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Homocysteine (Hcy) is an intermediate amino acid formed during the conversion

from methionine to cysteine. When the fasting plasma Hcy level is higher

than 15 µmol/L, it is considered as hyperhomocysteinemia (HHcy). The vascular

endothelium is an important barrier to vascular homeostasis, and its impairment is

the initiation of atherosclerosis (AS). HHcy is an important risk factor for AS, which can

promote the development of AS and the occurrence of cardiovascular events, and

Hcy damage to the endothelium is considered to play a very important role. However,

the mechanism by which Hcy damages the endothelium is still not fully understood.

This review summarizes the mechanism of Hcy-induced endothelial injury and the

treatment methods to alleviate the Hcy induced endothelial dysfunction, in order to

provide new thoughts for the diagnosis and treatment of Hcy-induced endothelial

injury and subsequent AS-related diseases.
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1. Introduction

Hyperhomocysteinemia (HHcy) is an important risk factor for atherosclerosis (AS) and is
defined as fasting plasma homocysteine (Hcy) higher than 15 µmol/L (1). Hcy is formed during
the conversion of an essential amino acid methionine to cysteine, the factors that affect the level
of Hcy in plasma include genetics, nutrition, age, sex, drugs, disease state. Hcy as an intermediate
amino acid affects many cellular biological processes, such as cellular methylation status, cell
metabolism, and cell injury.

Endothelial cells (ECs) are located in the innermost layer of blood vessels and
form the vascular intima, which is important for maintaining vascular homeostasis and
normal blood circulation. Pro-atherosclerotic risk factors in the blood can damage the
endothelium, which acts as the initiation of AS and causes its progression. In recent
years, numerous studies have shown that Hcy can damage the endothelium through
various mechanisms, which may be a key way for it to promote AS-related diseases
(2). Although the specific mechanism of Hcy injury to the endothelium is still not fully
clear, it may be related to the induction of inflammation and cell death, interference
with nitric oxide (NO) production, reactive oxygen species (ROS) accumulation and
oxidative stress, cellular hypomethylation, protein homocysteinylation, and abnormal lipid
metabolism (2). Hcy can cause intimal damage through these mechanisms and aggravate
the progression of AS, and more in-depth mechanisms need to be studied. In terms
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of treatment, besides dietary therapy and supplementation of
vitamin B12/B6 and folate to reduce plasma Hcy level, many
drugs that can alleviate Hcy-induced endothelial damage have
been studied, such as melatonin (3), estrogen (4), some lipid-
lowering (5), and hypoglycemic (6) drugs. It is of great scientific
and clinical significance for the prevention and treatment of
endothelial injury and subsequent AS caused by HHcy to
further explore the mechanism and mitigation methods of Hcy
damage to the endothelium. This review mainly summarizes the
mechanism of Hcy damage to ECs and related treatment, aiming
to provide some new perspectives for research and clinical practice
in this direction.

2. Homocysteine metabolism

Homocysteine is an intermediate amino acid formed during
the conversion from an essential sulfur-containing amino acid
methionine to cysteine (7). The source of methionine is dietary
protein, and the liver is considered to play an important role in the
methionine and Hcy metabolism because of its full complement of
related enzymes to regulate plasma Hcy level (8). Hcy is produced
via transmethylation and removed through either the remethylation
or the trans-sulfuration pathways (9). First, methionine is converted
into the high-energy sulfonium compound S-adenosylmethionine
(SAM, AdoMet), which is an important methyl donor for nearly
all cell transmethylation process (10), the reaction is catalyzed by
methionine adenosyltransferase (MAT) and provided the adenosyl
moiety by adenosine triphosphate (ATP) (11). Next, SAM is
demethylated to form S-adenosylhomocysteine (SAH, AdoHcy),
which is then hydrolyzed to adenosine and Hcy (9). Hcy then
experiences the transsulfuration pathway to form cysteine and
glutathione or the remethylation cycle to back to methionine (12).
The transsulfuration pathway tends to occur through upregulating
the vitamin B6-dependent enzyme, cystathionine β-synthase (CBS)
and cystathionine-gamma-lyase (CSE), and downregulating the
remethylation pathway in the situations of excess methionine (13).
Therefore, the lack of CBS will lead to the abnormal accumulation of
Hcy and the occurrence of related diseases such as homocystinuria,
homocysteinemia, and hypermethioninemia (14). The cysteine that
is formed from Hcy by transsulfuration is finally oxidized to the
sulfate and is excreted in the urine (15). On the other hand, Hcy
is remethylated to methionine by using 5-methyltetrahydrofolic
acid (5-methylTHF) or betaine as a methyl donor (16). These
two different reactions are more likely to occur in methionine
deficiency. In the first reaction, Hcy is catalyzed by methylcobalamin-
containing methionine synthase (MS) to form methionine and
tetrahydrofolate (THF) via receiving methyl from 5-methylTHF (16).
Thus, Hcy metabolism generates cross-link with intracellular folate
metabolism (17), which is also an important reason for folate level
affect Hcy metabolism. In the second reaction, betaine-dependent
remethylation backs Hcy to methionine by betaine-homocysteine
methyltransferase (BHMT) (18). Several B vitamins exert important
role in Hcy metabolism, vitamin B12 is the cofactor for MS (19),
vitamin B6 is the coenzyme for CBS (20), so these B vitamins
deficiencies can lead to Hcy accumulation. The mechanism of Hcy
metabolism described above is shown in Figure 1.

Intracellular concentration of Hcy is often under tight control by
the above-mentioned reactions and by controlling its export from the
cell (2). Plasma Hcy can easily act on ECs located in the innermost

layer of blood vessels, and has significant effects on ECs function (21).
There are three different forms of plasma Hcy, which including free
Hcy, protein-bound Hcy and oxidized forms of Hcy (22). The Hcy
concentration currently measured in the clinic is representative of
the total plasma Hcy concentration. The normal range for plasma
Hcy is 5–15 µmol/L measured in the fasting state, so HHcy is
defined as plasma Hcy higher than 15 µmol/L (23). And HHcy is
categorized into three classes as mild, moderate and severe HHcy
with plasma HCy levels ranging from 15 to 30, 31 to 100, and
>100 µmol/L, respectively.

3. Causes of hyperhomocysteinemia

Plasma Hcy level is affected by a variety of factors, as shown in
Figure 2. Such as genetics, nutrition, age, sex, drugs, disease states,
which are described in detail below. The exploration of the causes of
elevated plasma Hcy level is of great significance for the treatment of
HHcy and various injuries caused by it.

3.1. Genetics

Severe elevations of Hcy concentration in plasma is rare and
often caused by homozygous mutations in enzymes involved in
its metabolism, such as MS, methylene tetrahydrofolate reductase,
and CBS. Numerous studies have investigated the changes in
plasma concentration of Hcy and related disease progression in
experimental animals after CBS knockout. The researchers used
CRISPR/Cas9 to knock out the CBS gene in rabbits and found
that the plasma Hcy level in knockout rabbits (50.73 µmol/L)
was almost twice as high as that in controls (27.93 µmol/L) (24).
And severe HHcy was observed in CBS−/− (289 ± 58 µM)
but not in CBS± or control mice (<10 µM) after knocking out
CBS in mice (25). The clinical manifestations of homozygous
HHcy often include psychiatric symptoms and abnormalities of
the hair, skin, joints, bones, and cardiovascular system. However,
HHcy caused by heterozygous mutations in related enzymes is
often asymptomatic, with only moderately elevated or normal
plasma Hcy (26).

3.2. Nutrition and lifestyle

As mentioned above, B vitamins and folate exert important role in
the metabolism of Hcy. Therefore, plasma Hcy concentration can be
significantly increased in the deficiency of essential cofactor Vitamin
B12/B6 or cosubstrate folate (27). Asian populations are prone to
insufficient folate intake due to dietary and cooking habits, which may
partly account for incidence of folate deficiency and HHcy in Asian
populations is much higher than that in Western populations (28, 29).
The incidence of HHcy in American society is just 5–7%, in Chinese
27.5% and in Indians 52–84% (30). Inappropriate lifestyle, such as
high intake of coffee (31), alcohol, obesity and smoking can also lead
to HHcy (32), which may be related to vitamin malabsorption.

3.3. Age

Plasma Hcy is generally believed to increase with age (33).
The specific mechanism of this phenomenon is still unclear. The
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FIGURE 1

Homocysteine metabolism. MAT, methionine adenosyltransferase; SAM, S-adenosylmethionine, AdoMet; SAH, S-adenosylhomocysteine, AdoHcy; CBS,
cystathionine β-synthase; BHMT, betaine-homocysteine methyltransferase; MS, methionine synthase; THF, tetrahydrofolate; 5-methylTHF,
5-methyltetrahydrofolic acid; CSE, cystathionine-gamma-lyase.

possible reasons include the reduction of Hcy metabolizing enzyme
activity, the impairment of renal function, hormonal changes, and the
reduction of vitamin B12/B6 level as cofactor (34).

3.4. Gender

Plasma Hcy concentration in premenopausal women is typically
20% lower than in men of similar age. This may be related to the
higher creatinine concentration and more muscle mass in men (34).
However, female menopause is comparable to male plasma Hcy level.
This suggests that Hcy is related to the change of estrogen level, and
the decrease of Hcy level by estrogen may be related to the increase of
CBS activity (35).

3.5. Drugs

Some lipid-lowering drugs such as fibrates (36) and niacin can
increase plasma Hcy. Mechanistically, fenofibrate may significantly

increase plasma Hcy levels by reducing renal function (37).
Therefore, the benefits of treating elevated cholesterol concentrations
with these drugs should be weighed against the possible long-
term risks of elevated Hcy. Methotrexate inhibits the conversion
of dihydrofolate to tetrahydrofolate with physiological activity
by inhibiting dihydrofolate reductase (DHFR), thereby increasing
plasma Hcy (38, 39).

3.6. Disease states

Studies have shown that plasma Hcy level is elevated in
some disease states, such as various cancers (40), psoriasis (41),
hypothyroidism (42), diabetes (43), and renal dysfunction (16).
Among them, the disease state most closely related to HHcy is chronic
renal failure. Plasma Hcy level is positively correlated with creatinine
level (44), and the specific mechanism remains to be further studied.
The possible mechanism is that chronic renal failure inhibits the
activity or inactivates the key enzymes of Hcy metabolism, such
as CBS (45) and BHMT (46), resulting in the inhibition of Hcy
metabolism and accumulation of Hcy. HHcy occurs in the early stage
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FIGURE 2

The causes of hyperhomocysteinemia (HHcy) and the mechanism of homocysteine (Hcy)–mediated endothelial cells (ECs) injury and its consequences
for atherosclerosis (AS). The abbreviations in this figure are shown in the “Glossary” section.

of chronic renal failure and further increases with the progression
of renal failure. Elevated Hcy can further aggravate renal injury by
inducing oxidative stress (47), insufficient autophagy and renal aging
(48), forming a negative feedback loop. Elevated plasma Hcy level

in patients with malignant tumors may be related to changes in
methionine metabolism in tumor cells (49). The relationship between
diabetes and HHcy is relatively complex. It is generally believed that
secondary pathological changes caused by diabetes, such as renal
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dysfunction, often lead to elevated plasma Hcy level, and the impact
of diabetes itself on Hcy needs further study (50). The possible
mechanism is that glucose metabolism disorder and Hcy metabolism
worsen each other, resulting in the increase of Hcy level (32, 51).

4. Endothelial dysfunction and
atherosclerosis caused by
hyperhomocysteinemia

Vascular endothelium is a homeostatic barrier to circulating
blood and vessel walls like a gatekeeper of cardiovascular health
(52). The vascular intima plays an important role in the homeostasis
regulation of the vascular wall, including vascular tone, coagulation,
inflammation, and permeability (53). As the innermost layer of
the blood vessel wall, ECs are directly exposed to circulating
blood, so they are easily injured by various risk factors and
lead to their dysfunction and endothelial barrier damage (54).
Impaired endothelial function and barrier can lead to a series of
cascade reactions, such as inflammatory response (55), monocyte
recruitment (56), plaque formation (57), structural remodeling (58),
thrombosis (59). The results of cultured ECs and animal models
of HHcy indicate that Hcy can injury ECs and cause endothelial
dysfunction (60, 61). Several studies have confirmed that plasma
Hcy concentration is positively correlated with AS. Clinical studies
have shown that plasma Hcy level in patients with coronary artery
disease is significantly higher than that in angiographic normal
controls (62), and high plasma Hcy level with only 12% of the
upper limit of normal are associated with a 3.4-fold increased
risk of myocardial infarction (63). The above description is the
newly proposed homocysteine theory of AS. H-type hypertension
is a special type of hypertension combined with elevated plasma
Hcy on the basis of hypertension. The risk of stroke caused by
this kind of hypertension is obviously higher than that of simple
hypertension (64), which may be related to Hcy damage to the
vascular endothelium. This suggests that Hcy-damaged endothelium
plays a central role in its promotion of vascular diseases. Therefore,
exploring the mechanism of Hcy injury to vascular endothelium
is of great significance for the diagnosis and treatment of AS-
related diseases.

5. Mechanism of endothelial injury by
homocysteine

Homocysteine can cause ECs damage through various
intracellular mechanisms. Such as induction of inflammation
and cell death, interference with NO production, ROS
accumulation and oxidative stress, cellular hypomethylation.
There is a complex interaction between these mechanisms,
which leads to a series of reactions in the local and circulation
of AS lesions. In addition, abnormal lipoprotein metabolism
major as an extracellular mechanism also causes ECs damage
and promotes AS progression. Protein homocysteinylation
can cause endothelial damage through both intracellular
and extracellular mechanisms. A brief illustration of these
mechanisms is shown in Figure 2 and described in detail
below.

5.1. Induce inflammation and cell death

Endothelial inflammation is a crucial driver of AS. When
atherosclerotic risk factors act on ECs, damaged ECs secrete a large
number of cytokines, adhesion molecules, and chemokines (65).
These secreted factors recruit circulating monocytes to the site of
endothelial injury and induce the transformation of monocytes into
pro-inflammatory macrophages, which in turn develop into foam
cells, promoting the formation of atherosclerotic plaques at the site
of injury (66). Experimental studies on cultured ECs have shown that
Hcy can induce inflammation by inducing a variety of inflammatory
cytokines, such as interleukin (IL)-1β (67), IL-6 (68), IL-8 (69,
70), IL-18 (71), and tumor necrosis factor (TNF)-α (72), which
may be due to the ROS accumulation, inflammasome activation,
nuclear factor kappa-B (NF-κB) activation. Hcy can promote ECs
senescence by upregulating plasminogen activator inhibitor-1 (PAI-
1) (73), and telomere shortening and dysfunction may also be the
cause of HCy-induced ECs senescence (74). ECs senescence further
accelerates inflammation and endothelial injury by senescence-
associated secretory phenotype (SASP). When the damage of Hcy to
ECs is further aggravated, the cells may go toward death, resulting
in severe endometrial damage. Numerous studies have shown that
Hcy can cause various forms of ECs death, such as apoptosis (75),
pyroptosis (76), and ferroptosis (77). Pyroptosis is a newly discovered
form of programed cell death, which depends on gasdermin family
proteins such as gasdermin D (GSDMD), GSDMB, GSDME. Both
in vivo and in vitro studies have shown that Hcy can induce ECs
pyroptosis and release of inflammatory factors such as IL-1β and
IL-18 via caspase-1-dependent inflammasome activation through the
accumulation of intracellular ROS (76). ECs death causes cell death
on the one hand, and some inflammatory cell death forms, such
as pyroptosis, can cause strong local and circulatory inflammatory
responses and accelerate the progression of AS.

5.2. Interfere with NO production

Nitric oxide is a key signaling molecule in endothelium to
act as vasodilator factor, generated by nitric oxide synthase (NOS)
(78). Endothelial production of NO can inhibit multiple events
during AS, such as inhibiting ECs activation, macrophage infiltration
(79), foam cell formation/migration (80), platelet aggregation (81),
inflammation (82), thrombosis (83), vascular wall remodeling (84),
and mediating vasodilation (85). The mechanism of Hcy disturbance
of NO synthesis is relatively complex, asymmetric dimethylarginine
(ADMA) plays an important role in it, which is an endogenous
inhibitor of NOS. Specifically, Hcy post-translationally inhibits
dimethylarginine dimethylaminohydrolase (DDAH) activity, the
enzyme that degrades ADMA (86). Therefore, Hcy can cause ADMA
to accumulate and inhibit NO synthesis. Hcy can also inhibit NOS
and reduce NO synthesis in ECs by activating protein kinase C (PKC).
Reduced NO synthesis causes endothelial injury by aggravating
oxidative stress and inflammation (87).

5.3. ROS accumulation and oxidative
stress

Major producing systems of ROS in ECs include reduced form
of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase,
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xanthine oxidase, the mitochondrial electron transport chain, and
uncoupled endothelial NOS (79). Moderate concentrations of ROS
have important signaling functions, while excessive accumulation of
ROS can defeat the antioxidant system, leading to oxidative stress.
A large number of studies illustrate that oxidative stress plays an
important role in Hcy-induced ECs dysfunction and AS. Specifically,
Hcy can induce oxidative stress in ECs by mediating ROS production
or impairing the antioxidant system (2). Hcy also can induce ECs
NADPH oxidase upregulation to accumulate ROS (2). An important
mechanism of Hcy-induced ECs injury is endoplasmic reticulum
stress (ERS), which is a response to dangerous stimulation that leads
to the accumulation of unfolded or abnormally folded proteins in
the endoplasmic reticulum (ER) (88). Cell and animal model results
found that Hcy upregulates ER oxidoreductin-1α (Ero-1α) expression
by promoting binding of hypoxia-inducible factor-1α (HIF-1α) to
the Ero-1α promoter and downregulates the antioxidant pathway
mediated by ER glutathione peroxidase (GPX) 7 to induce ERS and
disrupt ER homeostasis (89). Oxidative stress and ERS aggravate each
other. When ECs suffer from oxidative stress, the redox equilibrium
of ER is broken, thereby disrupting ER function and triggering ERS.
Similarly, when ERS occurs, a large amount of ROS will be produced
to aggravate oxidative stress. Moderate ERS is a protective response,
but excessive ERS can lead to cellular dysfunction, inflammatory
responses and apoptosis (90). Therefore, oxidative stress caused by
Hcy is closely related to ECs inflammation and death. On the other
hand, Hcy also can cause oxidative stress by inhibiting ECs non-
enzymatic antioxidants and damages enzymatic antioxidants (2).

5.4. Hydrogen sulfide signaling pathway
dysregulation

We already know that Hcy is metabolized to cysteine through
the transsulfurization pathway, which is then decomposed into
sulfate and excreted in urine. This pathway is regulated by two
key enzymes, CBS and CSE, furthermore, these two enzymes
can also use cysteine as a substrate and are dependent on
pyridoxal-5’-phosphate to produce dihydrogen sulfide as shown
in the Figure 1. Dihydrogen sulfide is also known as hydrogen
sulfide (H2S) or sulfane (91, 92). H2S is considered to be
an endogenously produced gasotransmitter that acts on various
targeted signaling pathways to play an important role in vascular
homeostasis (93, 94). Downregulation of the CSE/H2S pathway
has an important pathological role in the development of AS
(95). H2S is reported to regulate multiple endothelial functions
such as angiogenesis, proliferation and migration (96). The study
found that H2S pretreatment of ECs can improve mitochondrial
function and cell viability after hypoxia treatment by activating
extracellular regulated protein kinases (ERK) 1/2, as well as
enhance ECs migration and angiogenesis, thereby protecting ECs
from ischemia/reperfusion injury and gradually reducing cardiac
damage (97). It has also been found that exogenous H2S treatment
or CSE overexpression can rescue high glucose-induced ECs
migration impairment by upregulating microRNA (miR)-126-3p
(98). Although the role of H2S on inflammation is complex, it is
very noteworthy that recent studies have suggested that H2S can
inhibit ECs inflammation (99), such as inhibiting NF-κB pathway
and scavenging ROS (2). Interestingly, H2S also has a heterotypic

interaction with another important signaling molecule, NO, for
example, H2S can promote endothelial NO production via activating
NOS phosphorylation (100). The complex interaction between H2S
and NO might serve as an important regulator for endothelial
homeostasis.

Hyperhomocysteinemia can cause downregulation of CSE and
CBS, thereby causing production of H2S is injury (2). Lack of H2S
protection in ECs can cause endothelial dysfunction and damage,
and gradually lead to HHcy-related vascular disease (96). The study
has shown that exogenous H2S treatment can alleviate Hcy-induced
endothelial dysfunction by inhibiting mitochondrial toxicity (101).
Therefore, Hcy can impair endothelial homeostasis by impairing the
H2S pathway, and maintaining the normal function of this pathway
is important for Hcy-induced endothelial dysfunction.

5.5. Cellular hypomethylation state

S-adenosylmethionine, formed when methionine is converted
into Hcy, is the methyl donor for almost all transmethylation
reactions of DNA, RNA, protein and other components in cells
(102, 103). Therefore, the methylation reactions of various cellular
components can be significantly affected by Hcy metabolism.
It is worth mentioning that, hydrolysis of S-AdoHcy to Hcy is
invertible, and the synthesis of S-AdoHcy from SAM/AdoMet
is thermodynamically more favored (104). The reaction toward
hydrolysis direction because of rapid clearance of Hcy by cellular
export and metabolic conversion under normal conditions.
However, When Hcy levels are abnormally elevated, which can
cause elevated AdoHcy. Importantly, AdoHcy is a critically
endogenous inhibitor of cellular methyltransferases, HHcy is easy
to form hypomethylating environment, which further impairs
methylation reactions related to intimal homeostasis (105).
ECs hypomethylation can reduce aquaporin-1 levels, leading
to impaired water permeability and endothelial dysfunction
(106). ECs hypomethylation can also upregulate the expression
of the adhesion molecules intercellular adhesion molecule-
1 (ICAM-1) and vascular adhesion molecule-1(VCAM-1) by
suppressing GPX1 protein expression, causing ECs inflammation
and injury (107). The epigenetic study has found that Hcy
induces DNA hypomethylation of the cyclin A promoter by
downregulating the expression of DNA methyltransferase 1
(DNMT1) to inhibit endothelial progenitor cells (EPCs) proliferation
(108). These results suggest that Hcy-induced hypomethylation
of DNA, RNA, protein in ECs leads to endothelial injury
by impairing water permeability, inducing inflammation, and
inhibiting proliferation.

5.6. Protein homocysteinylation

Homocysteinylation mainly targets proteins and is
classified as S-homocysteinylation and N-homocysteinylation,
N-homocysteinylation is mainly discussed here. When plasma
Hcy level is elevated, N-homocysteinylation of numerous proteins
in cells occurs due to the interaction between the highly reactive
homocysteine thiolactone (HTL) and lysine residues of a target
protein. Also, when HHcy is present in atherosclerotic patients,

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1109445
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1109445 January 10, 2023 Time: 15:0 # 7

Yuan et al. 10.3389/fcvm.2022.1109445

protein homocysteinylation is enhanced (22). HTL is a cyclic
thioester generated during protein biosynthesis because of error-
editing reaction of Hcy with methionyl-tRNA synthetase (MetRS)
(7). The N-homocysteinylation of proteins can lead to abnormal
protein structure and biochemical function, which is closely
involved in the injury of vascular intima caused by HHcy (109).
Cellular protein quality control (PQC) is an important event in
maintaining cellular homeostasis to maintain proteome integrity
and cell viability, which include unfolded protein response (UPR),
autophagy, ubiquitin-proteasome system (UPS), and chaperones
(110–113). Numerous studies suggest that HHcy can damage PQC
by activating UPR, impairing autophagy, and reducing chaperone
level (114).

High-density lipoproteins is considered to have endothelial
repair function, and then it was found that when HDL is
homocysteinylated by N-homocysteine, it reduces ECs migration
and attenuates HDL-mediated endothelial healing compared with
control (109). One study found that angiotensin-converting enzyme
(ACE) could be directly homocysteinylated by Hcy, which enhances
ACE reactivity toward angiotensin II (ANG II)-NADPH oxidase-
superoxide-dependent endothelial injury (115). Therefore, finding
more proteins with specific and sensitive homocysteine changes
in endothelial injury is of great value for the diagnosis and
treatment of AS.

5.7. Abnormal lipoprotein metabolism

Some metabolic changes outside ECs caused by HHcy can
also damage the endothelium and promote AS. Abnormal lipid
and lipoprotein metabolism is an important risk factor for AS
(116). Lipoproteins such as Low-density lipoproteins (LDL) and
high-density lipoproteins (HDL) are mainly responsible for the
transport of lipids such as cholesterol and triglycerides (117).
Several clinical and experimental studies have shown that HHcy
affects lipid metabolism. A clinical study involving 7,898 subjects
showed that plasma Hcy was negatively associated with high-
density lipoprotein cholesterol (HDL-C) and apolipoprotein A1
(ApoA1) and positively associated with triglyceride (TG) (118).
Moreover, a study (24) has found that the blood lipid levels of
HHcy rabbits are significantly higher than that of the controls, the
TG level showed almost 52-fold increase (3746.7/71.31 mg/dL). The
total cholesterol (TC) (540.8 mg/dL) and low-density lipoprotein
cholesterol (LDL-C) (72.02 mg/dL) in HHcy rabbits were almost
4.4-and 2.5-fold higher that in WT controls, respectively. These
provides some evidences for HHcy disordered lipid metabolism.
HDL mainly transports cholesterol from peripheral tissues such
as blood vessels to the liver for metabolic clearance, so plasma
HDL has an anti-atherosclerotic effect. However, the reduction
of HDL in HHcy patients indicates that the reverse transport
of cholesterol is impaired, thereby disturbing lipid metabolism
and promoting AS. When the endothelium is damaged, LDL can
infiltrate into the intima and be oxidized to oxidized low density
lipoprotein (ox-LDL), which can be phagocytosed by macrophages
and vascular smooth muscle cells (VSMCs) to form foam cells and
gradually form atherosclerotic plaques (119, 120). We already know
that Hcy can induce ROS accumulation and generate oxidative
stress, which can enhance the oxidation of LDL to promote AS
(23, 121). Therefore, Hcy can damage the vascular intima and

promote the development of AS by affecting the metabolic disorder
of lipoproteins.

6. Treatment of
hyperhomocysteinemia and
alleviation of endothelial damage

Due to the vascular damage effect of HHcy and the great harm
to the cardiovascular and cerebrovascular, the timely monitoring,
reduction and assessment of the blood Hcy level in HHcy patients
is a topic worthy of discussion and research. When the plasma
Hcy level is found to be elevated, dietary therapy and lifestyle
modification can be tried first. Most HHcy is caused by chronic low
level of folate and vitamin B12 (122). Correcting the deficiencies
of folate and vitamin B12 can reduce Hcy level (123). Fruits,
vegetables, and low-fat dairy products are rich in folate and
B12 (124), and low-saturated fatty acid and low-fat meals can
also reduce Hcy level. In addition, methionine intake should be
limited. Another to be introduced is drug therapy, which includes
folate, betaine, and vitamin supplements such as vitamin B12
and B6. It is generally accepted that all patients should also be
treated with B-complex vitamins to reduce peripheral neuropathy.
In terms of mechanism, folate and vitamin B6/B12 can alleviate
Hcy-induced ECs apoptosis, oxidative stress, and mitochondrial
dysfunction (125), folate also can modulate DNA methylation to
delay AS (126). However, the therapeutic challenge is that even
though B vitamins reduce Hcy level, which do not seem to reduce
the risk of cardiovascular disease (127). The exact mechanism
remains to be investigated. One possible explanation is that the
beneficial effects of lowering Hcy are offset by the direct adverse
effects of B vitamins supplementation (particularly with high-dose
folate), or are associated with the pro-inflammatory and pro-
proliferative effects of B vitamins on advanced AS lesions (128).
It may also be related to the fact that although the plasma
Hcy level is reduced, the intracellular Hcy concentration do not
change significantly (87). Even so, B vitamins and folate can
alleviate the progression of AS by reducing plasma Hcy level
and improving epigenetic factors (129). HHcy can also cause
extensive damage to a variety of organs, so reducing Hcy is still
widely recommended.

In recent years, there have been many studies on alleviating
Hcy-induced endothelial damage, which has important implications
for the treatment of cardiovascular diseases caused by HHcy.
Studies have found that melatonin can protect ECs by alleviating
oxidative stress caused by Hcy (3), specifically, melatonin can
decrease ROS and lipid peroxidation(LPO) levels induced by
Hcy to exert anti-oxidants protection (130). Melatonin also can
increase cell migration and downregulate pro-apoptotic proteins
caspase-3, caspase-9, cytochrome c (Cyt C), and B-cell lymphoma-
2 assaciated X protein (Bax), but upregulate anti-apoptotic protein
B-cell lymphoma-2 (Bcl-2) to against Hcy-induced ECs apoptosis
(130). Propofol can alleviate inflammation and apoptosis in Hcy-
induced human umbilic vein endothelial cells (HUVECs) by
inhibiting ERS, manifested as propofol increases cell viability,
suppresses NF-κB signaling pathway activation and decreases the
expression of inflammatory factors (131). It has been reported
that the glucagon-like peptide 1 (GLP-1) analog exendin-4 lowers
ERS and enhances protein folding to ameliorate Hcy-induced
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endothelial dysfunction in vivo and in vitro (6). Epigallocatechin
gallate (EGCG), a well-known anti-oxidant in green tea, can reduce
Hcy-induced oxidative damage and apoptosis by enhancing the
silent information regulator 1 (SIRT1)/AMP-activated protein kinase
(AMPK) survival signaling pathway (132). Estrogen supplementation
ameliorates pyroptosis and inflammation in Hcy-treated HUVECs
(71), moreover, estradiol-17β can inhibit Hcy mediated damage by
promoting H2S production via upregulating CBS and CSE expression
in HUVECs (4). Nicorandil for coronary heart disease alleviates
Hcy-induced human coronary artery endothelial cells (HCAECs)
dysfunction via regulating PI3K/Akt/NOS pathway in vivo and
in vitro (133). L-cystathionine, an amino acid mainly produced
during the conversion of methionine to cysteine, which can protect
against Hcy-induced mitochondria-dependent apoptosis in HUVECs
(75). The lipid-lowering drug atorvastatin can also alleviate ECs
damage caused by Hcy (5). To sum up, it is of great significance
to further explore the treatment and mechanism of alleviating Hcy-
induced endothelial injury for the prevention and treatment of the
pro-AS effect of HHcy.

7. Conclusion and discussion

As an important pro-AS risk factor, HHcy promotes the
occurrence and development of cardiovascular disease. Causes of
elevated plasma Hcy level include genetics, nutritional deficiencies,
smoking, drugs, demographics, disease states. HHcy damage to
the vascular endothelium is the core link of its promotion of AS,
and the study of its mechanism is of great significance for the
prevention and treatment of HHcy-induced endothelial damage
and subsequent AS-related diseases. At present, the mechanisms of
Hcy-induced endothelial injury include induction of inflammation
and cell death, disturbance of NO production, ROS accumulation
and oxidative stress, dysfunction of H2S signaling pathway, cellular
hypomethylation, protein homocysteinylation, and lipid metabolism
disorder. A novel concept is that Hcy-methionine cycle is a
metabolic sensor system for methylation-regulated pathological
signaling (134). The traditional view is that risk factors such
as damage-associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs) produce pathological signals
by acting on pattern recognition receptors (PRRs) on the cell
surface/intracellular/nuclear. However, for metabolism-associated
danger signal, probably through receptor-independent recognition
by the metabolic sensor system of Hcy-methionine cycle. Further
regulating SAM/SAH-dependent methylation in disease conditions
and that hypomethylation on frequently modified histone residues
may be a key mechanism for cardiovascular disease. This is an
important research point of Hcy damage endothelium and cause AS
related diseases. In addition, the mechanism of Hcy uptake by ECs is
one of the research difficulties. One study found that alanine-serine-
cysteine (ASC) transporter systems and lysosome function play an
important role in Hcy transport in ECs (135). The specific mechanism
needs to be further studied. Exploring more in-depth mechanisms of
Hcy damage to the endothelium will help to further discover effective
therapeutic targets and methods. The methods of treating HHcy
include dietary therapy and supplementation of vitamin B12/B6
and folate. However, a controversial issue is that it has not been

proven that lowering Hcy by B vitamins supplementation can reduce
the risk of cardiovascular disease. Therefore, the causal relationship
between HHcy and B vitamins deficiency and AS remains unclear
and requires further investigation. Although lowering Hcy using
B vitamins has no beneficial effect on secondary prevention of
cardiovascular disease, the role of Hcy in primary disease prevention
has not been fully studied. Therefore, more interventions and
experimental studies are needed to address the existing knowledge
gaps (74). In addition, some studies have found some drugs that
can alleviate Hcy-induced endothelial damage by alleviating oxidative
stress, ERS, inflammation, such as melatonin, propofol, estrogen,
nicorandil, L-cystathionine. In the future, more effective therapeutic
drugs need to be further studied. When patients have the following
conditions, special attention should be paid Hcy level. Patients
with coronary heart disease, cerebrovascular disease or peripheral
AS, or with risk factors for cardiovascular and cerebrovascular
diseases, such as hypertension, diabetes, obesity, smoking, or a
family history of coronary heart disease or AS. In conclusion, the
mechanism of Hcy injury to the endothelium and the promotion
of AS is a direction worthy of further research, which is of great
significance for reducing the occurrence and development of AS-
related diseases.
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Glossary

HHCY, hyperhomocysteinemia; AS, atherosclerosis; HCY, homocysteine; ECs, endothelial cells; NO, nitric oxide; ROS, reactive
oxygen species; SAM, AdoMet, S-adenosylmethionine; MAT, methionine adenosyltransferase; ATP, adenosine triphosphate; SAH, AdoHcy,
S-adenosylhomocysteine; CBS, cystathionine β-synthase; CSE, cystathionine-gamma-lyase; 5-methylTHF, 5-methyltetrahydrofolic acid; MS,
methionine synthase; THF, tetrahydrofolate; BHMT, betaine-homocysteine methyltransferase; DHFR, dihydrofolate reductase; IL, interleukin;
TNF, tumor necrosis factor; NF-κB, nuclear factor kappa-B; PAI-1, plasminogen activator inhibitor-1; SASP, senescence-associated secretory
phenotype; NOS, nitric oxide synthase; ADMA, asymmetric dimethylarginine; DDAH, dimethylarginine dimethylaminohydrolase; PKC,
protein kinase C; NADPH, nicotinamide adenine dinucleotide phosphate; ERS, endoplasmic reticulum stress; ER, endoplasmic reticulum;
Ero-1α, endoplasmic reticulum oxidoreductin-1α; HIF-1α, hypoxia-inducible factor-1α; GPX, glutathione peroxidase; H2S, hydrogen sulfide;
ERK, extracellular regulated protein kinases; miR, microRNA; LDL: low-density lipoproteins; HDL, high-density lipoproteins; HDL-C, high-
density lipoprotein cholesterol; ApoA1, apolipoprotein A1; TG, triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
ox-LDL, oxidized low density lipoprotein; VSMCs, vascular smooth muscle cells; ICAM-1, intercellular adhesion molecule-1; VCAM-1,
vascular adhesion molecule-1; DNMT1, DNA methyltransferase 1; EPCs, endothelial progenitor cells; HTL, homocysteine thiolactone; MetRS,
methionyl-tRNA synthetase; PQC, cellular protein quality control; UPR, unfolded protein response; UPS, ubiquitin-proteasome system; ACE,
angiotensin-converting enzyme; ANG II, angiotensin II; LPO, lipid peroxidation; Cyt C, cytochrome c; Bax, B-cell lymphoma-2 associated X
protein; Bcl-2, B-cell lymphoma-2; HUVECs, human umbilic vein endothelial cells; GLP-1, glucagon-like peptide 1; EGCG, epigallocatechin
gallate; SIRT1, silent information regulator 1; AMPK, AMP-activated protein kinase; Nano-Se, nanoscale selenium; HCAECs, human coronary
artery endothelial cells; DAMPs, damage-associated molecular patterns; PAMPs, pathogen-associated molecular patterns; PRRs, pattern
recognition receptors; ASC, alanine-serine-cysteine.
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