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Brain diseases are a major burden on human health worldwide, and little is known
about how most brain diseases develop. It is believed that cardiovascular diseases
can affect the function of the brain, and many brain diseases are associated with
heart dysfunction, which is called the heart-brain axis. Congenital heart
abnormalities with anomalous hemodynamics are common treatable
cardiovascular diseases. With the development of cardiovascular surgeries and
interventions, the long-term survival of patients with congenital heart
abnormalities continues to improve. However, physicians have reported that
patients with congenital heart abnormalities have an increased risk of brain
diseases in adulthood. To understand the complex association between
congenital heart abnormalities and brain diseases, the paper reviews relevant
clinical literature. Studies have shown that congenital heart abnormalities are
associated with most brain diseases, including stroke, migraine, dementia,
infection of the central nervous system, epilepsy, white matter lesions, and
affective disorders. However, whether surgeries or other interventions could
benefit patients with congenital heart abnormalities and brain diseases remains
unclear because of limited evidence.
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1. Introduction

Brain diseases are a major health problem worldwide. According to the Global Burden of

Disease Study Group, brain disease-related disease burden exceeds 15% of all diseases (1). At

the same time, the etiology and risk factors for many brain diseases remain unclear to

scientists and clinicians. Brain diseases are like a “black box”. How to subtly open the

“black box” is a difficult but important problem for scientists and clinicians.

The heart and the brain are the core organs of the circulatory system and the central

nervous system, respectively, which play an important role in the maintenance of normal

physiological functions. With the development of clinical understanding, the relationship

between the heart and the brain is constantly being revealed (Figure 1A). The brain

regulates the function of the heart, and impaired brain function can cause cardiovascular

diseases. Studies have found that neurodegenerative diseases and affective disorders can

cause the chronic failure of the autonomic nervous system and lead to arrhythmias (2).

Seizures, especially generalized tonic‒clonic seizures, could result in the sustained release

of neurotransmitters, including epinephrine and norepinephrine, leading to tachycardia,
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FIGURE 1

Overview of the heart-brain axis. (A) interactions between heart and brain. (B) possible mechanisms between congenital heart abnormalities and brain diseases.
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hypertension, and even sudden cardiac death (3). In turn,

functional changes in the heart can have important effects on

brain function through multiple pathways and can be risk factors
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or biomarkers for brain disease. Several studies have suggested

that nonorganic cardiac rhythm changes can reflect abnormal

brain function and be novel biomarkers for various brain
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diseases, including depression and posttraumatic epilepsy (4, 5).

Organic heart disease, such as heart failure and atrial fibrillation,

is a risk factor for many neuropsychiatric diseases, including

dementia and stroke (6, 7). In addition, researchers have also

found that cardiac rhythms and electroencephalogram signals are

highly synchronized, further suggesting a functional connection

between the heart and the brain (8). Based on the evidence, the

concept of the “heart-brain axis” was proposed (9–11), and the

“heart-brain axis” has become a new target for brain diseases.

Congenital heart abnormalities are an important part of

cardiovascular disease, and more than 10 million newborns are

born with congenital cardiovascular structural abnormalities each

year (12). With the heart-brain axis, brain diseases related to

congenital cardiovascular structural abnormalities have received

increasing attention since the beginning of this century (13–15).

In the past, it was believed that the damage to the nervous

system in patients with congenital heart abnormalities was

mostly attributed to surgical operations, including insufficient

blood perfusion of the brain tissue during cardiopulmonary

bypass, poor blood oxygen supply, and postoperative

microthrombosis. With the continuous advancement of

interventional therapy, open heart surgery, and cardiopulmonary

bypass technology, the complications of surgery and

interventional therapy continue to decrease. The long-term

survival of patients with congenital heart abnormalities, especially

complex congenital heart abnormalities, continues to improve.

However, the situation of congenital heart abnormalities

combined with an abnormal nervous system is becoming

increasingly prominent, which has caused a great economic and

mental burden to families and society (16–18). Current studies

have found that most patients with congenital heart disease have

neurological dysfunction before surgical treatment. Clinicians

have found that congenital heart abnormalities, such as patent

foramen ovale (PFO), could be the only abnormal finding in

some patients with brain disease without any known risk factors

(19–21). These cardiovascular structural abnormalities can cause

abnormal intracardiac shunting, and microembolisms tend to

occur at abnormal shunts due to altered hemodynamics (22, 23).

The brain is the organ most susceptible to circulatory

abnormalities. These microembolisms can cause central

hypoperfusion, resulting in ischemic and hypoxic changes and

related diseases. In addition, abnormal shunting could lead to the

production-inactivation imbalance of neurotransmitters (such as

serotonin), which contribute to the pathology of brain diseases

(24). And several studies reported certain variations could

contribute to this association (25, 26) (Figure 1B).

Many clinical studies have suggested that the onset of brain

diseases related to congenital heart abnormalities mostly occurs

in adulthood, which will have a serious impact on their quality

of life and labor capacity (27, 28). Through evidence of the

heart-brain axis, an increasing number of patients at high risk

may benefit from appropriate closure of treatment (29). This

article reviews common congenital heart abnormalities and their

relationship with brain diseases and discusses the potential effects

of their interventions on the neuropsychiatric system. Through a

literature search, this paper found that congenital heart
Frontiers in Cardiovascular Medicine 03
abnormalities were associated with a variety of brain diseases. In

addition to stroke and migraine, central infectious diseases, white

matter lesions, obstructive sleep apnea, epilepsy, and affective

disorders may also be related to congenital heart abnormalities.

However, the role of congenital heart abnormalities in the

development of brain disease still lacks sufficient evidence. To

address the question of how to provide more precise prevention

and treatment for patients with congenital heart abnormalities,

more high-quality evidence is needed in this field.
2. Congenital heart abnormalities and
brain

2.1. Congenital heart abnormalities

Congenital heart abnormalities refer to a class of diseases that

are of developmental origin and will not recover within a certain

period. According to their severity, congenital heart

abnormalities can be divided into simple and complex congenital

heart abnormalities. Patients with complex congenital heart

abnormalities often require hospitalization in a cardiovascular

disease department, and the mortality and disability rates are

high, such as transposition of the great arteries and tetralogy of

Fallot (18, 30). Although the incidence of complex cardiovascular

structural abnormalities is low, almost all complex cardiovascular

heart abnormalities are fatal and often accompanied by serious

complications, of which brain injury is a common extracardiac

complication (31).

Common simple congenital heart abnormalities include PFO,

congenital pulmonary arteriovenous fistula (PAVF), atrial septal

defect (ASD), ventricular septal defect (VSD), and patent

ductus arteriosus (PDA). Simple congenital heart abnormalities

are less severe and generally do not affect the normal life of the

patient. The incidence of simple congenital heart disease is

high. It is estimated that approximately 25%–35% of adults

have PFO (1). VSD, ASD, and PDA are the most common

congenital heart diseases, accounting for 35.6%, 15.4%, and

10.2%, respectively (32). The incidence of PAVF has not yet

been reported, but it is often underestimated because the size of

lesions is too small. From the perspective of anatomical shunt,

these five congenital cardiovascular structural abnormalities can

be divided into right-to-left shunt and left-to-right shunt.

Right-to-left shunts, including PFO and PAVF. PFO refers to a

foramen ovale that has not closed after age 3 (19). PAVF refers

to the congenital pulmonary arteriovenous direct connection

without communication through capillaries (33). Left-to-right

shunts include ASD, VSD, and PDA (34). ASD refers to the

abnormality of the primordial atrial septum during embryonic

development, resulting in left and right atrium openings (35).

VSD refers to the development of the interventricular septum

during the embryonic period, resulting in abnormal

communication and left-to-right shunting at the level of the

ventricle (36). PDA means that the ductus arteriosus in the

fetal period continues to open after birth to form an abnormal

shunt (37).
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2.2. Crosstalk between congenital heart
abnormalities and brain

Clinical evidence has demonstrated that congenital heart

abnormalities are associated with pathological changes in certain

brain regions. Signoriello and colleagues reported that the white

matter lesion of patients with migraine and PFO was mainly in

the occipital lobe compared with patients without PFO (38). And

an earlier study confirmed this lobe-specific change in patients

with cryptogenic stroke and PFO (39). Fontes reported that

youth with congenital heart abnormalities had smaller

hippocampal volumes compared with healthy controls (40). And

similar pathological changes were also observed in children who

underwent cardiopulmonary bypass surgery (41). Cordina and

colleagues reported reduced brain volume in other brain regions,

including the dorsolateral prefrontal cortex and precentral gyrus,

the posterior parietal lobe and the middle temporal gyrus in

adults with cyanotic congenital heart abnormalities (42). Such

evidence suggests a clear relationship between congenital heart

disease and pathological changes in brain regions.

Congenital heart abnormalities are associated with

pathophysiological consequences, which could explain the fact that

patients with congenital heart abnormalities were more likely to

develop brain diseases. Hypoxia and oxidative stress are the most

common mechanisms in congenital heart abnormalities-related

brain diseases. Several studies reported that patients with PFO were

at hypoxia state (43, 44), and hypoxia and oxidative stress were

related to PFO-related many brain diseases, including stroke,

migraine and epilepsy (22, 23, 45). Patients with other congenital

heart abnormalities also demonstrated hypoxia and oxidative stress,

and these changes could be related to abnormal neurogenesis and

cortical growth (46–48). Besides, altered hemodynamics in PFO

patients could be related to hypersensitivity of platelets, which

could lead to abnormal 5-HT levels and prothrombotic potential

(49). These mechanisms partly explain the underlying mechanisms

between congenital heart abnormalities and brain diseases.

However, there is still a lack of evidence to understand the complex

relationship between congenital heart abnormalities and brain

diseases, which needs more attention.
3. Right-to-left shunt and brain disease

3.1. PFO

PFO was the first congenital heart abnormality discovered to be

related to brain diseases. It is currently believed that its

pathogenesis is mainly related to paradoxical embolism caused

by right-to-left shunting. Table 1 shows the clinical studies of

PFO-related brain diseases, which focus on the composition ratio

and odds ratio of PFO in patients with brain diseases. The

relationship between PFO and stroke, especially cryptogenic

stroke, is relatively clear. According to the data in the table, 47%

of cryptogenic stroke patients have PFO, which is much higher

than the 25%–35% in the general population. There is a clear
Frontiers in Cardiovascular Medicine 04
association between PFO and migraine with aura. According to

the data summarized in the table, 54% of migraine patients with

aura have PFO, which is also much higher than the 25%–35% in

the general population. For migraine without aura, the case‒

control study by Takagi et al. showed that the prevalence of PFO

was not significantly higher in patients with migraine without

aura than in healthy controls (50). However, in a case‒control

study by Tang et al., patients with PFO had a higher risk of

migraine without aura than healthy controls (51). According to

the data summarized in the table, approximately 28% of patients

with migraine without aura have PFO. The relationship between

PFO and migraine without aura needs more large sample studies

to be explored. Evidence about PFO-related dementia is limited,

but existing studies reported that dementia patients, especially

Alzheimer’s patients, have a higher prevalence of PFO (36.8%)

(52). The prevalence of PFO was also higher in patients with

obstructive sleep apnea, with data summarized in the table at

46%. However, since most studies are only cross-sectional

surveys of a single group, the relationship between the two needs

to be confirmed by more controlled studies.

In addition to those listed in the table, Higuchi et al. reported a

case of an intramedullary abscess spread through a PFO after

dental treatment in 2011. The experience of this 51-year-old man

may suggest that PFO also plays a role in central system

infectious diseases (71). In addition, Italian researchers found

that white matter lesions caused by PFO-related migraine are

mostly located in the occipital lobe, which may suggest that

white matter lesions caused by PFO have certain spatial

characteristics (38). However, the sample size of this study was

small (n = 31), and more large-sample studies are needed to

confirm this correlation. PFO may also play a role in affective

disorders and personality disorders. The Korean research team’s

study of 19-year-old youth (n = 511) found that patients with

congenital heart abnormalities (including PFO, ASD, VSD, PDA)

had higher scores in anxiety, depression, somatization symptoms,

and personality disorder than the control group (72). However,

this result should be treated carefully, as the study only used the

score as the outcome rather than a rigorous clinical diagnosis.
3.2. PAVF

PAVF refers to the existence of abnormal blood vessels between

the pulmonary artery and the pulmonary vein, which are directly

connected to form a pulmonary vascular malformation. It is

generally believed that PAVF is a relatively benign structural

abnormality. Only large-sized PAVF with a diameter of more than

2 cm or a feeding artery diameter of more than 3 mm may have

obvious symptoms and require active intervention (73, 74).

However, as an increasing number of clinical cases of small-sized

PAVF are reported, the opinion that small-sized PAVF is

pathogenic has also been proposed. Table 2 summarizes case

reports of brain diseases in which PAVF is a major causative

factor. As seen from the table, PAVF with nodules less than 3 cm

in diameter also became the only causative factor for brain

diseases, including stroke, migraine, and brain abscess. In addition,
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TABLE 1 Clinical studies of PFO-related brain diseases.

Author Year Country Research Type Sample Frequency OR/HR
Stroke

Alsheikh-Ali
(27)

2009 Meta analysis 23 case‒control studies with 13,006 cases 37%
(427/1,154)

OR:
All ages: 2.9 (2.1 to 4.0)

Young (<55yrs): 5.1 (3.3, 7.8)
Old (≥55yrs): 2.0 (1.0, 3.7)

Ma (53) 2014 Meta analysis 12 case‒control studies and 6 cohort studies with 5,408
cases

OR:
Case control studies: 2.94 (2.06,

4.20)
Cohort studies: 1.28 (0.91, 1.80)

Giannandrea
(54)

2020 UK Cross-sectional
study

1,130 22.7%
(257/1,130)

Bahl (28) 2020 UK Cross-sectional
study

167 9.6%
(16/167)

Ng (55) 2018 United States Cohort study 182,393 OR: 2.66 (1.96, 3.63)

Cryptogenic Stroke

Strambo (56) 2021 Switzerland Cohort study 455 40%
(184/455)

Shih (57) 2021 United States Cohort study 79 28%
(7/25)

HR: 2.0 (0.4, 9.3)

Ntaios (58) 2021 Greece Cross-sectional
study

374 34%
(127/374)

West (59) 2018 United States Cross-sectional
study

712 59%
(420/712)

Migraine

Takagi (50) 2016 Meta analysis 5,572 All: 44.3%
(822/1,856)
MA:54.7%
(640/1,169)
MO: 26.49%
(182/687)

OR:
All: 2.46 (1.55, 3.91)
MA: 3.36 (1.04, 5.55)
MO:1.30 (0.85, 1.99)

Zhao (60) 2021 China Case-control study 526 All: 39.04%
(98/251)

MA: 48.39%
(30/62)

MO: 25.98%
(68/189)

Iwasaki (61) 2017 Japan Cross-sectional
study

112 All: 43.8%
(49/112)

MA: 54.8%
(34/62)

MO: 30.0%
(15/50)

Snijder (62) 2016 Netherlands Case‒control study 887 All: 26.3%
(44/168)

MA: 37.5%
(27/72)

MO: 17.7%
(17/96)

Larrosa (63) 2016 Spain Cross-sectional
study

183 All: 53.6%
(98/183)

Tang (51) 2022 China Case‒control study 3,741 MO:12.83%a

(113/881)
OR:

MO:1.71 (1.19, 2.47)

Dementia

Purandare (64) 2005 UK Case-control study 57 All: 61%
(25/61)

AD: 62.5%
(15/24)

VaD: 59%
(10/17)

OR:
All: 2.0 (0.6, 6.5)
AD: 2.1 (0.6, 7.8)
VaD: 1.8 (0.5, 7.3)

Purandare (52) 2008 UK Cross-sectional
study

108 All: 33.3%
(36/108)
AD: 36.8%
(21/57)

VaD: 29.4%
(15/51)

(continued)
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TABLE 1 Continued

Author Year Country Research Type Sample Frequency OR/HR
Obstructive sleep apnea

Shaikh (65) 2013 UK Case‒control study 150 43%
(43/100)

Mojadidi (66) 2015 United States Case‒control study 300 42%
(42/100)

Lau (67) 2013 Australia Case‒control study 152 47.1%
(48/102)

OR: 2.53 (1.20, 5.31)

Guchlerner (68) 2012 Germany Cross-sectional
study

100 72%
(72/100)

Beelke (69) 2003 Italy Case‒control study 167 27%
(21/78)

Rimoldi (70) 2015 United States Cross-sectional
study

51 33%
(17/51)

Frequency: defined as the number of patients with PFO/the number of patients with neurological diseases.

MA: migraine with aura; MO: migraine without aura; AD: Alzheimer’s disease; VaD: vascular dementia.
aDefined as the number of patients with neurological diseases/the number of patients with PFO.

TABLE 2 Case reports of PAVF-related brain diseases.

Author Year Country Gender Age Size of
PAVF

comorbidity Description

Stroke

Sousa (77) 2017 Portugal F 46 A:1.7 mm
N:3 cm ×
1.4 cm

V:1.9 mm

Migraine;
TIA

Symptom: transitory right hemiplegia and language disturbance of sudden
onset
Treatment: PAVF was embolized with micro coils
Follow-up: normal with no right-to-left shunt

Mehrbod (78) 2013 Iran M 40 Not reported epilepsy Symptom: sudden diplopia and dysarthria accompanied by facial palsy
Treatment: surgery closure of PAVF and anti-coagulants
Follow-up: neurological symptoms were minimized

Fateh-
Moghadam (79)

2007 Germany M 66 Medium size PFO
Headache
Dizziness

Symptom: recurrent stroke, after the closure of PFO, residual right-to-left
shunt still present
Treatment: closure of PAVF
Follow-up: improvement of headache and dizziness

Felix (80) 2008 France M 17 Not reported HHT Symptom: acute isolated aphasia.
Treatment: PAVF was embolized with micro coils
Follow-up: no neurologic symptoms were reported

Tomelleri (81) 2008 Italy M 19 N: 2 cm in
diameter

None Symptom: vertigo, nausea, dysarthria, and left faciobrachial paresis;
Treatment: embolization of the fistula
Follow-up: no neurological recurrences

Peters (82) 2005 Germany W 41 N: 4–5 mm in
diameter

TIA;
Stroke;

PFO closure

Symptom: clinical symptoms of TIA
Treatment: embolization of the fistula
Follow-up: normal

Wozniak (83) 2015 Poland M 15 N:7 mm in
diameter

PFO Symptom: two episodes of TIAs in a year, dysarthria, and paresis of the
right upper and lower limb
Treatment: Closure of both PFO and PAVF
Follow-up: no recurrence of TIA

Sen (84) 2021 UK W 49 A: 6–7 mm Migraine with
aura;
TIAs

Symptom: vertical diplopia associated with right facial paraesthesia, mild
slurred speech, deafness in her right ear, and weeping from the right eye;
Treatment: closure of PAVF
Follow-up: dramatic improvement in her migraine symptoms without any
neurological event

Migraine

Kakeshita (85) 2020 Japan W 41 N:1.7 cm stroke Symptom: migraine with visual aura once or twice every month for more
than 20 years;
Treatment: Closure of PAVF;

Follow-up: migraine completely stopped

Brain abscess

Shioya (86) 2004 Japan M 52 Not reported Previous brain
abscess

Symptom: sudden stroke-like onset of right hemiparesis, right
hemiparesthesia, dysarthria, and sensory aphasia;
Treatment: treated with aspiration and drainage, and the residual mass
was resected;
Follow-up: normal

F: Female; M: male; A: feeding artery; N: nidus; V: drainage vein; HHT: hereditary hemorrhagic telangiectasia; TIA: transient ischemic attack; PFO: patent foramen ovale.
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two retrospective studies reported that in patients with acute

ischemic stroke, excluding other risk factors, PAVF-related stroke

accounted for 0.02% and 0.5%, respectively (75, 76). Moreover, the

age of PAVF-related stroke patients is significantly smaller than

that of other stroke patients, suggesting that PAVF-related stroke

may be independent of other strokes in clinical characteristics

(75). Hence, PAVF could be a novel risk factor for stroke.

In clinical practice, some PFO patients have comorbid PAVF,

and PAVF in these patients is often detected due to the discovery

of residual shunts after PFO closure. Both PFO and PAVF can

cause right-to-left shunting, but the relationship between the two

is still unclear. In a large retrospective study, Topiwala et al. found

that PFO was a risk factor for PAVF-related stroke, suggesting a

synergistic effect between the two (75). However, within a certain

range of defects, who is dominant and how to accurately

understand the synergy between the two still lacks sufficient

evidence. In addition, how to simultaneously diagnose both PFO

and PAVF in patients with comorbid PFO and PAVF using one

auxiliary test remains a clinical challenge. The diagnosis of PFO

relies primarily on contrast ultrasonography through the chest wall

or the esophagus. Although ultrasound can also indicate the

presence of PAVF (87), the current gold standard for the

diagnosis of PAVF is contrast-enhanced chest CT (33).
4. Left-to-right shunt and brain
diseases

4.1. ASD

ASD is a representative disease of left-to-right shunt congenital

heart abnormalities. Table 3 summarizes current clinical studies of

ASD-related brain diseases. ASD is associated with stroke and

migraine. Several studies have demonstrated that patients with

ASD have a significantly increased risk of stroke and migraine.

Based on the data summarized in the table, 2.9% of patients with

ASD had stroke [0.13% in the general population (1)], and 7.1%

of patients with ASD had migraine [1.46% in the general

population (1)]. For stroke, a study from Taiwan, China, showed
TABLE 3 Clinical studies of ASD-related brain diseases.

Author Year Country Research Type
Stroke

Kitamura (91) 2018 Japan Cross-sectional stud

Karunanithi (92) 2017 Denmark Cohort study

Migraine

Nyboe (93) 2019 Denmark Cohort study

Magalhães (89) 2005 Poland Case‒control study

Liu (94) 2018 China Case‒control study

Kato (90) 2013 Japan cross-sectional stud

Frequency: defined as the number of patients with neurological diseases/the number

MA: migraine with aura; MO: migraine without aura.
aDefined as the number of patients with ASD/the number of patients with neurologic

Frontiers in Cardiovascular Medicine 07
that ASD patients were less likely to have cardiovascular events

after repair, suggesting that ASD repair is beneficial for

preventing cardiovascular events (88). For migraine, Magalhães

et al. showed that ASD patients with migraine had a greater

proportion of migraine with aura (89). However, Kato et al.

reported a greater proportion of migraine without aura (90).

Further research is needed to determine the relationship between

ASD and migraine with and without aura.

For affective disorders, Udholm et al. reported that patients with

small, unpatched ASD had higher depression and anxiety scores (P

< 0.001), and approximately 17% of ASD patients were diagnosed

with at least one psychiatric disorder, the most common being

psychosomatic disorders and neurosis (95). This large cohort

study suggests that ASD may potentially cause changes in brain

function in patients. Future studies are needed to confirm the

relationship between ASD and affective disorders. In summary,

ASD is expected to become a new target for brain diseases.
4.2. VSD and PDA

The clinical symptoms of VSD and PDA are rather serious, and

most patients are repaired after birth. Therefore, there are limited

studies on the relationship between VSD and PDA and brain

diseases. For VSD, Shuiab reported a 38-year-old patient with

ischemic stroke in the occipital lobe who did not find any

abnormality other than VSD (96). For migraine, a team from

China reviewed the comorbidities of 72 VSD patients and found

that 6 (8.3%) suffered from migraine (94). Dhoubhadel et al.

reported a case of cryptococcal meningitis caused by VSD in

2021. The 12-year-old girl had normal immunity and no obvious

abnormal exposure history. The attending doctor believed that

VSD was the only risk factor for cryptococcal meningitis in this

case (97). For PDA, Panagopoulos et al. reported a 7-year-old

child with recurrent ischemic stroke with comorbid PDA and

PFO (98). However, it is unclear which of these two congenital

structural heart defects predominated in this patient. In addition,

Ke et al. reported a family with a PRRX1 heterozygous mutation

that resulted in familial PDA and atrial fibrillation caused by
Sample Frequency OR/HR

y 186 1.6%a (3/186)

12,218 2.9% (14/1,111) HR: 3.8 (2.0, 6.9)

25,033 2.4% (54/2,277) HR: 3.4 (2.5, 4.6)

68 All:79.4% (27/34)
MA: 65.1% (22/34)
MO: 14.7% (5/34)

OR: 4.3 (1.0, 8.8)

441 All: 19.1% (92/303)

y 95 All: 24.2% (23/95)
MA: 6.3% (6/95)

MO: 21.1% (20/95)

of patients with ASD.

al diseases.
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PRRX1 loss of function. The family is at a significantly increased

risk of stroke (99). In conclusion, the relationship between VSD

and PDA and brain diseases is still unclear, but it should be

considered in clinical practice that VSD and PDA may be the

etiology or risk factors for some difficult neuropsychiatric cases.

Future research is needed to explore the relationship between

VSD and PDA and brain disease. Not only unrepaired but also

long-term follow-up outcomes of repaired VSD and PDA are

also worthy of attention.
TABLE 4 Interventions for simple congenital heart abnormalities and
related complications.
5. Complex congenital heart
abnormalities

Patients with complex congenital heart abnormalities often

have genetic abnormalities, and such genetic diseases are often

accompanied by brain damage. For example, children with Down

syndrome and DiGeorge syndrome often present with complex

congenital heart abnormalities (such as tetralogy of Fallot (TOF/

F4), complete transposition of great arteries (CTGA) and single

ventricle (SV), and tricuspid atresia (TA)) comorbid brain

damage, such as intellectual disability and leukomalacia. These

patients are at extremely high risk for seizures (100). In addition,

the severe abnormal hemodynamic state associated with complex

congenital heart abnormalities can also lead to severe hypoxemia

during the growth and development of children. Ischemic and

hypoxic damage to the brain occurs at a very early age and

mainly manifests as stroke and white matter damage. Due to the

high lethality of complex congenital heart abnormalities and the

lack of medical records, it is still unclear when patients with

complex congenital heart abnormalities begin to develop brain

injury. It is unclear whether in utero intervention during

pregnancy could alleviate brain injury caused by complex

congenital heart abnormalities.
CHAs Closure Complications
PFO Catheter closure • dislodgment of the device (106)

• residual shunting
• device-associated thrombus formation (107)
• pericardial effusion
• atrial fibrillation (108)

PAVF Embolized with
micro coils
Partial lung resection

• atelectasis
• infection

ASD Catheter closure • arrhythmias
• device embolization
• pericardial effusion
• cardiac tissue erosion

VSD Patch closure through
sternotomy
Catheter closure

• motor function and formal intelligence
reduction (105)
• behavioral and school performance difficulties
• heart block (109)
• arrhythmias (110)
• residual shunt and hemolysis
• valve complications

PDA Surgical ligation
Catheter occlusion

• residual shunts (111)
• recurrent laryngeal nerve injury
• diaphragmatic paralysis
• embolization
• infection
• neurodevelopmental delay (112)
6. Interventions for congenital heart
abnormalities and brain diseases

Although there is a certain correlation between congenital

heart abnormalities and brain diseases, high-quality randomized

controlled trials are still needed to confirm whether the

intervention of structural abnormalities helps relieve the disease

and prevent recurrence. The only currently recognized effective

intervention is PFO closure for secondary prevention of stroke.

Closing the PFO after stroke could reduce the risk of recurrent

stroke [RR 0.42 (95% CI 0.20, 0.91)] (101). In addition, a meta-

analysis pointed out that PFO closure can help migraine relief,

especially migraine with aura (102). Some studies suggest that

PFO closure can relieve symptoms in OSA patients, but the

sample size is small, and its effect is controversial (65, 103). For

other congenital cardiovascular structural abnormalities, there is

currently a lack of clinical studies to explore whether closure

therapy helps relieve the disease and prevent recurrence.

Thanks to current advanced techniques and treatment

measures, many patients choose closure therapy before
Frontiers in Cardiovascular Medicine 08
symptoms related to congenital heart abnormalities appear.

Whether early-life closure therapy has adverse effects on the

neuropsychiatric system is a question that scientists and

clinicians need to pay attention to. Table 4 lists closed therapies

for simple congenital heart abnormalities and their associated

complications. In general, the closed treatment of various

congenital heart abnormalities is relatively safe, and the

probability of complications is low (30). Arrhythmias such as

atrial fibrillation may occur after intracardiac intervention for

PFO, ASD, and VSD, but the incidence is low (104). Atrial

fibrillation could increase the risk of stroke in patients, but no

studies have shown that PFO and VSD closure can increase the

risk of postoperative stroke. For ASD, a Danish team reported an

increased risk of stroke after ASD closure [HR 5.0 (95% CI 2.3,

11.1)] (92). However, the Taiwanese research team reported that

the risk of cardiovascular events was reduced after ASD closure

(88), which is contrary to the findings of the Danish team. For

PAVF, embolization closure or partial pneumonectomy is

generally selected according to the size and location of the PAVF.

These interventions are relatively safe, but care should be taken

to minimize trauma and reduce the patient’s time in bed.

Thoracotomy for VSD and PDA is more traumatic, and patients

are at increased risk of postoperative neurodevelopmental

abnormalities during long-term follow-up, which may be related

to intraoperative cardiopulmonary bypass and cerebral

hypoperfusion (105).

For the surgical treatment of complex heart abnormalities, due

to the complicated operation, the large trauma to the patient, the

long cardiopulmonary bypass time, and the need to maintain a

long-term deep hypothermia state, the damage to the brain is

relatively severe. One-third of children with complex congenital
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heart abnormalities without preoperative brain damage often

develop brain diseases such as white matter lesions, stroke,

epilepsy, and cognitive impairment after surgery. Among them,

white matter lesions are the most common and more

pronounced in children with a single ventricle, aortic

malformation, and preoperative arterial hypoxia (113).

Cardiopulmonary bypass is a form of circulation that diverts a

patient’s blood from the heart and lungs to the body. The

normal physiological functions of the patient’s heart and lungs,

such as blood circulation, respiration, and oxygenation are

temporarily replaced by extracorporeal circulation machines.

During cardiopulmonary bypass, plaque fall, gas emboli, and

surgical foreign bodies caused by intubation can become

potential cerebrovascular emboli, causing cerebral ischemia-

hypoxic injury (114, 115). Deep hypothermic circulatory arrest is

commonly used in open heart surgery for complex congenital

heart abnormalities. In the state of deep hypothermic circulatory

arrest, the energy metabolism of the brain is depleted, causing

brain damage through mechanisms such as calcium overload and

excitatory amino acid toxicity (116–118). Studies have reported

that the incidence of epilepsy after surgery for children with

congenital heart abnormalities is 4% to 10%, and the incidence

of epilepsy after surgery for complex congenital heart

abnormalities is even higher (113). In addition, anesthetic use

early in life may also be associated with impairment of brain

function, including neuroapoptosis and neurocognitive deficits.

However, the causality of this relationship is still debated (119).

In conclusion, surgery and interventional treatment of

congenital heart abnormalities could have adverse effects on the

brain. For simple congenital heart abnormalities, how to assess

the risks brought by surgery and the risks brought by congenital

heart abnormalities and properly compare the priorities of the

two are the next issues to be solved. For complex heart

abnormalities, surgical treatment is unavoidable. How to

minimize brain damage by improving surgical procedures,

preoperative intervention, and postoperative treatment is also an

urgent problem to be solved (120, 121).
7. Discussion

This article summarizes the relationship between brain diseases

and common congenital heart abnormalities. Overall, the brain

disorders most associated with common congenital heart

abnormalities are stroke and migraine, obstructive sleep apnea,

dementia, cognitive impairment, white matter lesion, epilepsy,

affective disorders, and central system infectious diseases, which

may also have a certain relationship with congenital heart

abnormalities. Some interventions for congenital heart

abnormalities could increase the risk of brain disease. There is

insufficient high-quality evidence about whether interventions

should be conducted to reduce the risk of brain diseases caused

by congenital heart abnormalities.

Apart from the direct relationship of the heart-brain axis,

several risk factors could have an influence on both the heart

and the brain. Agrimi et.al. reported that mice co-exposed to
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obesity and psychosocial stress displayed both cardiac and

hippocampal dysfunction, which was associated with local brain-

derived neurotrophic factor depletion (122). And smoking is a

risk factor of both cardiovascular diseases and many brain

diseases. Such evidence indicated that certain risk factors could

affect the heart-brain axis (123, 124). However, whether such risk

factors exist in congenital heart disease-related brain diseases

remains unknown. In addition to traditional risk factors, sex or

gender is believed to have an impact on the heart-brain axis,

especially for the female heart-brain axis (125). For example,

females tend to have poorer cognitive outcomes after cardiac

operations (126). And for congenital heart diseases, PFO is

believed to be a risk factor for stroke in pregnant women (127).

However, an earlier study reported poorer neurodevelopmental

outcomes in boys born with congenital heart disease requiring

early surgical repair (128). How sex or gender influence

congenital heart disease-related brain diseases requires more

attention.

The heart-brain relationship has been revealed by a growing

body of research (129–131). Although the brain, as a relatively

independent organ, is isolated from the periphery by the blood‒

brain barrier. However, it must take in necessary nutrients

through the circulation, and the heart, as the central structure of

the circulation, has an important influence on the circulation.

Although there are only minor structural changes in congenital

heart abnormalities, the impact on circulation is huge. The

altered hemodynamics of abnormal shunts have corresponding

effects on the brain and may ultimately result in brain disease,

which is the heart-brain axis. The heart-brain axis affects the

center through peripheral changes, resulting in diseases. The

heart-brain axis has the potential to be a bridge to better

understand brain function and diseases, enabling scientists and

clinicians to unlock the “black box” of brain diseases (11, 132, 133).

The mechanism by which abnormal cardiac structure affects

the function of the central nervous system still needs further

study. Paradoxical embolism is currently the most mainstream

mechanism theory. Abnormal hemodynamics caused by

abnormal intracardiac shunts promote embolus formation (22).

The emboli enter the cerebral blood vessels through circulation

to form embolic ischemia and hypoxia. A hypoperfusion state

can induce blood‒brain barrier damage, neuroinflammation, and

abnormal neuroelectrophysiological activities, resulting in

diseases (134, 135). In addition to the ischemic and hypoxic

changes caused by paradoxical embolism, some scholars have

suggested that the abnormal production and inactivation of

serotonin may also be one of the mechanisms (24). The majority

of serotonin inactivation is performed in the lungs. An abnormal

intracardiac shunt changes the pulmonary circulation blood

volume, which in turn leads to increased or decreased circulating

serotonin. As an important neurotransmitter, the imbalance of

serotonin will lead to abnormal nerve activity and cause disease

(136–139). The mechanism of brain diseases related to congenital

heart abnormalities is still inconclusive, and more clinical and

basic research is needed to explore the above hypothesis.

Brain disease is a major threat to human health. The heart-

brain axis could provide a new driving force for its early
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prevention and precise treatment, benefiting patients and their

families worldwide. The improvement of the heart-brain axis

requires the participation of more research teams. Further

exploration of the important role of congenital heart

abnormalities in the occurrence and development of brain

diseases and the development of new therapeutic targets based

on this feature can benefit more patients.
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