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Objectives: Atrial fibrillation (AF) is the most common arrhythmia in coronary

virus disease 2019 (COVID-19) patients, especially in severe patients. A history

of AF can exacerbate COVID-19 symptoms. COVID-19 Patients with new-

onset AF have prolonged hospital stays and increased death risk. However,

the mechanisms and targets of the interaction between COVID-19 and AF

have not been elucidated.

Materials and methods: We used a series of bioinformatics analyses to

understand biological pathways, protein-protein interaction (PPI) networks,

gene regulatory networks (GRNs), and protein-chemical interactions between

COVID-19 and AF and constructed an AF-related gene signature to assess

COVID-19 severity and prognosis.

Results: We found folate and one-carbon metabolism, calcium regulation,

and TFG-β signaling pathway as potential mechanisms linking COVID-19

and AF, which may be involved in alterations in neutrophil metabolism,

inflammation, and endothelial cell function. We identified hug genes

and found that NF-κb, hsa-miR-1-3p, hsa-miR-124-3p, valproic acid, and

quercetin may be key regulatory molecules. We constructed a 3-gene

signature consisting of ARG1, GIMAP7, and RFX2 models for the assessment

of COVID-19 severity and prognosis, and found that they are associated with

neutrophils, T cells, and hematopoietic stem cells, respectively.
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Conclusion: Our study reveals a dysregulation of metabolism, inflammation,

and immunity between COVID-19 and AF, and identified several therapeutic

targets and progression markers. We hope that the results will reveal important

insights into the complex interactions between COVID-19 and AF that will

drive novel drug development and help in severity assessment.

KEYWORDS

COVID-19, atrial fibrillation, progression markers, differentially expressed genes,
bioinformatics

Introduction

Coronary virus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
become a global pandemic (1). Currently, more than 500 million
cases of COVID-19 have been diagnosed worldwide, with more
than 6 million deaths (2). Although the majority of COVID-
19 patients (81%) present with mild disease, more than 15%
have developed severe disease to the point of multi-organ failure
(1). The incidence of malignant arrhythmias and mortality
were higher in COVID-19 patients with cardiac injury than in
patients without cardiac injury (3).

Atrial fibrillation (AF) is a well-known cardiovascular risk
factor and a cause of death in the general population (4). Studies
have shown that among hospitalized COVID-19 patients, a
history of AF leads to more severe clinical symptoms, higher
mortality, and hospitalization events, which may be related
to the underlying inflammatory status of AF patients (5).
Importantly, AF is the most common arrhythmia in COVID-
19 patients, occurring more frequently in critically ill patients
(6). AF may cause embolism, hemodynamic disturbances,
and increase the severity and mortality of COVID-19 (7). In
critically care patients, AF independently increases the risk
of the length of hospital stay, stroke, and death (8). It has
been shown that alterations in endothelial cells and immune
cells may be associated with the severity and complications
of COVID-19 (9, 10). Endothelial cell tropism, detection
and response, as well as disruption of vascular function, are
prominent features of human COVID-19 infection (11, 12).
Persistent immune dysregulation including altered neutrophil
and macrophage function causes oxidative stress and altered
endothelial cell function, which exacerbate the pathological
process of COVID-19 (13–15). Although electrical and calcium
processing and structural remodeling play key roles in AF
pathophysiology, the underlying causes of AF in COVID-
19 patients are largely unknown, making the management
of AF patients during a pandemic particularly challenging.
Therefore, it is necessary to explore possible pathophysiological
links between COVID-19 and AF and identify potential
therapeutic targets.

In this study, we used a systems bioinformatics approach
to detect shared differentially expressed genes (DEGs) and
associated pathways between COVID-19 and AF. The shared
DEGs were used to identify protein-protein interaction (PPI)
network, gene regulatory network (GRN), and protein-chemical
interactions, and to construct AF-associated gene signatures
for assessing the severity of COVID-19. Finally, these genes
expression was localized by single-cell RNA sequencing (scRNA-
seq) and they may be potential prognostic markers and
therapeutic targets.

Materials and methods

Gene expression dataset

The selected dataset details are shown in Table 1. The
dataset GSE171110 (16) was obtained from Gene Expression
Omnibus (GEO), including the peripheral blood transcriptional
profiles by RNA-seq from 44 severe COVID-19 (80% male,
median age 60 years) patients and 10 healthy controls,
to obtain DEGs between COVID-19 patients and healthy
controls. Dataset GSE75092 (17) contains peripheral blood
transcriptional profiles by array from 3 paroxysmal AF patients
and 3 healthy controls to analyze the DEGs of AF. The
dataset GSE157103 (18) containing 102 different severity
COVID-19 patients was used to construct the least absolute
shrinkage and selection operator (LASSO) regression model
and prognostic analysis. The dataset GSE152418 (19) containing
17 different severity COVID-19 patients was used to validate
the model efficacy. Another validation dataset came from
Aschenbrenner et al. (20), containing 39 COVID-19 patients,
whose standardized count tables were obtained from the website
FASTGenomics.1 The Bonn cohort (21) dataset was downloaded
from FASTGenomics. This study included scRNA-seq data on
fresh whole blood, fresh (peripheral blood mononuclear cells)
PBMC, and frozen PBMC from 19 control donors and 22

1 https://beta.fastgenomics.org/
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TABLE 1 Datasets used.

Dataset Disease Case samples Control samples Usage here

GSE171110 (16) COVID-19 44 10 Screening COVID-19 DEGs

GSE75092 (17) AF 3 3 Screening AF DEGs

GSE157103 (18) COVID-19 102 26 Construction of LASSO regression model; prognostic analysis

GSE152418 (19) COVID-19 17 17 Model validation

Aschenbrenner et al. (20) COVID-19 39 10 Model validation

Bonn cohort (21) COVID-19 22 19 Single-cell sequencing analysis

FIGURE 1

A systems bioinformatics approach was used to analyze the differentially expressed genes (DEGs) and associated pathways shared between
COVID-19 and AF. Shared DEGs were used to identify protein-protein interaction (PPI) networks, gene regulatory networks (GRN), and
protein-chemical interactions, and to construct AF-associated gene signatures to assess the severity of COVID-19. Localizing these genes
expression by scRNA-seq and assessing their prognostic relevance.

COVID-19 patients. The details of the study design are shown
in a flowchart (Figure 1).

Identification of shared differentially
expressed genes

The DEGs of RNA-seq dataset GSE171110 were identified
using the “DESeq2” package in R (v 4.0.2), and the sample sizes
of two groups meet the statistical requirements of “DESeq2”
and no pretreatment is required. The “DESeq” function is
used to analyze the differences between the two groups. The
DEGs of microarray dataset GSE75092 were identified using
the “limma” package. The “makeContrasts” function is used
to compare the differences between the two groups. Both

datasets use Benjamini-Hochberg correction to control the
false discovery rate. Genes with P-value < 0.05 and | log2
fold change| > 1 were considered DEGs. The shared DEGs
were acquired using an online VENN analysis tool Venny.2,
v2.1.0.

Signaling pathway and gene ontology
enrichment analysis

Enrichment analysis is an important analytical task
for classifying common biological processes and clarifying
the association of gene sets with the pathways in which

2 https://bioinfogp.cnb.csic.es/tools/venny/
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they are located. Signaling pathway and gene ontology
(GO) biological processes enrichment were analyzed utilizing
EnrichR.3 Enrichr uniquely integrates knowledge from many
high-profile projects, providing various methods to calculate
genomic enrichment. The shared DEGs were entered into
Enrichr and visualize the results. Kyoto Encyclopedia of
Genes and Genomes (KEGG), WikiPathways, Reactome, and
BioCarta databases were used to specify the shared pathways
between COVID-19 and AF. The top 10 GO terms and
pathways of up and down DEGs were visualized in the
bar plot.

Protein-protein interaction analysis

PPI networks clarify protein-protein interrelationships and
are the basis and key target for forming insights into cellular
mechanisms. STRING database (version 11.0) was used to
analyze PPI of shared DEG through NetworkAnalyst v3.0
Web server. The interactome with medium (400)—high (1,000)
confidence score was selected. Then the PPI network was
imported into the Cytoscape4 software. Cytohubba has 11
methods for studying networks from different perspectives, of
which maximum cluster centrality (MCC) is the best The MCC
algorithm in the CytoHubba plugin was used (v0.1) to calculate
the top 10 hub genes.

Gene regulatory network analysis

JASPAR is a publicly available resource for profiles of
TFs from multiple species in six taxonomic groups. We
use the NetworkAnalyst v3.0 platform to locate topologically
plausible TFs from the JASPAR database, which are often
bound to our mutual DEGs The R package “multiMiR”
was used to predict miRNA-gene interactions. The multiMiR
package includes 8 databases for predicting miRNA-target gene
interactions, of which 3 are experimentally validated miRNA-
target genes, which are the most comprehensive miRNA-
target gene relationship prediction tools available. Only the
experimentally verified interactions were included in the
follow-up analysis. Cytoscape’s Cytohubba plugin was used to
calculate the MCC scores and reserve the top 50 nodes of
MCC scores.

Protein-chemical compound analysis

Prediction of Protein-Chemical compound is one of the
important parts in this study. Comparative Toxicogenomics

3 https://maayanlab.cloud/Enrichr/

4 https://cytoscape.org, v3.7.1.

database was used to identify protein–chemical interactions
via Network Analyst. Comparative Toxicogenomics database
provides manually curated information about chemical–
gene/protein interactions, chemical–disease and gene–disease
relationships. Cytoscape’s Cytohubba plugin was used to
calculate the MCC scores and reserve the top 50 nodes of
MCC scores.

Construction of least absolute
shrinkage and selection operator
regression model

Lasso regression is a machine learning algorithm for feature
filtering that avoids overfitting by selectively placing variables
into the model to obtain better performance parameters. The
“glmnet” package was used to perform LASSO regression. The
shared DEGs were incorporated into the LASSO regression
model, in which penalties were applied to DEGs for preventing
the overfitting effects of the model. The dependent variable
for critically patients was set to “1” and non-critically ill
patients was set to “0.” The “binomial” regression type was
select. The penalty parameter (λ) for the model was taken as
lambda.1se and determined by 10-fold cross-validation. The
“ROCR” package was used to calculate the receiver operating
characteristic (ROC) curve.

Analysis of single-cell RNA
sequencing-seq dataset

The R package “Seurat” was used to process the expression
matrix. Cells with more than 25% of mitochondrial reads, less
than 250 expressed genes, or more than 5,000 genes with less
than 500 transcripts detected were excluded from the analysis,
and only those genes that appeared in more than 5 cells were
considered for downstream analysis. After normalization of the
matrix, 2000 high variable genes were selected by the “vst”
method and the matrix was downscaled and clustered using the
top 20 principal components. Cell type annotation was based on
individual clustering results and combined with known marker
gene expression. The “umap” algorithm was used to visualize
cell groups, and the “VlnPlot” function was used to visualize
gene expression.

Correlation analysis

The R package “ggstatsplot” was used for “spearman”
correlation analysis of gene expression and prognostic
indicators.
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Statistics

For differentially expressed gene analysis, an adjusted
P < 0.05 was considered statistically significant. For GO
and signaling pathway enrichment analysis and spearman
correlation analysis, and a P < 0.05 was considered
statistically significant.

Results

1. Identification of shared DEGs between COVID-19 and AF.

Since patients with severe COVID-19 have a high incidence
of AF, The COVID-19 dataset (GSE171110) which contains 44
severe COVID-19 patients and 10 healthy controls was used to
screen for DEGs. There were 4,160 DEGs in COVID-19 patients
compared to healthy controls, of which 2,822 were up-regulated
and 1,338 were down-regulated (Figure 2A). We identified 481
DEGs in the AF (GSE75092) dataset, of which 188 were up-
regulated and 293 down-regulated (Figure 2B). Venn diagrams
showed that AF patients shared 34 up-regulated genes and 20
down-regulated genes with COVID-19 patients (Figure 2C), for
a total of 54 genes, which we identified as shared DEGs. The
heat map showed the expression of these 54 shared genes in
COVID-19 and AF, respectively (Figures 2D,E).

2. Functional enrichment analysis identified significant
signaling pathways and GO terms.

A variety of signaling pathways and GO terms are involved
in disease development. In this process, we used 34 up-
regulated DEGs and 20 down-regulated DEGs to determine
significant pathways and GO terms that may link COVID-
19 and AF. The pathway analysis showed that the up-
regulated DEGs were enriched in one carbon pool by folate,
calcium regulation in the cardiac cell, pyrimidine biosynthesis,
serine metabolism, and linoleic acid metabolism (Figure 3A).
The down-regulated DEGs were enriched in ALK in cardiac
myocytes, cardiac progenitor differentiation, and TGF-beta
signaling pathway (Figure 3B). In addition, the GO biological
processes enrichment analysis reveals that upregulated DEGs
were primarily enriched in negative regulation of cell migration,
pyrimidine deoxyribonucleotide biosynthetic process, and
regulation of systemic arterial blood pressure by endothelin
(Figure 4A). The downregulated DEGs were primarily enriched
in the BMP signaling pathway involved in heart development
and cell surface receptor signaling pathway involved in heart
development (Figure 4B).

3. Construction of PPI network and identification of
hub genes.

We examined the PPI network of STRING to predict the
interactions of shared DEGs, and most of the interconnected
nodes were considered to be hub genes. From the PPI network
analysis of Cytoscape’s Cytohubba plugin, we listed the top 10
DEGs as the most influential genes (Supplementary Table 1).
These hub genes are RPS8, BMP4, SFN, TYMS, NOG, AK5,
WNT11, RLN1, ARG1, and ACSL1 (Figure 5). These hub genes
can be potential biomarkers, which could also be the new
therapeutic targets.

4. GRN analysis identified TF-DEGs and miRNA-DEGs
interactions for the shared genes.

We constructed a TF-DEGs interaction network to find
potential regulatory molecules. The circles in the figure
represent DEGs, while the squares represent TFs. The color
depth of the nodes depends on the number of connections
between that node and other nodes in the network. Nodes
with higher degrees are considered to be important hubs
of the network. We identified transcription factors FOXC1,
GATA2, NF-κb, YY1 as the more important transcription
factors (Figure 6A). We also identified miRNA-DEG interaction
networks, similar to previous analyses, with squares and circles
representing miRNAs and genes, respectively. We found that
has-miR-27a-3p, hsa-miR-1-3p, hsa-miR-124-3p, hsa-miR-34a-
5p, and hsa-miR-146a-5p were the major regulators of DEGs
(Figure 6B).

5. Protein-chemical interactions.

Protein-chemical interactions are an important study
to understand protein function in intracellular biological
processes, which may also contribute to drug discovery. We
identified protein-chemical interactions that may affect shared
DEGs. As shown, chemical compounds such as valproic acid,
tretinoin, quercetin, estradiol, copper sulfate, benzo(a)pyrene,
aflatoxin b1, etc. may act on shared DEGs such as TYMS,
ACSL1, SERPINB2, and SFN (Figure 7).

6. Construction of an AF-associated gene signature to assess
the severity of COVID-19.

The severity of COVID-19 needs to be accurately assessed
to guide clinical decisions. Since the incidence of AF is
associated with the severity of COVID-19, we wondered
if the AF-associated genes could be used to stratify the
condition of COVID-19 patients. We selected GSE157103
for the construction of the model, which contained the
peripheral blood leukocyte transcriptome of 102 COVID-
19 patients. The expression of shared DEGs was included
in the LASSO regression model, with ICU status (ICU or
no-ICU) as the response variable (Figure 8A). The most
appropriate model was obtained when λ is 0.109 (Figure 8B),
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FIGURE 2

Comparison of transcriptome analysis of peripheral blood transcriptome reveals common genes shared by COVID-19 patients and AF patients.
(A) The red dots and blue dots of the volcano map show the DEGs expressing rising and falling in COVID-19 patients, respectively. (B) The red
dots and blue dots of the volcano map show the DEGs expressing rising and falling in AF patients, respectively. (C) Venn diagram shows the
number of shared genes of COVID-19 and AF. (D) Heat map of shared genes expression in COVID-19 patients. (E) Heat map of shared genes
expression in AF patients.

and ROC curve showed the AUC value is 0.90 (Figure 8C),
with coefficients of 0.294, −0.357, and 0.169 for ARG1,
GIMAP7, and RFX2, respectively. Subsequently, we used the
Aschenbrenner et al.’s dataset (validation set 1, including
39 COVID-19 patients’ peripheral blood transcriptomes) to
validate the model, and found it to have good accuracy
(AUC= 0.74, Figure 8D). Due to the compositional similarities
between leukocytes and PBMC, we wondered if the model could
be used for datasets derived from PBMC. We validated the
model on GSE152418 (validation set 2, containing 19 PBMC
transcriptomes of COVID-19 patients) and found that the
model also had high accuracy (AUC = 0.95) on PBMC samples
(Figure 8E).

7. Cell-specific expression and prognostic predictive power of
severity-associated genes.

To further explore the functional and clinical value of ARG1,
GIMAP7, and RFX2, we analyzed the Bonn cohort, which
included peripheral blood scRNA-seq data from 19 control and
22 COVID-19 patients. A total of 122,954 cells were divided
into 9 subgroups, such as neutrophils, monocytes, and CD4+

T cells according to their marker genes (Figure 9A). We found
that ARG1 was mainly expressed in neutrophils, GMAP7 was
mainly expressed in CD4+ T cells and CD8+ T cells, and
RFX2 was mainly expressed in hematopoietic stem cells (HSCs,
Figures 9B–D), indicating that they may be involved in the
function of these cell subgroups. Subsequently, we tested the
prognostic value of severity-associated genes. The number of
hospital-free days at day 45 (HFD-45) can reflect a composite
of the length of stay and mortality, providing a refined clinical
outcome. Patients with a length of stay longer than 45 days or
who died during hospitalization are assigned a zero value, and
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FIGURE 3

The top 10 signaling pathways of up-regulated (A) and down-regulated (B) shared DEGs.

patients with shorter lengths of stay and less severe illnesses are
assigned a higher HFD-45 value. Correlation analysis showed
that ARG1 (r = −0.57, p < 0.001) and RFX2 (r = −0.22,
p < 0.027) were negatively correlated with HFD-45, while
GIMAP7 (r = 0.53, p < 0.001) was significantly positively
correlated with HFD-45 (Figures 9E–G), suggesting that they
all had good prognostic predictive power.

Discussion

In this study, by integrating COVID-19 and AF peripheral
blood transcriptome, we identified 54 DEGs that are shared
between COVID-19 and AF. DEGs were identified to be
significantly enriched with GO terms and signaling pathways.
A PPI network was constructed and 10 central genes were
identified in PPI. TF-genes, miRNA-genes, and protein-
chemical interactions revealed possible targets. A LASSO
regression classification model composed of ARG1, GIMAP7,
and RFX2 was constructed, which could be used to distinguish
the severity of COVID-19. Finally, we found that ARG1,
GIMAP7, and RFX2 were mainly expressed in neutrophils, T

cells, and HSC, respectively. They were also associated with
the prognosis of COVID-19. These findings may provide new
insights into the mechanism of COVID-19 interaction with AF.

Multiple clinical studies have shown that patients with
COVID-19 are prone to developing new AF and that new-
onset AF predicts a poor prognosis (22–25). Pre-existing AF
also exacerbates symptoms as well as the risk of death in
patients with COVID-19 (26, 27). In addition, the incidence
of AF is significantly higher in survivors of COVID-19 (28).
This predicts a link between COVID-19 and the development
of AF. There have been multiple attempts to intervene in
the occurrence of both using medications (29, 30). The
pathophysiology of SARS virus infection appears to be driven
by an inflammatory immune response, with multiple markers
of inflammation, such as C-reactive protein and the cytokine
interleukin (IL)-6, which are associated with disease severity
and mortality (31, 32). AF is also characterized by elevated
inflammatory markers (33, 34). We aimed to explore possible
pathophysiological interconnections between COVID19 and
AF, including inflammation.

Signal pathways and GO terms can identify the biological
processes of shared genes to determine the possible common
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FIGURE 4

The top 10 GO biological processes terms of up-regulated (A) and down-regulated (B) shared DEGs.

pathological links between COVID-19 and AF. We have
observed that some pathways have been previously shown
to be related to COVID-19 and AF. For example, SARS-
CoV-2 reshapes host folate and one-carbon metabolism after
infection to support viral synthesis (35). Folate and one-
carbon unit metabolism similarly supports the synthetic and
secretory activities of immune cells (such as neutrophils) and
may thereby induce AF (36). Calcium is essential for viral
structure formation, entry, gene expression, viral maturation,
and release (37). COVID-19 patients have increased calcium
consumption and disturbed calcium concentrations (38, 39). We
recently found that calcium disturbances may be an important
pathological mechanism of inflammation causing new-onset
AF (40). Meanwhile, AF-related calcium disorders leading to
myocardial injury and apoptosis may exacerbate the COVID-19
inflammatory response (41). Therefore, calcium disorders may
be one of the reasons why COVID-19 and AF exacerbate each
other. Overdose and premature TGF-β response in COVID-19
patients may inhibit NK cell function and early control of the
virus (42). In patients with AF, TGF-β promotes the production

and maturation of cardiac collagen and the accumulation of
extracellular matrix, changes atrial electrical conduction and
excitability, and provides a basis for the maintenance of AF (43).
In conclusion, these pathways may mediate the interaction of
COVID-19/AF and become therapeutic targets.

We constructed PPI, TF-DEGs, miRNA-DEGs, and
protein-chemical interaction networks for screening potential
therapeutic targets against shared genes. PPI interaction
network detected 10 hub gene signatures (RPS8, BMP4,
SFN, TYMS, NOG, AK5, WNT11, RLN1, ARG1, and ACSL),
which were associated with COVID-19 and AF and could be
considered as candidates for prospective drug targets. The
transcription factors NF-κb were found to be connected to
shared DEGs. NF-κb signal promotes the production and signal
transduction of tumor necrosis factor-α and interleukin-6
in COVID-19 (44). NF-κB also promotes the expression of
cytokines and endothelial adhesion molecules during AF and
down-regulates the cardiac sodium channel SCN5A to cause
electrical remodeling (45–47). Thus modulation of NF-κB
activation levels may reduce cytokine storm, decrease the
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FIGURE 5

Hub protein network of shared DEGs in COVID-19 and AF. The connecting lines represent the presence of interactions between two nodes. The
nodes in the network are divided into two sizes, with larger nodes representing the proteins encoded by DEGs and smaller nodes representing
other proteins to distinguish them from DEGs. The color shades of the nodes indicate the degree of connectivity. 10 hub proteins are shown
based on the number of interactions.

FIGURE 6

Gene regulatory network analysis of TF-DEGs (A) and miRNA-DEGs (B) in COVID-19 and AF. The circles represent DEGs and the squares
represent TFs or miRNAs. nodes with top50 connectivity are shown, and nodes with high connectivity are presented in darker colors.

severity of COVID-19, and reduce the occurrence of AF.
We have determined that hsa-miR-1-3p and hsa-miR-124-3p
were the most connected miRNA for shared DEGs. MiR-1-
3p may regulate viral endocytosis, while SARS-CoV-2 uses
endocytosis to enter host cells and induce COVID-19 (48, 49).
MiR-1-3p also causes electrical remodeling of AF by targeting
potassium channel genes (50). MiR-124-3p is upregulated
during HIV-1 infection, causing downregulation of p21 and
TASK1, consequently leading to increased release of viral

particles (51). MiR-124-3p also rises in AF, regulates AXIN1,
and promotes activation and proliferation of cardiac fibroblasts
(52). In short, MiR-1 and miR-124 may serve as therapeutic
targets for the simultaneous regulation of SARS-CoV-2 virus
infection and AF-related myocardial remodeling. Then we
identified the chemical compound valproic acid, a histone
deacetylase inhibitor, as a modulator of DEG. Valproic acid can
reduce the expression of angiotensin-converting enzyme 2 and
transmembrane serine protease 2 required for SARS-CoV-2
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FIGURE 7

Association between COVID-19 and AF from the perspective of protein and chemical compounds. Circles represent proteins and squares
represent compounds. nodes with top50 connectivity are shown, and nodes with high connectivity are presented in darker colors.

virus entry (53), and reduces pathological atrial remodeling
thereby preventing the development of AF, which may be a
candidate for COVID-19 and AF therapy (54).

To date, several genetic markers have been available for
assessing the severity of COVID-19. Considering the instability
of a single gene, we constructed a robust model containing 3
genes, including ARG1, GIMAP7, and RFX2, using the LASSO
Cox regression model as a screening method, and established
a formula for AF gene-related COVID-19 severity score with
a 0.90 AUC value. Subsequently, the assessment ability was
validated in 2 independent cohorts from different platforms,
which demonstrated the broad applicability of the genetic
model. We also showed that ARG1, GIMAP7, and RFX2 are
not only markers of severity, but also signs of hospital stay and

death. Measuring these genes expression during the course of
the disease and implementing interventions during the early
stages may help track treatment response and prevent disease
progression and poor prognosis.

Recent studies have shown that COVID-19 patients have
reduced arginine levels and increased RNA expression of
ARG1 in peripheral blood mononuclear cells (55, 56). Another
study showed that circulating granulocyte-bone marrow-
derived suppressor cells expressing high levels of arginase-1
(ARG1+ G-MDSC) were significantly increased in COVID-
19 (57) which is consistent with our observations. Large
amounts of Arg+ G-MDSC deplete plasma arginine, inhibit
T cell proliferation and increase markers of endothelial cell
dysfunction. Endothelial dysfunction is closely related to the
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FIGURE 8

Construction and verification of severity assessment model. (A,B) The screened severity-related genes were incorporated into the Lasso
regression model and penalties were applied for preventing the overfitting effects of the model. (C) The ROC curve of the training set used to
distinguish the severity of COVID-19. (D,E) The ROC curve of validation set 1 and validation set 2 used to distinguish the severity of COVID-19.

development of AF (58, 59). Therefore, arginase 1 inhibition
and/or arginine supplementation may be important for the
prevention/treatment of severe COVID-19 and AF. Moreover,
the protein-chemical interaction results showed that quercetin
is a candidate for modulating arginase 1 activity, consistent with
previous studies (60). Quercetin has shown therapeutic effects
in influenza, and it is speculated that it may have therapeutic
potential against COVID-19. Recent studies show that quercetin
also ameliorates AF in rats (61). Therefore, quercetin may serve
as a therapeutic target for modulating arginase 1 activity and
treating COVID-19/AF.

The GIMAP gene family maintains the development of
thymocytes and the survival of T cells in the periphery (62).
Our results showed that GIPAM7 was expressed in CD4+ T
cells and CD8+ T cells, and supported a better prognosis. In
severe COVID-19, circulating T cells are severely reduced (63).
T lymphocytes are the key coordinator of antiviral immune
response by enhancing other the effector function of immune
cell types or by directly killing infected cells (64). AF patients
also have decreased lymphocytes, which is considered a sign
of poor general health and physiological stress. Therefore,

targeting GIMAP7 may reduce the extent of COVID-19 and
AF by maintaining the number of lymphocytes. RFX2 has been
reported in the past to control motile ciliogenesis in mice
(65), and recently RFX2 was shown to promote survival in
neutrophils (66). Our results showed that RFX2 was highly
expressed in HSC compared to other immune cells. We
speculate that the differentiation of HSC into granulocytes
and monocytes may negatively affect COVID-19 and AF. It is
important to examine whether RFX2 supports HSC survival and
function in future studies.

To our knowledge, this is the first study to reveal
the transcriptomic relationship between COVID-19 and AF.
However, some limitations should be noted. First, confounding
factors due to differences in sample size, sequencing platforms,
and sample sources between the COVID-19 and AF datasets
may cause bias and inaccuracy in the analysis results. Second,
the relatively small size of the cohort may not be sufficient to
capture all the key disease-associated genes needed to identify
common DEGs. Third, further studies are needed to fully assess
the biological function and clinical value of the potential targets
identified in this work.
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FIGURE 9

Cell-specific expression and prognostic predictive power of severity-associated genes. (A) UMAP plot shows 122,954 cells isolated from control
and COVID-19 patients, colored by the main cell groups. (B–D) Violin plot of ARG1, GIMAP7, and RFX2 expression in different cell groups. The
level of expression increases from left to right. (E–G) Correlation analysis of ARG1, GIMAP7, RFX2 expression levels and HFD-45.

Conclusion

In this study, we combined the transcriptomes of COVID-
19 and AF to identify the mechanisms by which COVID-19
triggers AF and the interactions between them. We identified
folate and one-carbon metabolism, calcium regulation, and
TFG-β signaling pathway as potential mechanisms linking
COVID-19 and AF. We performed transcriptional and post-
transcriptional studies, constructed a PPI network, and found
that NF-κb, hsa-miR-1-3p, hsa-miR-124-3p, valproic acid, and
quercetin may be key regulatory molecules. We constructed
a 3-gene signature consisting of ARG1, GIMAP7, and RFX2
for the assessment of COVID-19 severity and prognosis, and

determined the cell-specific expression of these genes. This
study provides new insights into underlying mechanisms and
regulatory elements that may help develop potential novel
drugs and assess patient severity to prevent the onset of severe
COVID-19 and AF.
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