
TYPE Review

PUBLISHED 19 October 2022

DOI 10.3389/fcvm.2022.1023549

OPEN ACCESS

EDITED BY

Sofie Gevaert,

Ghent University Hospital, Belgium

REVIEWED BY

Minoru Ono,

The University of Tokyo

Hospital, Japan

Andrea Montisci,

Ospedale Civile di Brescia, Italy

*CORRESPONDENCE

Claudio A. Bravo

cbravo11@uw.edu

†These authors share senior authorship

SPECIALTY SECTION

This article was submitted to

Heart Failure and Transplantation,

a section of the journal

Frontiers in Cardiovascular Medicine

RECEIVED 19 August 2022

ACCEPTED 22 September 2022

PUBLISHED 19 October 2022

CITATION

Bravo CA, Navarro AG, Dhaliwal KK,

Khorsandi M, Keenan JE, Mudigonda P,

O’Brien KD and Mahr C (2022) Right

heart failure after left ventricular assist

device: From mechanisms to

treatments.

Front. Cardiovasc. Med. 9:1023549.

doi: 10.3389/fcvm.2022.1023549

COPYRIGHT

© 2022 Bravo, Navarro, Dhaliwal,

Khorsandi, Keenan, Mudigonda,

O’Brien and Mahr. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Right heart failure after left
ventricular assist device: From
mechanisms to treatments

Claudio A. Bravo1*, Andrew G. Navarro2,

Karanpreet K. Dhaliwal3, Maziar Khorsandi3, Je�rey E. Keenan3,

Parvathi Mudigonda1, Kevin D. O’Brien1† and Claudius Mahr1†

1Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA,

United States, 2School of Medicine, University of Washington, Seattle, WA, United States, 3Division of

Cardiothoracic Surgery, Department of Surgery, University of Washington, Seattle, WA, United States

Left ventricular assist device (LVAD) therapy is a lifesaving option for patients

with medical therapy-refractory advanced heart failure. Depending on the

definition, 5–44% of people supported with an LVAD develop right heart failure

(RHF), which is associated with worse outcomes. The mechanisms related to

RHF include patient, surgical, and hemodynamic factors. Despite significant

progress in understanding the roles of these factors and improvements

in surgical techniques and LVAD technology, this complication is still a

substantial cause ofmorbidity andmortality among LVADpatients. Additionally,

specific medical therapies for this complication still are lacking, leaving

cardiac transplantation or supportive management as the only options for

LVAD patients who develop RHF. While significant e�ort has been made to

create algorithms aimed at stratifying risk for RHF in patients undergoing

LVAD implantation, the predictive value of these algorithms has been limited,

especially when attempts at external validation have been undertaken. Perhaps

one of the reasons for poor performance in external validation is related to

di�ering definitions of RHF in external cohorts. Additionally, most research in

this field has focused on RHF occurring in the early phase (i.e., <1 month)

post LVAD implantation. However, there is emerging recognition of late-onset

RHF (i.e., > 1 month post-surgery) as a significant cause of morbidity and

mortality. Late-onset RHF, which likely has a unique physiology and pathogenic

mechanisms, remains poorly characterized. In this review of the literature, we

will describe the unique right ventricular physiology and changes elicited by

LVADs that might cause both early- and late-onset RHF. Finally, we will analyze

the currently available treatments for RHF, including mechanical circulatory

support options and medical therapies.
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Introduction

Heart transplantation still is considered the gold-standard

treatment for advanced heart failure (1–3). Yet, limited donor

organ supply limits this therapy to a small proportion of

those who might benefit from it. Left ventricular assist device

(LVAD) therapy has emerged as a viable option for those who

cannot be transplanted before an irreversible complication or

death occurs. LVAD placement immediately produces lifesaving

hemodynamic changes such as normalization of cardiac output

and reducing left ventricular (LV) pressures (4). These changes

improve end-organ function, functional capacity, and survival

(4–6). The evolution of LVAD technology has led to a 2-year

event-free survival of around 78% with the latest commercial

LVAD iteration, the HeartMate 3 (Abbott) (7, 8).

However, due to mechanisms that remain incompletely

characterized, a significant number of patients develop right

heart failure (RHF) following LVAD implantation. Depending

on the definition, up to 40% of people supported with LVAD

develop RHF, which is associated with poor outcomes (9–12).

Based on the Interagency Registry of Mechanical Circulatory

Support (INTERMACS) 2020 annual report, heart failure and

multisystem organ failure were among the most significant

causes of death among LVAD patients, with RHF likely playing

a pivotal role in many (13). Thus, the development of RHF

is one of the complications observed in patients chronically

supported with LVADs that limits the full potential benefit from

device therapy.

The treatments and understanding of most LVAD

complications have evolved over the years. However, RHF

remains poorly characterized and, most importantly, lacks

medical treatment options. Despite the numerous compounds

developed to successfully treat the failing LV, a paucity

of research on RHF, including research into the essential

physiological, phenotypic, histologic, and molecular differences

between the right and left ventricles, has contributed to the lack

of specific pharmacological agents for RHF. This manuscript

aims to review the latest literature on right ventricular (RV)

physiology, RHF pathophysiology in the presence of LVAD, and

options to treat this complication.

Right ventricular physiology

The right and left ventricles work together as an

interdependent system and share many similarities (14–

16). Nonetheless, there are key dissimilarities, including the

development of cardiomyocytes of each ventricle from different

embryological progenitors, as well as differences in geometry,

wall thickness, and loading conditions, that underscore critical

differences between the ventricles (17, 18).

The RV is a thin-walled crescentic-shaped chamber that

wraps around the LV (Figure 1) (19–21). Since both ventricles

FIGURE 1

Reconstruction of a normal RV illustrating the

three-dimensional relationships with the LV. The mesh surface

represents the LV, and the continuous blue surface illustrates the

RV. LV, left ventricle; P, pulmonary valve; RV, right ventricle; T,

tricuspid valve. Reproduced from Sheehan and Redington (19).

are connected as a series of “pumps” in a normal heart, the

RV must deliver the same stroke volume as the LV to maintain

normal circulation. Like the LV, the RV systolic function also

follows the Frank-Starling law, which governs the interaction

between venous return (preload), pulmonary vascular resistance

(afterload), and myocardial contractility. Compared to the LV,

the RV functions at higher ventricular volumes and lower

pressure and impedance, i.e., the pulmonary circulation (22,

23). This different hemodynamic environment allows the RV

to provide the appropriate stroke volume, even though its

myocardial mass is only one-sixth that of the LV.

Additional unique characteristics of the RV are that

it is more afterload sensitive and compliant than the LV.

Increasing afterload leads to a disproportionate increase in

energy expenditure and decreased efficiency of the RV as

compared to the LV, resulting in a reduction of the RV stroke

volume at a faster rate than the LV (Figure 2A). The higher

compliance of the RV allows it to handle a large amount of blood

return fluctuations without significant changes in stroke work

compared to the LV (Figure 2B) (23–25).

Ventricular interdependence is crucial for the systolic and

diastolic function of the RV. Ventricular interdependence refers

to the size, shape, and compliance of one ventricle affecting the

other through direct interaction (26, 27). Through ventricular

interdependence, the LV contributes∼20–40% of the RV systolic

pressure, with the RV contributing about 4–10% of the LV

systolic pressure (26, 28). The interventricular septum appears
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FIGURE 2

The RV and LV respond di�erently to increased afterload and preload. (A) Compared to the LV, with a 10 mmHg afterload di�erence (between 20

and 30 mmHg), the RV displays a rapid decline in the stroke volume, while the LV remains relatively stable. Conversely, (B) the LV stroke work

rapidly increases as the preload increases, while the RV stroke work response is more modest to similar preload changes. This figure was

published in: Braunwald (24). Reproduced by permission from Braunwald (24).

to be the main contributor to ventricular interdependence.

However, other factors such as muscle fibers that connect both

ventricles, shared coronary blood flow, and the pericardium also

play essential roles in this cooperative process (26, 29).

Post LVAD RHF pathophysiology

Placement of a fully functional LVAD into an advanced

heart failure patient rapidly elicits favorable hemodynamic

changes, including restoration of cardiac output and reductions

in left ventricular and pulmonary arterial pressures (4).

This new hemodynamic profile renders better end-organ

perfusion, functional capacity, survival, and quality of life (4–

6). The decreased pulmonary arterial pressure with LVAD, via

immediate reduction of left-sided filling pressures and more

long-term remodeling of fixed pulmonary hypertension, lowers

the pulmonary vascular resistance, thereby improving right-

sided afterload and RV function (4, 30–32). This LV unloading

also improves RV function by decreasing functional mitral valve

regurgitation and reversing an excessive shift of the septum into

the RV as a result of the higher LV volume (33–35). Despite these

corrective modifications of cardiogenic shock obtained with

LVAD, other coexisting forces can lead to RHF (Figure 3). The

pathophysiology of post-LVAD RHF is multifactorial, including

post-surgical hemodynamic and geometric changes of the heart,

along with perioperative and patient-related factors. Factors

such as changes in preload and alterations in ventricular

interdependence through pericardiotomy and interventricular

septal function have been considered to play a central role in

RHF pathophysiology.

The role of preload in RHF

As LVAD support decreases right-sided afterload, it also

raises preload. This can ultimately lead to a volume overloaded

and more afterload-sensitive RV (36–38). The increase in RV

preload is due to an increase in LV output due to LVAD

support (4, 38, 39). While the RV appropriately increases the

stroke volume to match the new left-sided supported cardiac

output via a Frank-Starling mechanism, the capacity of the

RV to handle a higher preload is limited by pre-existing RV

functional reserve. RV distension due to a greater preload also

can induce tricuspid annular dilatation, thereby worsening pre-

existing tricuspid regurgitation (39–41). In essence, whenever

the LVAD delivers more volume than the RV can accommodate,

the result is chronic RV pressure/volume overload, eventually

resulting in RHF. This occurs with excess LVAD speed, residual

hypervolemia, systemic hypertension, or a combination of these

factors. Tricuspid regurgitation also can be exacerbated by

tricuspid valve tethering due to leftward septal shift upon LV

decompression with the LVAD support, further aggravating RV

pressure/volume overload (Figure 3) (42).

The role of pericardium in RHF

One of the roles of the pericardium is to maintain

biventricular morphology and interdependence, both essential

features for normal RV function and geometry (26, 43). It has

been widely reported that disruption of the pericardium during

cardiac surgery is associated with RV dysfunction (44–46). Thus,

pericardiotomy during LVAD implantation likely contributes to
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FIGURE 3

Diagram showing the main changes post LVAD, including an increased cardiac output that leads to decompression of the LV and a leftward shift

of the septum with subsequently increased preload to the RV. The increased right-sided preload and a leftward shift of the septum, dilates the

RV, worsening the tricuspid regurgitation (TR), resulting in RHF.

RHF development. Along these lines, there has been interest

in using a less invasive surgical approach, such as left lateral

thoracotomy, for LVAD implantation. Observational studies

and the single-arm, prospective LATERAL clinical trial have

suggested that with this less invasive surgical approach, LVAD

implantation appears safe; and is associated with fewer blood

transfusions, shorter hospital stays, and lower rates of RHF

(47–52). These data suggest that preserving pericardial integrity

during LVAD implantation might be protective for the RV.

The role of the interventricular septum in
RHF

The interventricular septum is a significant contributor

to the RV function through its contraction and ventricular

interdependence (53). Longitudinal contraction of the

interventricular septum accounts for nearly 80% of normal

RV function, and the oblique contraction that is responsible

for the twisting motion of this chamber allows it to overcome

higher afterload (54, 55). Following a cardiac surgery with

pericardiotomy, the contraction pattern changes, switching to

mainly transverse shortening of the interventricular septum

(56). This change in the contraction pattern leads to an adaptive

enhancement of transverse contractile function, maintaining

a relatively normal RV function. However, these alterations

make the RV more afterload sensitive. In addition to changes

in interventricular contractile dynamics after pericardiotomy,

the leftward septal shift due to LV decompression further limits

the contribution of the interventricular septum to RV function,

putting this chamber at higher risk of failure (57).

Definitions and epidemiology of RHF

The definition of RHF has evolved, starting with the

INTERMACS 2008, which required a central venous pressure

of >18 mmHg, cardiac index < 2.0 L/min/m2, and a

treatment for RHF such as RV mechanical circulatory support

(MCS), inotrope or inhaled nitric oxide for more than a

week. A version that included more variables, INTERMACS

2014, required central venous pressure of >16 mmHg or

evidence of elevated central venous pressure on echocardiogram

or physical exam, as well as laboratory manifestations of

high central venous pressure. Finally, the 2020 consensus

statement of the Mechanical Circulatory Support Academic

Research Consortium (MCS-ARC) proposed a more complex

and comprehensive definition of RHF. This latest definition

requires signs of elevated right-sided pressures or the presence

of manifestations suggestive of RHF, as well as either inotropic

or mechanical intervention for this complication. Additionally,

MCS-ARC RHF events are categorized as early acute, early

post-implant, and late-onset, depending on the timing of RHF

presentation (Figure 4) (58, 59).

Given the differing definitions and modified versions of

contemporary definitions of RHF used across studies, it is

challenging to understand the true burden of post-LVAD

RHF and to compare its incidence across different cohorts
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FIGURE 4

Algorithm illustrating the MCS-ARC diagnostic criteria for RHF (58). The RHF events are classified as early acute if it occurs immediately after

LVAD implantation, early if it is within the first 30 days post-surgery, and late if it happened > 30 days post-surgery. Additionally, for early and late

RHF, the new criteria require the presence of clinical findings or manifestations suggestive of RHF, in addition to an intervention to treat this

complication. Reproduced from Kormos (58).

(7, 12, 60–64). Thus, observational studies using different

definitions have reported the prevalence of RHF with LVAD

support ranging from 5 to 44%. However, all have reported

that RHF is associated with increased morbidity, mortality,

and longer hospital stay (7, 9–12, 63–67). Furthermore, most

studies have focused on characterizing early onset RHF, i.e.,

which occurs soon after the LVAD implantation. However,

there is growing evidence that RHF may manifest following

patient discharge, called late-onset RHF. Late-onset RHF is less

well-characterized, and it remains unknown if late-onset RHF

represents part of a continuum from early RHF or a completely

different entity with different etiologic factors (64, 66, 68–70).

Prediction of RHF

There has been a significant effort to develop predictive

tools for RHF in patients undergoing LVAD implantation. Pre-

preoperative characteristics, echocardiographic measurements,

hemodynamic parameters, and biomarkers have been associated

with post-LVAD RHF incidence (71–75). Moreover, various

complex scoring systems include several of those identified

independent risk factors. Some of the most studied models

are the Michigan RHF score system, Penn RHF risk score,

Heartmate II RHF model, Utah RHF risk score, Pittsburg

decision tree, CRITT score, and EuroMACS score (12, 60, 63,

76–78). Unfortunately, none of those risk scoring systems have

performed as expected in external validation studies, limiting

their applicability in clinical practice. One of the limitations of

these studies is the heterogeneous definitions of RHF, which

could partly explain the inconsistency in external validation (79).

Some hemodynamic parameters or calculations, such as high

CVP, low RV stroke work index, CVP to pulmonary capillary

wedge pressure ratio, pulmonary artery pulsatility index (PAPi),

elevated pulmonary vascular resistance, and diastolic pulmonary

gradient, have been associated with RHF (12, 61, 77, 80–84).

Although, some of these parameters are widely used and cited in

the clinical practice, these need further external validation using

a standardized and contemporary definition of RHF.

Treatments of RHF

Early recognition and treatment of RHF are crucial to

preserve end-organ function and improve outcomes (85). Since

randomized controlled clinical trials are largely lacking in
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this area, most evidence for RHF management is based on

observational studies and personal experience, with significant

variation among centers. RHF management generally comprises

pulmonary artery catheter-guided therapy, volume optimization

with diuretics or renal replacement treatment, pulmonary

vasodilators, inotropes, heart rate or rhythm management, or

mechanical RV support.

Medical management of RHF

Volume optimization is crucial to restoring normal RV

preload and afterload (86). In the setting of RHF, both low

cardiac index and renal venous congestion as a consequence

of an elevated central venous pressure can limit diuretic

response (87). Patients refractory to diuretic treatment can

benefit from ultrafiltration with renal replacement therapies

(86). Additionally, in the acute setting, a reduction in

pulmonary pressure by correcting hypoxia and acidosis

and using pharmacologic pulmonary vasodilators can help

decrease the pulmonary vascular resistance (88–91). In order

to maximize RV health, it is imperative to use invasive

hemodynamic optimization of LVAD speed, filling pressures,

and systemic mean arterial pressure. Excess LVAD speed,

residual hypervolemia, and suboptimal control of essential

hypertension all contribute to chronic RV pressure/volume

overload, ultimately resulting in chronic RV failure (Figure 3).

Inotropes are another palliative treatment option to provide

temporary RV support by augmenting RV contractility and

decreasing RV end-diastolic volume and pressure. Dobutamine

and milrinone are the two most commonly utilized inotropes

and have similar safety profiles regarding arrhythmogenicity

(92, 93). However, milrinone has the advantage of leading to

a more significant reduction in RV pressures because of its

potent pulmonary and systemic vasodilatory effect compared

with dobutamine (94, 95). Another relevant aspect in managing

RHF is avoidance of systemic hypotension to maintain coronary

artery perfusion and prevent or reduce RV ischemia (96, 97).

Atrial and ventricular tachyarrhythmias are common

complications in patients with advanced heart failure. The

LVAD, by unloading the LV, decreasing the adrenergic drive,

and inducing reverse remodeling of the heart, has a positive

impact on arrhythmogenicity. Additionally, LVAD support

allows patients to remain stable and even asymptomatic while

having significant atrial or ventricular arrhythmias. However,

the persistence of tachyarrhythmias can be harmful to the

unsupported RV contributing to the development of RHF

(41, 98, 99). Therefore, although no randomized clinical

trial has demonstrated that arrhythmia treatment decreases

RHF incidence; it is common practice to address arrhythmia

promptly and to make efforts to maintain sinus rhythm to

preserve the RV function.

Mechanical circulatory support for RHF

The timing for RV MCS placement varies among centers;

some institutions offer this early on, even preventively in high-

risk patients. In contrast, other hospitals offer RV MCS once

medical therapy has failed. The specific support device selected

also varies based on the level of support needed and the center’s

practice and experience.

Impella RP

The Impella RP (Abiomed Inc, Danvers, MA) (100) is a

microaxial flow device inserted percutaneously through the

femoral vein, with the distal tip positioned in the pulmonary

artery. This device drains blood from the inferior vena cava

and propels it into the pulmonary artery, and can provide as

much as 4 L/min of flow (100, 101). Insertion of this device can

be challenging due to the need to navigate the tricuspid valve

and outflow tract infundibulum, and the device can be prone to

migration and hemolysis.

Protek duo

The Protek Duo (LivaNova, London, UK) (102) is a dual

lumen cannula with an inflow and an outflow limb. It is

typically inserted via the internal jugular or subclavian veins

under fluoroscopic guidance. This catheter works in conjunction

with an extracorporeal centrifugal pump, the TandemHeart

(LivaNova, London, UK). Advantages of this device are the

relative ease of insertion and the fact that it can be inserted

in an upper venous system, thereby allowing for ambulation.

Disadvantages are that it also is prone to migration and, due to

its diameter, can induce pulmonary valve regurgitation, thereby

leading to re-circulation and ineffective RV support (103, 104).

Peripheral VA-ECMO

Peripheral VA-ECMO is another option for temporary

RV support. However, since this strategy reduces LVAD

preload by unloading the RV and increases LVAD afterload,

it will negatively impact LVAD function (105). Therefore,

careful LVAD/VA-ECMO adjustments must be made to avoid

competition between the two devices.

Paracorporeal CentriMag RV assist device

The paracorporeal CentriMag RV Assist Device is a

surgically implanted system that involves the placement of a

right atrial or RV venous inflow cannula and a pulmonary

artery arterial outflow cannula. The cannulae are connected to

a paracorporeal CentriMag pump (Abbott, Chicago, IL) (106).

This approach has the advantage of allowing for very effective

RV support. The cannulae can be tunneled under the costal
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margin, allowing chest closure and ambulation. However, the

most significant disadvantage of this configuration is that a

sternotomy is required for insertion, and a second surgery is

typically required to remove the system (107, 108).

Durable biventricular assist devices

There is no FDA-approved, long-term durable RV support

system for LVAD patients with refractory RHF. However, small

case series have reported using an LVAD system for RV support,

leaving the patient with long-term dischargeable biventricular

support. For right-sided device placement, the inflow cannula

is placed in the right atrium or RV while the outflow graft

is connected to the pulmonary artery (109, 110). Despite

the feasibility of this surgical intervention, there are several

concerns, including thrombus generation, especially in the

venous system, and a higher risk for inflow cannula malposition

and obstruction.

Conclusion

Advances in LVAD technology have improved outcomes

for patients with advanced heart failure receiving these devices.

Despite these innovations, surgery-related events and the

hemodynamic implications inherent to left-sided univentricular

support cause cardiac morphology and dynamics changes that

may eventually result in early- or late-onset RHF. There has been

significant progress in managing and understanding several

LVAD complications, including gastrointestinal bleeding,

driveline infection, and stroke. However, RHF remains the

least characterized and understood of all LVAD complications.

In addition, the utilization of differing RHF definitions

across studies has contributed to difficulties in thoroughly

characterizing the risk factors for and pathologic mechanisms

underlying this important LVAD complication. Fortunately,

there is growing interest in the scientific community to fill this

knowledge gap, which includes the proposal of a more inclusive

and comprehensive RHF definition by the MCS-ARC. Patients

with RHF after an LVAD currently receive pharmacologic

treatment or MCS that maintains end-organ perfusion while the

right-sided hemodynamics are optimized, allowing the RV to

recover. However, we currently lack a long-term and sustainable

therapy for refractory RHF, leaving only a few options for those

unfortunate patients. As heart transplantation remains a very

limited resource, leaving LVAD as the only option for many

patients with refractory heart failure, there is an urgent need to

advance research in this area.
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