.1086603
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-10-1086603 February 7, 2023 Time: 10:43 # 6

Wang et al. 10.3389/fcvm.2023.1086603

adenovirus-mediated gene silencing of PRR leads to autophagic
flux blockade, which causes an imbalance in ROS production and
scavenging and eventually results in cardiac dysfunction and fibrosis
(90). M8.9 is a crucial part of V-ATPase. Autophagy impairment still
cannot be avoided in the knockdown of PRR genes. However, the
therapeutic effects of PRR blockade in heart failure mice cannot be
ignored. These studies suggest that we should search for ways to block
PRR but not to decrease the gene expression of PRR.

3.4.2. sPRR
At present, few studies have focused on the effect of sPRR in heart

diseases, and only a small number of clinical studies have shown high
sPRR levels in heart failure patients (33). However, recent studies
on sPRR, especially the effect of sPRR activating AT1R, implied that
sPRR might also participate in heart disease pathogenesis, which
requires further study. Some researchers have suggested that sPRR
led to tissue fibrosis via the PI3K-AKT pathway and could also cause
oxidative stress via NOX4 in renal proximal tubular cell lines (91,
92). It is still not clear whether sPRR has the same effect on the
myocardium. This issue can be investigated in the future. However,
it should be considered whether the therapeutic effect of full-length
PRR knockdown on heart disease was due to reduced sPRR levels.
Some studies did not support this conjecture because the application
of an AT1R inhibitor (losartan) does not reverse the myocardial
remodeling caused by PRR overexpression. However, we still need to
pay attention to this issue in future research; that is, investigation of
full-length PRR needs to exclude the effects of sPRR.

On the other hand, a clinical study found that there is an
association between high plasma sPRR levels and left ventricular
remodeling, particularly renal dysfunction in chronic heart failure
patients with reduced ejection fraction (93). Another clinical
study supported this conclusion. It showed that higher plasma
concentrations of sPRR were associated with lower left ventricular
ejection fractions and greater degrees of dilatation in the left ventricle
in elder chronic heart failure patients (33). These studies revealed the
potential of sPRR as a biomarker of chronic heart failure. The sPRR
might be applicable to assessing the severity of chronic heart failure
in clinical practice, but further research is necessary.

3.5. Metabolic cardiomyopathy

Metabolic cardiomyopathy is a type of secondary
cardiomyopathy, often secondary to basal metabolic diseases,
including diabetes, obesity and alcohol intake (94). Diabetes is
the most common disease of these patients. Our previous study
demonstrated that PRR RNA interference silencing attenuated the
inflammatory response, cardiomyocyte apoptosis and myocardial
fibrosis in (DCM) (5, 95), which can be associated with lower NOX4
expression (95). NADPH oxidase (NOX4) not only increases ROS
production but also mediates fibroblast proliferation and might
further activate ERK1/2 and p38 MAPK (96), which may be an
important mechanism by which PRR causes cardiac fibrosis. We
also showed that PRR upregulated inflammatory factor expression,
induced cardiomyocyte apoptosis and myocardial fibrosis, and
promoted ROS production (5). These effects can be reversed by
an ERK inhibitor in fibroblasts stimulated by high glucose (5).
In addition to DCM, our study also showed that a similar effects
of PRR in alcoholic cardiomyopathy model rat, which was that

PRR promoted myocardial fibrosis in alcoholic cardiomyopathy
(ACM) rats via PRR-ERK-NOX4 (6) (Figure 2). These in vivo and
in vitro studies imply that PRR might be a new therapeutic target in
metabolic cardiomyopathy.

Adenosine 5′-monophosphate-activated protein kinase (AMPK)
is a crucial enzyme in regulating energy metabolism homeostasis
and stress, and it contributes to pathogenesis of type 2 diabetes (97).
Recent research suggested that in diabetes, PRR can decrease AMPK
phosphorylation, which might mediate mitochondrial biogenesis and
result in function impairment (98). Our previous study verified
that PRR reduced AMPK phosphorylation in DCM (99). Our
recent research also found that PRR mediated cardiac inflammation
and fibrosis in DCM, at least partly through enhancing yes-
associated protein (YAP) expression (100). YAP is a key protein
that mediates mechanical signaling and cell proliferation (101) and
promotes the transcription of downstream target genes through
nuclear translocation. Phosphorylation of YAP causes its cytoplasmic
localization, which prevents YAP nuclear translocation and further
decreases target gene activation (101). Recent studies found that
YAP promoted fibroblast differentiation and activation and increased
extracellular matrix fibrosis (102). Tissue fibrosis was attenuated by
selective knockout of YAP expression (102). Our studies illustrated
PRR overexpression increased YAP expression, and a YAP inhibitor
could reverse PRR-mediated cardiac fibrosis (99). Furthermore,
the PRR-induced increase in YAP expression might occur partly
through the downregulation of AMPK phosphorylation (99, 100).
In our experiments, we have not clarified whether PRR regulates
YAP phosphorylation and nuclear translocation. However, studies
have elucidated that AMPK promotes YAP phosphorylation and
prevents its nuclear translocation (103). PRR may also increases
YAP nuclear translocation through down-regulation of AMPK in
DCM. Moreover, Yoshida et al. (104) showed the association of PRR
and YAP, presumably through the activation of the Wnt/β-certain
pathway. YAP was regarded as a downstream effector of Wnt/β-
certain (105) (Figure 2). Further research is needed to find out the
relationship among PRR, Wnt/β-certain and YAP pathway, and their
roles in cardiac remodeling.

3.6. Lipid metabolism and atherosclerosis

Atherosclerosis is the most common vascular disease
characterized by arterial wall thickening and atherosclerotic plaque
or lesion formation and results in coronary heart disease (CAD),
cerebral infarction, myocardial infarction and multiple diseases
(106). In the pathogenesis of atherosclerosis, lipid metabolism
disorder is the pathological basis of atherosclerosis. Lipid deposition
and lipid-phagocytosed macrophage accumulation play vital roles
in the formation of arterial plaques (107, 108). There is compelling
clinical evidence that dyslipidemia is significantly associated with
the risk of atherosclerosis. In particular, low-density lipoprotein
(LDL), as the cholesterol carrier protein, is an independent factor for
predicting the risk of cardiovascular disease (108, 109). Interestingly,
the present study found that PRR was a new component of the
lipid metabolism pathway (110), which suggests that PRR might
participate in atherosclerosis in this manner (111).

Lu et al. (110) confirmed sortilin (SORT) 1, a recently
identified key regulatory protein of LDL metabolism, as a PRR-
interacting partner through an unbiased proteomics approach.
They demonstrated that PRR gene silencing decreased SORT 1

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2023.1086603
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-10-1086603 February 7, 2023 Time: 10:43 # 7

Wang et al. 10.3389/fcvm.2023.1086603

FIGURE 2

The effects of PRR on cardiomyocytes and fibroblast in heart tissue with metabolic cardiomyopathy. (A) In cardiomyocytes, PRR promotes
cardiomyocytes apoptosis via p38MAPK-HSP27, facilitates TGF-β expression via ERK1/2 leads to fibrosis, and causes oxidative stress through increasing
NOX4 expression. (B) PRR promotes YAP expression, further causes fibroblast proliferation and myocardial fibrosis. This effect of PRR maybe associate
with AMPK and Wnt. PRR may also regulates YAP phosphorylation and nuclear translocation.

abundance but without significantly reducing the mRNA expression
of SORT 1, and PRR gene silencing also decreased LDL receptor
abundance, which impaired LDL uptake (110). These effects might
be related to PRR depletion mediating V-ATPase dysfunction and
lysosome impairment because the LDLR abundance reduction could
be partly rescued by lysosomotropic agents (110). Strong et al.
(111) suggested that PRR advances SORT1 and LDLR transport
to the cell surface, and SORT1 protects LDLR from degeneration
by lysosomes. This hypothesis provides a possible model for the
interaction of PRR, SORT1 and LDLR. However, unexpectedly, in
the current research (112), PRR gene silencing even reduced plasma
low-density lipoprotein cholesterol (LDL-C) and triglycerides. They
elucidated that this effect might be due to PRR inhibition reducing
the abundance of acetyl-CoA carboxylase (ACC) and pyruvate
dehydrogenase (PDH) in hepatocytes, resulting in reduced lipid
synthesis (112). As a consequence, hepatic PRR inhibition improved
diet-induced obesity and liver steatosis (112). Interestingly, Gatineau
et al. (113) showed that liver PRR knockout might compensate for
elevated sPRR cleavage and secretion from adipose tissue, which
increased sterol regulatory element-binding protein 2 (SREBP2)
expression and hepatic cholesterol synthesis. Taken together, hepatic
PRR and sPRR both contribute to lipid synthesis and LDL uptake
in intricate ways, which affect plasma LDL levels and may cause
atherosclerosis and CAD.

In addition to lipid synthesis and metabolism, migration and
proliferation of vascular smooth muscle cells (VSMCs) are also key

events in atherosclerosis and vascular remodeling. Previous studies
have shown that (pro)renin combines with PRR in smooth muscle
cells, which contributes to the migration and proliferation of VSMCs
by regulating plasminogen activator inhibitor-1 (PAI-1) expression
(114, 115). Further studies confirmed (pro)renin as a potential
chemotactic factor. When combined with PRR, it activates RhoA-
GTP and Rac1-GTP and promotes the cleavage of focal adhesion
kinase (pp125FAK), which causes cytoskeleton reorganization and
VSMC migration (116). Some studies questioned the significance of
these conclusions because the (pro)renin level of vascular smooth
muscle did not reach the concentration that activated PRR (42).
However, in our recent study, we still found that overexpressed
PRR facilitated the formation of Ang II-induced abdominal aortic
aneurysm in apolipoprotein E-knockout mice (7). These conflicting
conclusions might be because PRR is not only activated by (pro)renin
or renin but can also be directly activated by Ang II or others. This
conjecture has received indirect support from some research, but it
still needs further verification.

4. The inhibitors of PRR

Soon after PRR was identified, to inhibit its adverse effect,
Ichihara et al. (12) synthesized a 10 aa length bait peptide, called
handle-region peptide (HRP), which could competitively combine
with PRR and was expected to be used for clinical treatment by
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blocking the combination of (pro)renin and PRR. The applications
of HRP have demonstrated some degree of renal and cardiovascular
protective effects in multiple disease models, including experimental
heart failure (117), ameliorated heart failure (88), type 1 diabetes
and diabetic nephropathy (118, 119). However, the effectiveness of
HRP is controversial. Many researchers have questioned the effects
of HRP on PRR blockade and the treatment of hypertension and
diabetes. Feldt et al. (120) suggested that HRP bound to the U937
cell surface, but the ERK1/2 activation induced by (pro)renin and
renin was not inhibited by HRP. They also found that HRP treatment
had no effect on renal injury or blood pressure in hypertensive
nephrosclerosis rats (121). The combined treatment of HRP with
aliskiren, a renin inhibitor, had no additive protective effects on target
organs in diabetic nephropathy rats (122). Indeed, it even offsets the
protective effect of aliskiren in combination medication (123, 124). In
conclusion, although in some animal models, HRP plays a possible
protective role in renal and cardiac remodeling, it is apparently
disappointing as a PRR inhibitor in the treatment of diseases.

To further explore the method of blocking PRR and applying
it to treatment, Li et al. (125) synthesized a novel antagonistic
peptide, named PRO20, which is the first 20 amino acids of the
(pro)renin prosegment, and interestingly, it combined with PRR
and successfully inhibited Ca2 + influx and ERK1/2 activation when
intraventricularly injected in rats with deoxycorticosterone acetate-
salt–induced hypertension (125). Other studies infused PRO20 into
the renal medulla and found that it reduced sodium–water retention
and attenuated Ang II-induced hypertension (77). It has also been
reported to improve nephrectomy-induced nephropathy in rats
by inhibiting Wnt/β-catenin signaling (126). It is exciting that
PRO20 can inhibit Wnt/β-catenin signaling. Another study showed
that PRO20 also increased intracellular cAMP levels and reduced
endoplasmic reticulum (ER) stress in cardiac remodeling (89). This
finding suggested that PRO20 may not only be used for hypertension
but also has some potential in the treatment of cardiac remodeling,
but further research is needed.

5. Conclusion

In this review, we summarized and discussed the roles of PRR
and its soluble form in cardiovascular diseases. At present, as a
new therapeutic target, full-length PRR is still quite controversial.
Further research is needed on PRR inhibitor and its physiological and
pathological effects. Moreover, recent studies have focused on sPRR

and achieved significant advancements. Whether it can be used as a
prognostic indicator and therapeutic target for cardiovascular disease
may be a potential direction for further research.
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