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Following acute occlusion of a coronary artery causing myocardial ischemia and

implementing first-line treatment involving rapid reperfusion, a dynamic and balanced

inflammatory response is initiated to repair and remove damaged cells. Paradoxically,

restoration of myocardial blood flow exacerbates cell damage as a result of myocardial

ischemia–reperfusion (MI-R) injury, which eventually provokes accelerated apoptosis. In

the end, the infarct size still corresponds to the subsequent risk of developing heart

failure. Therefore, true understanding of the mechanisms regarding MI-R injury, and

its contribution to cell damage and cell death, are of the utmost importance in the

search for successful therapeutic interventions to finally prevent the onset of heart

failure. This review focuses on the role of innate immunity, chemokines, cytokines, and

inflammatory cells in all three overlapping phases following experimental, mainly murine,

MI-R injury known as the inflammatory, reparative, and maturation phase. It provides a

complete state-of-the-art overview including most current research of all post-ischemic

processes and phases and additionally summarizes the use of immunomodulatory

therapies translated into clinical practice.

Keywords: myocardial infarction, myocardial ischemia-reperfusion injury, inflammatory phase, reparative phase,

innate immunity, chemokines, cytokines, inflammatory cells

INTRODUCTION

Ischemic myocardial injury causes decreased oxygen tension within the cell, subsequent
degradation and loss of oxidative phosphorylation, and decreased generation of high-energy
phosphates resulting in loss of membrane integrity (1). Irreversible cardiomyocyte injury,
demonstrated by sarcolemmal disruption and presence of small amorphous densities in the
mitochondria develops after 20–40min of sustained severe ischemia (2). Cardiomyocyte cell death
causes release of cardiomyocyte-specific proteins, such as myoglobin, cardiac troponin (cTn) T
and I, creatine kinase MB (CK-MB), and creatine phosphokinase (CPK), which are used clinically
as markers for early detection (3), especially by the use of high-sensitivity cTn assays nowadays
(4). The dominant mechanism of cardiomyocyte death is coagulation necrosis, peaking after
12 h up to 4 days, with cell swelling and rupture of cell membranes resulting in extrusion of
intracellular contents after passing the point of no return even though reperfusion is applied at
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a certain moment. This triggers an extensive inflammatory
reaction activating reparative pathways ultimately contributing
to mature scar formation (5). The other mechanism is apoptosis,
peaking after 6–8 h, concerning programmed cell death, in
particular, induced by reperfusion and also affecting non-
infarcted areas of the LV wall and interventricular septum (6).

Myocardial infarct repair comprises three overlapping
phases: the inflammatory, reparative, and maturation phase.
The inflammatory phase contains activation of chemokine and
cytokine cascades resulting in recruitment of local infiltration
of leukocytes into the infarct area. Dead cells and matrix
debris are cleared by neutrophils and macrophages. During the
reparative or proliferative phase, activated mononuclear cell
and macrophage subpopulations release cytokines and growth
factors that recruit and activate predominantly myofibroblasts
and vascular cells, while pro-inflammatory mediators are
suppressed. Activated myofibroblasts abundantly produce
extracellular matrix proteins, and an extensive microvascular
network is formed with preservation of the structural integrity.
In the maturation phase, reparative fibroblasts and vascular
cells become apoptotic, and a cross-linked collagen-based
scar is formed (7). This review addresses the post-ischemic
inflammatory response in its entirety focusing on the role of
innate immunity, chemokines, cytokines, and inflammatory
cells in all three overlapping inflammatory, reparative, and
maturation phases following experimental myocardial ischemia–
reperfusion (MI-R) injury. The complexity of this process makes
it amenable to pharmacologic interventions of which some has
been successfully translated toward clinical practice as discussed
in the final section.

MYOCARDIAL ISCHEMIA–REPERFUSION
INJURY

As mentioned previously, early reperfusion by primary
percutaneous coronary intervention (pPCI) is the recommended
therapy in acute myocardial infarction (MI) since reperfusion
restores oxygen and nutrient supply accentuating the post-
ischemic inflammatory response and accelerating wound
healing, making it a prerequisite for cardiomyocyte salvage (8).
Even late reperfusion showed to be beneficial in humans, where
it results in considerable myocardial salvage (9), as well as in
animals, exhibiting permanent reduction of infarct expansion
and ventricular remodeling (10). Paradoxically, restoration of
myocardial blood flow comes at a price, as it initiates myocardial
reperfusion injury by a series of events, which eventually provoke
accelerated apoptosis (11).

There are four types of MI-R injury recognized. The first two
are reversible and consist of reperfusion-induced arrhythmias,
in particular, ventricular arrhythmias, which are usually self-
terminating or effectively treated (12), and myocardial stunning,
referring to reversible post-ischemic contractile dysfunction
resulting from the detrimental effects of oxidative stress and
intracellular calcium overload on the myocardial contractile
apparatus (13). The other two are irreversible and are known as
microvascular obstruction with reduced blood flow to the infarct

zone despite patency of the infarcted-related artery (14, 15), and
lethal reperfusion injury, which may account for up to 50% of the
final infarct size (11).

The innate immune system is triggered following tissue
injury resulting in the release of soluble inflammatory mediators
soon after reperfusion, inducing an extensive inflammatory
response as described above. Recruitment of inflammatory cells,
oxidative stress, and endothelial barrier dysfunction compose
myocardial healing in the early phase. Cytokines activate and
recruit neutrophils to the injured infarct area, which cause direct
injury to the endothelial cells via production of reactive oxygen
species (ROS) (16), inflammatory cytokines, and adhesion
molecules that facilitate binding of leucocytes and platelets. Other
mediators of myocardial reperfusion injury are the opening of
the mitochondrial permeability transition pore, cardiomyocyte
calcium overload with hypercontracture, and intracellular pH
changes resulting in a wave front of reperfusion injury with
a strict therapeutic window (17). Reperfusion also induces
and aggravates apoptosis (6). Through binding and ingestion
of dying cells, myeloid cells can markedly influence immune
responses. MI-R-induced apoptosis results in changes in cellular
structures including loss of the asymmetric distribution of plasma
membrane phospholipids (18).

Innate Immunity
Cell death induced by necrosis causes a release of intracellular
contents and triggers an inflammatory response by activating
the innate immune system (Figure 1). Expression of endogenous
ligands upon reperfusion are judged as “danger signals.” These
danger-associated molecular patterns (DAMPs) are recognized
by both signaling and endocytic pattern recognition receptors
(PRRs), such as Toll-like receptors (TLRs), expressed by cells of
the innate immune system. Activation of inflammatory pathways
by activation of, e.g., TLR-mediated pathways, chemoattractants,
the complement cascade, and ROS as a result of MI induces the
expression of a large panel of pro-inflammatory genes driven by
the activation of mitogen-activated protein kinases (MAPKs) and
especially nuclear factor (NF)-κB (7).

Danger-Associated Molecular Patterns
The innate immune system can be triggered by endogenous,
non-pathogenous signals, referred to as DAMPs (19). These
endogenous ligands released in response to MI include high-
mobility group box-1 (HMGB1), heat shock proteins (HSPs)
and S100-proteins, nuclear and mitochondrial DNAs, RNAs,
adenosine triphosphate (ATP), low molecular weight hyaluronic
acid, and fibronectin fragments (20). Oxidation-specific epitopes
(OSEs) can act as endogenous DAMPs as well (21).

HMGB1, the best characterized danger signal, is a key initiator
of inflammatory injury following myocardial ischemia controlled
by action mechanisms involving TLRs (22, 23) and RAGEs,
the receptor for advanced glycation end products (22). HMGB1
mediates MI-R injury by activation of inflammatory pathways
(24), but also confers favorable effects by enhancing angiogenesis,
reducing infarct size and improving cardiac function following
MI (25). Also, HSPs showed both beneficial and detrimental
effects following myocardial ischemia. For instance, HSP20 and
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FIGURE 1 | Innate immunity following myocardial ischemia–reperfusion injury. Ischemic-induced myocardial cell death activates innate immunity. Expression of

endogenous ligands upon reperfusion are known as danger-associated molecular patterns (DAMPs) including HMGB1, high-mobility group box-1; HSPs, heat shock

proteins; OSEs, oxidation-specific epitopes; HA, hyaluronic acid. These DAMPs are recognized by pattern recognition receptors (PRRs) like TLRs, NLRs, RAGE,

complement cascade, reactive oxygen species (ROS), and chemoattractants. Finally, activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase

(MAPK) pathways induce the expression of pro-inflammatory chemokines, cytokines, and adhesion molecules regulating a complex post-ischemic inflammatory

response.

HSP70 protect cardiomyocytes against MI-R injury in rodents,
with improved recovery of cardiac contractile performance and
decreased infarct size (26). However, HSP60 has strongly been
associated with the development of ischemic heart failure (27),
and HSP60-mediated activation of TLR4 induced myocardial
apoptosis and cytokine expression following MI-R injury (28).
Also, low molecular weight hyaluronic acid and fibronectin are
capable of activating the innate immune system via TLRs (29, 30).

Toll-Like Receptors
TLRs are highly conserved transmembrane receptors and
comprise the major group of PRRs, and recognize a variety
of DAMPs and pathogen-associated molecular patterns
(PAMPs). The TLR family consists of 13 different receptors,
classified into the plasma membrane or endosomal localized
TLR subfamilies, triggering the innate immune system upon
binding of their ligands leading to the dimerization of the
cytosolic Toll/interleukin-1 receptor (TIR) domain, ultimately
activating nuclear factor (NF)-κB and MAPK pathways to
upregulate pro-inflammatory mediators (31, 32). Myocardial
infarction induced local TLR4 expression (33), and upregulated
TLR4 in cardiomyocytes that exacerbated heart failure (34).
Furthermore, TLR4 deficiency resulted in decreased MI-R
injury (35), restricted cardiomyocyte apoptosis (23), and
attenuated adverse cardiac remodeling resulting in improved
LV function (36). In addition, administration of a chemical
TLR4 inhibitor reduced the recruitment of Ly-6Chi monocytes
accompanied by impaired NF-κB activation and cytokine
expression. This resulted in decreased infarct size (37). TLR2
deficiency resulted in reduced LV dilation and improved LV
function due to decreased fibrosis in the non-infarcted area
(38), and antagonizing TLR2 reduced infarct size after MI-R
injury (39). Although less extensive, other TLRs have been
analyzed as well following MI-R injury. Signaling of TLR3-
TIR domain-containing adaptor inducing IFN-β-mediated
transcription factor (Trif) represents an injurious pathway,
since TLR3-Trif deletion reduced infarct size and improved
LV function probably by mediating myocardial apoptosis (40).

In addition, administration of the TLR9 ligand activated the
PI3K/Akt signaling pathway conferring cardioprotective effects
by induction of TLR9 tyrosine phosphorylation and association
with the p85 subunit of PI3K (41). Taken together, TLRs are
promising therapeutic targets, and several TLR (ant)agonists
already have been developed and investigated following MI-R
injury (42, 43).

Nucleotide-Binding Oligomerization Domain-Like

Receptors
NLRs are a group of intracellular PRRs with over 20 members.
NLRs consist of a pyrin (PYD) or caspase recruitment (CARD)
domain at the N-terminus combined with a central nucleotide
binding (NACHT) followed by a C-terminal leucine-rich repeat
(LRR) domain. The inflammasome comprises an activated NLR
protein, the adaptor apoptosis speck-like protein containing a
caspase-recruitment (ASC) domain, and procaspase-1 (44). After
an MI, the major components of the NLRP3 inflammasome
are upregulated and/or activated in leukocytes, fibroblasts, and
endothelial cells, as well as in border zone cardiomyocytes,
resulting in increased interleukin (IL)-1β and IL-18, its cytokine
end products. Targeted gene disruption (45) and antibody
neutralization (46) have been shown to reduce infarct size
after MI-R injury, whereas NLRP3 deficiency (47) and selective
NLRP3 inhibition (48) exhibited additional preservation of
cardiac function.

Receptor for Advanced Glycation End Products
The receptor for advanced glycation end products also serves
as a multiligand PRR, which triggers a number of cytosolic
signaling pathways, including NF-κB and MAPK-dependent
inflammatory genes (49). RAGE deficiency protected against MI-
R injury resulting in improved cardiac function and remodeling,
while RAGE-mediated signaling is essential for circulating cells
to migrate to the myocardium and exert detrimental effects
(50). Accordingly, co-treatment of soluble RAGE and siRNA
RAGE exhibited synergistic cardioprotective effects following
MI-R injury (51), and modulation of the AGE-RAGE/MAPK
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pathways resulted in improved cardiac function by attenuating
MI-R injury (52).

Complement Cascade
Involvement of the complement system in myocardial ischemia
was first demonstrated almost five decades ago (53), and
activation has been suggested to extend ischemic injury (54).
The complement cascade operates on the transition from innate
to adaptive immunity and is activated through three different
mechanisms defined as the classical, alternative, and lectin
pathways. All three lead to cleavage of C3 with subsequent
activation of C5 and formation of the membrane attack complex
(MAC) (55). It consists of numerous plasma and cell membrane
proteins, which are activated following binding of antibodies
to PAMPs and release of DAMPs in response to tissue injury.
Also, C-reactive protein and IgM play an important role since
they are co-localized with activated complement in human
infarcted myocardium (56). Activation causes opsonization
of pathogens, phagocytosis, augmentation of inflammation,
and direct cell lysis, which is regulated by many regulatory
proteins (57).

All three pathways are involved in the pathogenesis of
MI-R injury, by activation-mediated neutrophil and monocyte
recruitment in the ischemic myocardium especially in the first
hours of reperfusion (58). The lectin pathway, initiated by
recognition of the circulating pathogen recognition molecule
mannose-binding lectin (MBL), seemed to be the major
contributor. Complement inhibition by antibodies against MBL
reduced neutrophil infiltration and attenuated pro-inflammatory
gene expression (59). In addition, MBL deficiency with
concomitant active alternative and classical pathways protected
against MI-R injury with resultant preservation of cardiac
function (60).

Blocking the complement cascade may reduce myocardial
injury, which has been accomplished by consumptive depletion
with cobra venom factor (61), antibody-induced inhibition
(62), genetic deficiency (63), or ablated plasma activation (64)
of individual complement components such as C5, or by
infusion of modified native components that block activation
like soluble complement receptor type 1 (sCR1) (65) and
C1-esterase inhibitor (C1-INH) (66). Despite these promising
results in animal models, clinical studies concerning C5
inhibition in humans have been performed with disappointing
results (67).

Activation of NF-κB
Induction of pro-inflammatory mediators in ischemic
myocardium is controlled by activation of the NF-κB system,
a central transcriptional effector of inflammatory signaling,
triggering transcription of various genes including inflammatory
cytokines, CXC and CC chemokines, and adhesion molecules
upon MI (68). The family of transcription factors consists of at
least five subunits, RelA (p65), RelB, c-Rel, p50, and p52 (69).
NF-κB signaling in the heart has been controversial and seems
to regulate three genetic programs depending on the timing
and cellular activation, known as acute cytoprotection following

hypoxia/ischemia, chronic cytotoxicity generated by a prolonged
inflammatory response, and hypertrophy (68).

Pharmacological blockade of inhibitor of NF-κB (IκBα)
(70) and inhibitor of NF-κB kinase subunit β (IKKβ) (71),
cardiomyocyte-specific NF-κB deletion (72), and blocking of
the inflammatory gene activation (73) decreased infarct size,
reduced inflammatory responses, and improved cardiac function
following MI-R. However, several studies reported conflicting
results endorsing the various cellular processes and molecular
pathways affected by the NF-κB system, which are also strictly
dependent on the cellular context and timing of activation since
prolonged NF-κB activation promoted heart failure by provoking
chronic inflammation (68).

Chemokines
Following MI, a variety of pro-inflammatory chemokines and
cytokines are upregulated as a result of activation of the
innate immune system (Figure 2). Chemokines are divided
into subfamilies on the basis of the number and sequential
relationship of their conserved cysteine residues (CC, CXC,
CX3C, and XC) and play a critical role in basal and
inflammatory leukocyte trafficking (74). Functionally, they can
be divided in homeostatic chemokines, which are constitutively
expressed in certain tissues and execute basal leukocyte
trafficking, and inducible or inflammatory chemokines, which
are markedly upregulated following tissue injury and actively
induce leukocyte recruitment (75). Expression of chemokines
is managed by activation of TLR-mediated pathways, the
complement cascade, ROS generation, and the NF-κB system
following myocardial ischemia, while reperfusion accentuates
chemokine expression (76).

CC Chemokines
CC chemokines are the largest and most distinct subfamily
and function as potent mononuclear cell chemoattractants. The
monocyte chemoattractant protein (MCP)-1/chemokine ligand
(CCL)2 is rapidly upregulated in the ischemic myocardium
and operates as a potent chemoattractant to mononuclear
cells following reperfusion (77). In addition, MCP-1 deficiency
attenuated post-ischemic LV remodeling as a result of a
prolonged inflammatory phase with decreased and delayed
macrophage infiltration (78). However, in the absence of
reperfusion, cardiac overexpression of MCP-1 induced
macrophage infiltration, neovascularization, myocardial
IL-6 secretion, and myofibroblast accumulation, which
prevented LV dysfunction and adverse remodeling after MI
(79). Furthermore, administration of a CCL2 competitor
reduced monocyte recruitment, which attenuated MI-R injury
(80), and pharmacological blockage of the CCL5-CXCR4
interaction impaired the inflammatory response resulting in
a reduced infarct size and preserved cardiac function (81).
Similar results were observed with anti-CCL5 antibody therapy
following permanent ischemia as a result of impaired infiltration
of mononuclear cells (82). Absence of the chemokine receptor
CCR1 resulted in reduced functional impairment and structural
remodeling due to an abolished early inflammatory recruitment
of neutrophils accompanying improved tissue healing (83). More
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FIGURE 2 | Post-ischemic inflammatory response. Myocardial infarction especially followed by reperfusion results in a complex post-ischemic inflammatory response

encompassing a multifactorial and dynamic process. Apoptosis and necrosis activate the innate immune system resulting in the upregulation of pro-inflammatory

chemokines and cytokines. As a result, inflammatory cells are attracted to the ischemic myocardium known as the inflammatory phase. In addition, the production of

anti-inflammatory cytokines causes a transition toward the reparative phase accompanied by reparative monocyte and macrophage subtypes. Finally, (myo)fibroblasts

and angiogenic cells ensure the formation and maturation of myocardial scar tissue.

recently, CCR9 deficiency was demonstrated to reduce mortality
as a result of a decreased infarct size and limited adverse
LV remodeling associated with an attenuated inflammatory
response (84).

CXC Chemokines
CXC chemokines that contain an ELR motif are critically
involved in chemotactic recruitment of neutrophils, and
those lacking the ELR motif regulate the recruitment and
activation of lymphocytes. From the ELR-containing CXC
chemokines, CXCL8/IL-8 is upregulated in experimental MI-R
and participates in neutrophil-mediated myocardial injury
(85, 86). IL-8 induces chemotaxis and granulocyte recruitment,

enhances β2 integrin-dependent cellular adhesion (87), and
inhibition with a neutralizing monoclonal antibody reduced
the degree of necrosis after MI-R independent of neutrophil
infiltration (88). Other ELR-containing CXC chemokines, such as
growth-regulated oncogene (GRO)-α/KC/CXCL1, macrophage
inflammatory protein (MIP)-2/CXCL2, and lipopolysaccharide-
induced chemokine (LIX)/CXCL5, induced neutrophil
chemotaxis and activation, and are expressed by infiltrated
inflammatory cells and ischemic myocardium following MI-R
injury (89). In addition, deficiency of the chemokine receptor
CXCR2 showed predominant cardioprotective effects with
reduced infarct size and recruitment of inflammatory cells
after MI-R injury (90). Also, pharmacological inhibition by a
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chemokine-binding protein of CXC chemokines, such as CXCL1
and CXCL2, reduced infarct size by preventing neutrophil
recruitment and ROS production (91).

Of the ELR-negative CXC chemokines, interferon-inducible
protein (IP)-10/CXCL10 peaks in the early reperfusion
phase and regulates the cellular composition attenuating
adverse remodeling, since IP-10 deficiency resulted in a
hypercellular early reparative response with intense infiltration
of myofibroblasts suggesting the exertion of anti-fibrotic actions
following myocardial ischemia (92). Finally, stromal cell-derived
factor (SDF)-1/CXCL12 may recruit progenitor cells with
angiogenic potential, contributing to neovascularization of the
scar (93), and is upregulated after MI regulating therapeutic
stem cell homing to ischemic myocardium, which resulted in
preserved cardiac function (94). Improved cardiac function after
myocardial ischemia was attributed to increased angiogenesis
and decreased scar formation as a result of SDF-1α treatment
(95), and the protective effect was blocked by the administration
of a selective antagonist following MI-R injury (96). However,
conflicting observations have been reported following MI-R
with detrimental effects of CXCR4-CXCL12 overexpression
possibly as a result of enhanced inflammatory cell recruitment,
and activation of cell death or apoptosis (97). These conflicting
results again reflect the complexity of the reparative process with
multifunctional, pleiotropic, and context- and timing-dependent
actions of chemokine signaling.

Cytokines
Following acute MI, various inflammatory cytokines are secreted
by circulating inflammatory cells and cardiac resident cells,
amplifying the pro-inflammatory response to acute ischemia–
reperfusion injury by moderating the local recruitment of
inflammatory cells (Figure 2). Pro-inflammatory cytokines
tumor necrosis factor (TNF)-α, IL-1, and IL-6 have consistently
been found to be induced and released following MI (98, 99),
whereas IL-10 and transforming growth factor (TGF)-β exerted
anti-inflammatory effects (5, 98).

Pro-inflammatory Cytokines
Induction and release of pro-inflammatory cytokines play
an important role in mediating chemokine upregulation in
the injured myocardium. TNF-α stimulates expression of
other pro-inflammatory cytokines, chemokines, and adhesion
molecules by leukocytes and endothelial cells, and regulates
extracellular matrix metabolism by decreasing collagen
synthesis and activating matrix metalloproteinase (MMP)
activity (100). Targeted TNF-α overexpression caused adverse
cardiac remodeling provoked by progressive cardiomyocyte
apoptosis (101). Following MI-R injury, TNF-α deficiency
exhibited attenuated chemokine expression and NF-κB
activation in the infarcted heart resulting in reduced infarct
size and improved cardiac function (102). Additional remote
ischemic preconditioning prior to reperfusion attenuated the
inflammatory response causing decreased levels of TNF-α
and IL-1β accompanied with an improved LV function (103).
Pharmacological treatment with morphine following MI-R
injury was shown to decrease circulating TNF-α levels and

reduce infarct size with concomitant improvement of LV
function (104). Furthermore, G protein-coupled receptor kinase
2 (GRK2) deficiency resulted in decreased TNF-α expression and
fibrosis resulting in reduced infarct size and preserved cardiac
function (105). In experimental MI, TNF-α deficiency protected
against myocardial rupture and chronic LV dysfunction
by inhibiting abundant inflammation, matrix and collagen
degradation, and apoptosis (106). In contrast, protective effects
of TNF-α signaling are described as well, since neutralizing
TNF-α with adenoviral TNFR1 exhibited detrimental effects
by promoting ventricular rupture and exacerbating ventricular
dysfunction and remodeling following MI (107). Complexity of
cytokine expression regarding therapeutic interventions remains
a challenge and influences its effects, which might partially
depend on blockage of specific receptors since TNF-α effects
was shown to be toxic via TNFR1 and protective via TNFR2
(108, 109).

Neutralization of IL-1 by genetic overexpression of IL-
1 receptor antagonist protected the myocardium from MI-
R injury by attenuating the inflammatory response associated
with decreased apoptosis (110), and reduced inflammatory
markers in patients with acute coronary syndrome (111), but
exerted no functional improvement (112). Renal sympathetic
denervation resulted in a reduced circulating production of pro-
inflammatory cytokines IL-1 as well as IL-6 and TNF-α, which
was associated with decreased circulating inflammatory cells,
reduced infarct size, and improved LV ejection fraction following
MI-R injury (113). Administration of a caspase-1 inhibitor
combined with a P2Y12 antagonist decreased circulating IL-
1β, reducing infarct size and preserving LV-function (114). In
addition, treatment with an IL-1 receptor (IL-1R) antagonist
as well as IL-1RI deficiency exhibited decreased neutrophil and
macrophage infiltration of the injured myocardium with reduced
chemokine and cytokine expression subsequently resulting in
reduced cardiomyocyte apoptosis and an attenuated fibrotic
response preserving adverse remodeling (115, 116).

Synthesis of IL-6 is induced rapidly in the ischemic-
reperfused myocardium (117), and IL-6 has been associated with
acute coronary syndrome (118). In mendelian randomization
studies, IL-6R inhibition resulted in reduced cardiovascular
events suggesting a novel therapeutic approach to prevent
coronary heart disease (119). In addition, administration of
tocilizumab, an IL-6R antagonist, in patients suffering a non-
ST-elevation MI attenuated the inflammatory response with
reduced levels of high-sensitivity C-reactive protein and cTnT
(120). However, pre-clinical studies reported conflicting results,
as IL-6 deficiency did not affect infarct size, LV function or
remodeling, and survival after unreperfused MI, which was
explained by a compensatory role of other mediators (121)
but, on the other hand, reduced infarct size following MI-R
injury (122). Furthermore, administration of the IL-6R antibody
MR16-1 after MI suppressed myocardial inflammation causing
impaired LV-remodeling and improved LV contractile function
(123), but worsened LV remodeling following MI-R injury
(124). Regarding pharmacological treatment, administration
of bisoprolol conferred cardioprotective effects following MI-
R injury by suppressing both IL-6 as TNF-α secretion and
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attenuating the unfolded protein response, thereby reducing
infarct size and improving post-ischemic cardiac function (125).
Linagliptin, a dipeptidylpeptidase (DPP)-4 inhibitor, attenuated
the increase in IL-6 as well as IL-1β and TNF-α following MI-
R injury, which was associated with a limited infarct size and
improved ejection fraction (126).

Overall, attenuating the effects of pro-inflammatory cytokines
seemed cardioprotective; however, conflicting results suggest
them to exert diverse biological effects and emphasize the
complex and pleiotropic cytokine actions in biological processes.

Anti-inflammatory Cytokines
Inhibitory mediators, such as IL-10, TGF-β, or lipid-derived
substances may be the predominant mechanism for deactivation
of chemokine signals. They exert pleiotropic effects in regulating
the immune response and are leading in mediating the post-
ischemic reparative response (127).

IL-10 is predominantly expressed by activated T-lymphocytes
and stimulated monocytes, and possesses potent anti-
inflammatory properties. Induction of IL-10 coincides
with the suppression of IL-6 formation in macrophages
and monocytes and further inhibits production of IL-
1α, IL-1β, TNF-α, and IL-8, suppressing the inflammatory
response. Furthermore, it stabilizes the matrix by decreasing
metalloproteinase biosynthesis (128). IL-10 is upregulated in
reperfused myocardium, and neutralizing IL-10 activity caused
reduced expression of tissue inhibitor of metalloproteinases
(TIMP)-1, suggesting IL-10 to contribute to stabilization of the
matrix (129). Following MI-R injury, IL-10 deficiency resulted
in increased fibrosis and apoptosis (130) and an enhanced
inflammatory response, associated with increased infarct size
and mortality (131). In addition, administration of recombinant
IL-10 following MI suppressed the inflammatory response
and contributed to improved LV function and remodeling
by inhibiting fibrosis and enhancing capillary density (132).
Pharmacological treatment with colchicine before (133) or a
selective β2 adrenergic receptor agonist during (134) MI-R injury
increased systemic IL-10 levels exhibiting a cardioprotective
effect with a reduced infarct size. However, conflicting evidence
regarding the role of IL-10 in the resolution of the inflammatory
response following MI-R exists, as IL-10 deficiency also showed
timely repression of pro-inflammatory cytokines and chemokine
mRNA synthesis with a similar course of neutrophil infiltrate
resolution, indicating the involvement of multiple overlapping
modulating mechanisms (135).

Cell proliferation, differentiation, and apoptosis as well
as modulation of the immune response are all regulated
by TGF-β. Because of its anti-inflammatory and fibrogenic
properties, it affects cardiac remodeling by mediating transition
from inflammation to fibrosis (136). Upon TGF-β stimulation,
myofibroblast transdifferentiation is induced, and the activity
of proteases that degrade the extracellular matrix (ECM)
is suppressed (137). Following myocardial ischemia TGF-β
is increased, of which TGF-β1 and TGF-β2 isoforms are
upregulated within the first few days in contrast to the delayed
and prolonged expression of the TGF-β3 isoform showing a
positive correlation with parameters of the ECM metabolism

(138). TGF-β is predominantly located in the infarct border zone
activated by the induction of thrombospondin (TSP)-1 following
MI-R injury (139). The signaling pathway is regulated through
Smad proteins (140) of which Smad3 signaling seemed to be
critical in cardiac remodeling (141).

Post-ischemic treatment with TGF-β prevented severe cardiac
injury, presumably by attenuating the deleterious effects of pro-
inflammatory cytokines (142). Loss of the anti-inflammatory
mechanism of growth differentiation factor (GDF)-15, a TGF-β-
related cytokine and inhibitor of leukocyte integrin activation,
resulted in fatal cardiac rupture after MI (143). Moreover,
prevention of myeloid-epithelial-reproductive tyrosine kinase
(MerTK) cleavage following MI-R injury resulted in secretion
of TGF-β and IL-10, which was associated with a reduced
infarct size and improved systolic function (144). However,
reducing TGF-β activity by inhibiting the TGF-β type I receptor,
attenuated systolic dysfunction and LV remodeling (145), and
gene therapy against TGF-β mitigated LV remodeling as well
(146). Also, inhibition of TGF-β expression due to a combination
therapy of angiotensin-converting enzyme (ACE) inhibitor and
angiotensin receptor blocker attenuated cardiac fibrosis and
remodeling (147). Furthermore, targeted disruption of TGF-β
signaling by conditional deficiency of the TGF-β receptor 1 or
2 resulted in a marked decline in neutrophil recruitment and
upregulation of protective cardiokines protecting from LV wall
rupture (148). Finally, Smad3 deficiency following MI-R injury
resulted in reduced interstitial fibrosis and attenuated cardiac
remodeling due to abrogation of the fibrogenic TGF-β responses
(149). Discrepancies might be explained by a specific time
window of action since activation of TGF-β signaling seemed
protective in the early post-ischemic phase, but caused adverse
LV remodeling and dysfunction when expression persists over
time (150).

The inhibitory cytokines exert pleiotropic effects regarding
their inflammatory and reparative properties, which can be either
stimulatory or inhibitory, depending on the state of cellular
differentiation, microenvironmental cues, and the cellular tissue
origin. The related complexity has hampered the translation
from attractive hypothesis toward novel therapeutic strategies
exhibiting functional improvement in experimental MI models.

Inflammatory Cells
Acute MI results in a complex inflammatory response associated
with induction of endothelial adhesion molecules and enhanced
permeability of the microvasculature. Upregulated chemokines
and cytokines cause extravasation of activated blood-derived cells
into the infarcted area (Figure 2), which play an important role
in regulating the reparative response and are possible targets
for cardioprotective therapies (151). Single-cell RNA-sequencing
following unreperfused MI of the non-cardiomyocyte fraction
revealed over 30 cell subtype populations, which highlighted
post-ischemic non-linear dynamics in myeloid and fibroblast
lineages crucial for understanding of cardiac homeostasis,
inflammation, fibrosis, repair, and regeneration (152).

At first, platelets are recruited into the injured myocardium
representing an important linkage between tissue injury
and repair (153). They target monocytes, macrophages, and
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T-cells by releasing mitogenic factors, recruit leukocytes
by production of cytokines and chemokines, and trigger
complement activation (154, 155). Following MI-R injury,
platelet-derived serotonin induced neutrophil degranulation
with release of myeloperoxidase, which was abolished after
additional genetic or pharmacological depletion preserving
cardiac function (156). In addition, targeting activated platelets
with a single-chain antibody-CD39 (Targ-CD39) resulted in
attenuated post-ischemic inflammation, reduced infarct size,
and increased neovascularization resulting in a remarkable
restoration of ejection fraction and strain rate (157).

Briefly, MI triggers a biphasic reaction of inflammation
and remodeling, with immediate influx of neutrophils and
CCR2+Ly-6Chi pro-inflammatory M1 monocytes/macrophages
in the immediate phase, which phagocytose debris and secrete
pro-inflammatory cytokines IL-1β, IL-6, and TNFα. After
around 3 days transition to the reparative phase is achieved
in which accumulated Ly-6C-F4/80hi M2 macrophages secrete
anti-inflammatory cytokines IL-10 and TGF-β (158).

Inflammatory and Reparative Phases
Neutrophils
Prior to MI, neutrophils as well as monocytes already circulate
in the blood in a steady state. In response to experimental
MI, neutrophils, which are efficient phagocytes that engulf
and degrade microorganisms using oxidative and non-oxidative
mechanisms, are migrated into the injured myocardium as
the first line of defense to phagocytose death myocardial cells
(159). In the clinical setting, elevated neutrophil as well as
leukocyte counts following primary PCI in ST-segment elevation
MI are directly related to infarct size and LV ejection fraction
and are independent predictors of cardiovascular outcomes
(160). Neutrophils infiltrate the injured myocardium within
hours, peaking at 1–3 days and primarily tend to target the
border zone showing accentuated accumulation at reperfusion
(161). They are recruited to the injured myocardium by
a high concentration of chemotactic factors, such as MIP-
2α, IL-8(/CXCL8), CXCL1(/GRO-α/KC), complement 5a, and
leukotriene B4. Migration from the circulation into the injured
myocardium depends on binding to P-selectin, E-selectin,
intercellular adhesion molecule (ICAM)-1, and vascular cell
adhesion molecules (162). Until recently, it was believed
that cardiac neutrophils demonstrate a pro-inflammatory N1
phenotype, being predominant in the infarct area correlating
with wall thinning, and an anti-inflammatory N2 phenotype,
increasing over the course of MI (163). Excessive infiltration
and/or delayed removal may exacerbate injury by intensifying
the inflammatory response. Novel insights show a more
complex concept of temporal cardiac neutrophil heterogeneity
in experimental MI. Single-cell RNA sequencing combined
with surface epitope detection demonstrated more complex
neutrophil dynamics with two major subsets. The SiglecFlo

neutrophils, resembling circulating blood neutrophils, and the
SiglecFhi neutrophil subset, exclusively found in the heart, are
characterized by specific effector functions as phagocytosis and
production of ROS (164).

Targeting neutrophils to reduce accumulation into the injured
myocardium has been shown to reduce infarct size and mostly
improved cardiac function following neutralization of the
receptor activator of NF-κB ligand (165), plasminogen activator
inhibitor-1 deficiency (166), brahma-related gene 1 (BRG1)
deficiency (167), pharmacological inhibition, as well as deficiency
of transient receptor potential melastatin 2 (TRPM2) (168),
or proteasome-mediated IκBα inhibition (169). Furthermore,
inhibition of neutrophil activity exposed beneficial effects with
a reduced infarct size as a result of pretreatment with a dual
cyclooxygenase–lipoxygenase blocking agent before MI-R injury
(170). Improved LV function and attenuated adverse remodeling
were shown following administration of an inhibitor of the
triggering receptor expressed onmyeloid cells-1 (TREM-1) (171),
a S100A8/A9 blocker (172), or myeloperoxidase inhibitor (173)
early after initiating reperfusion. In addition, neutralization of
L-selectin and P-selectin with monoclonal antibodies attenuated
neutrophil accumulation and reduced myocardial necrosis
after MI-R injury (174, 175). However, combined P-selectin
and ICAM-1 deficiency demonstrated impaired neutrophil
trafficking but did not affect infarct size in response to MI-R
(176). Moreover, inhibition or loss of the CD11/CD18-integrin
receptor, which allows neutrophil binding and transmigration,
resulted in diminished neutrophil accumulation accompanied
by a reduced infarct size and preserved cardiac function
after experimental MI-R injury (177–179). Disappointingly,
clinical studies targeting CD11/CD18 subunits did not report
any cardioprotective effect following acute MI, endorsing its
challenging aspects (180, 181). Finally, complete neutrophil
depletion was shown to be detrimental, since neutrophils are
crucially involved by polarizing macrophages toward a reparative
phenotype, emphasizing the importance of carefully balanced
novel anti-inflammatory therapeutic strategies (182).

Mononuclear Cells
Following experimental MI-R injury, mononuclear cells
(monocytes and lymphocytes) are rapidly recruited into the
ischemic myocardium, visualized by real-time in vivo imaging
(183), due to various monocyte chemoattractants driven by
MCP-1 (78). Monocytes and macrophages have a critical role in
post-ischemic cardiac repair, since they promote both injury and
repair, and express wide heterogeneity and dynamics during the
immediate inflammatory response. As a result of cardiomyocyte
injury, monocytes and monocyte-derived macrophages infiltrate
the heart and largely replace tissue-resident macrophages.
Cardiac tissue-resident macrophages originate from CX3CR1+
progenitors (184), are self-renewing and long-lived (185), and
display an anti-inflammatory F4/80hiLy-6Clo or M2 phenotype
(186). A combination of single-cell RNA sequencing with
genetic fate mapping of the healthy adult myocardium revealed
four transcriptionally distinct cardiac macrophage subsets,
which are, on the one hand, maintained independent of blood
monocytes, or on the other hand, partially or fully replaced
by monocytes. Following myocardial injury, resident cardiac
macrophages, suppressed by peripherally CCR2+ monocyte-
derived macrophages, accounted for only 2–5% of the cardiac
macrophages within the infarct area (187). Resident cardiac
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macrophages undergo continuous and distinct transcriptomic
changes (186), and their depletion promoted adverse remodeling
and impaired cardiac function (187).

Of themonocytes, the pro-inflammatory (Ly-6Chi) monocytes
migrate to the site of injured myocardium at first, peaking 3 days
after MI, which express TNF-α and IL-1β, produce proteolytic
enzymes, and secrete MMPs. They exhibit rapid kinetics with
a relatively short circulating life-span (188), and differentiate,
in the presence of IFN-γ or lipopolysaccharide (LPS), into
activated pro-inflammatoryM1 (CCR2+)macrophages secreting
large amounts of pro-inflammatory mediators (189). In addition,
nuclear receptor subfamily 4, group a, member 1 (Nr4a1) seems
critical for Ly-6Chi monocytes to exert either inflammatory
or reparative effects following unreperfused MI. Although
differentiated cardiac macrophages depend on Nr4a1 to limit
inflammation, the apoptotic or proliferation processes seem
unaffected (190). Second, after about 7 days, the reparative (Ly-
6Clo) monocytes, also suggested to directly correspond with
F4/80hiLy-6Clo macrophages originated from Ly-6Chi monocytes
(190, 191), become predominant, which differentiate, in the
presence of IL-4 and IL-10, toward a reparative M2 (CCR2–)
phenotype, promoting the healing response, and contributing
to angiogenesis and scar maturation (189). Tissue-resident
CCR2+ and CCR2–macrophages differentially regulated cardiac
mobilization and recruitment of peripheral monocytes where
depletion of tissue-resident CCR2+ macrophages substantially
reduced the recruitment of recipient monocytes and neutrophils
accompanied by an improved LV systolic function following
murine MI-R injury (185). In the clinical setting, higher
levels of pro-inflammatory monocytes were associated with
severe myocardial injury and poor functional outcome following
acute MI (192, 193). Furthermore, the macrophage migration
inhibitory factor (MIF) seemed to exert pleiotropic effects
following MI-R injury. By activating the cardioprotective AMP-
activated protein kinase (AMPK) pathway, it seemed beneficial,
on the one hand (194), but MIF deficiency, on the other
hand, turned out to protect the heart by suppressing the
inflammatory response as well (195). The compartmentalized
and opposing effects are largely mediated by CXCR2, where
CXCR2-bearing inflammatory cells revealed to be detrimental by
increasing monocyte infiltration (196). Efferocytosis of apoptotic
cardiomyocytes by macrophages suppressed expression of
pro-inflammatory mediators, which may drive resolution of
inflammation (197).

Attenuating the pro-inflammatory phase by targeting
Ly-6Chi monocytes or M1 macrophages has been shown
cardioprotective following reduction of interferon regulatory
factor 5 (IRF5) expression (198), injection of phosphatidylserine
(PS)-presenting liposomes (199), or irbesartan-nanoparticles
(200), as well as administration of annexin A5 (AnxA5) (201) or
phosphorylcholine monoclonal immunoglobulin G antibodies
(202), and CCR-2 silencing (203). In addition, expediting the
differentiation from reparative Ly-6Clo monocytes toward M2
macrophages by administration of pioglitazone-nanoparticles
(204) or topiramate (205), Treg-cell activation (206), and
silencing the collapsin response mediator protein-2 (CRMP2)
(207) limited adverse remodeling. Moreover, exacerbation of

the post-ischemic inflammatory response by administering
2-arachidonolyglycerol resulted in increased neutrophil and
monocyte counts associated with an increased infarct size and
worsened cardiac function (208). Inhibition of the reparative
phase finally, by selective depletion ofM2macrophages as a result
of deficiency of the kinase tribbles homolog 1 (TRIB1) caused
an increased risk of cardiac rupture following MI, emphasizing
their role in regulation of fibroblast activation (209).

Other leukocytes, like lymphocytes, dendritic cells, and mast
cells invading the injuredmyocardium includes smaller numbers,
but may have an important role in regulating infarct healing
and the myeloid response. CD4+ T-lymphocytes was shown to
become activated after MI and improved beneficial remodeling
and survival (210). Lymphopenia, primarily due to loss of
T cells in patients with an acute MI, was correlated with
substantial microvascular obstruction (211). Furthermore, Treg-
cells are known to attenuate the innate immune response and
inducing Treg-cells by injection of tolerogenic dendritic cells
(tDCs) elicited an inflammatory-to-reparative macrophage shift
yielding improved remodeling associated with preservation of
LV function and increased survival (212). However, CD4+ T-cell
deficiency also showed to reduce infarct size and preserve ejection
fraction following MI-R injury (213), suggesting different roles
of T-cells regarding infarct remodeling compared with MI-R
injury. B-lymphocytes peak 5 days after acute MI and trigger
monocyte mobilization, which deteriorated LV function (214).
Following MI, granulocyte—macrophage colony-stimulating
factor (GM-CSF)-producing B cells, dendritic cells, and T
cells expand in pericardial adipose tissue, at which both B-
cell depletion and GM-CSF blockade, as well as removal of
pericardial adipose tissue reduced fibrosis and preserved cardiac
function (215).

Dendritic cells are antigen-presenting cells contributing
to innate immunity and providing a link to the adaptive
immune system. Following MI-R injury, they migrate and
accumulate in the injured myocardium, and deficiency resulted
in increased pro-inflammatory cell and cytokine recruitment
with worsened adverse remodeling suggesting immunoprotective
effects (216). In addition, exosomes derived from dendritic
cells activated CD4+ T-lymphocytes, which improved cardiac
function following MI (217). On the other hand, restriction of
dendritic cell activation and migration by inhibiting HMGB1
reduced infarct size as well (218).

Resident cardiac mast cells degranulate quickly after MI
releasing histamine and pro-inflammatory mediators as TNF-
α. Mast cells are increased in reperfused myocardium and
are associated with upregulation of stem cell factor (SCF),
which may expedite recruitment and homing of primitive
bone marrow-derived cells contributing to the reparative phase
(219). The most abundant protease in mast cell granules
is tryptase, which induced synthesis of chemokines and
cytokines to mediate leukocyte accumulation and angiogenesis
(220) and was identified to regulate PKA activity modulating
cardiomyocyte contractility after acute MI (221). Following
MI-R injury, dual inhibition of mast cell and neutrophil-
derived proteases reduced myocyte apoptosis and preserved
cardiac function (222). Furthermore, inhibition of renin release
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from mast cells prevented activation of the renin–angiotensin
system (RAS), reduced infarct size, and alleviated ventricular
arrhythmias (223, 224).

Reparative to Maturation Phase
Fibroblasts
Between days 3 and 7 following MI, activated cardiac fibroblasts
proliferate, expand, and transdifferentiate into synthetic
myofibroblasts preluding the reparative phase of cardiac
repair due to the replacement of death cardiomyocytes by a
matured fibrotic scar (225, 226). Interstitial fibroblasts surviving
the ischemic event, or recruited bone marrow progenitor
or epicardial-derived cells may undergo myofibroblast
transdifferentiation (227) critically regulated by TGF-β.
These myofibroblasts are marked by expression of α-smooth
muscle actin (ASMA) and initiate the synthesis of ECM proteins
and formation of neovessels (228). In the early post-ischemic
period, fibroblasts may even modulate survival pathways in
cardiomyocytes, affecting their susceptibility to myocardial
ischemia (229). Moreover, myofibroblasts acquired anti-
inflammatory properties following milk fat globule-epidermal
growth factor (MFG-E)8-mediated engulfment of apoptotic
cells (230).

Following MI, generation of active TGF-β in the injured
myocardium triggers Smad activation in both fibroblasts and
cardiomyocytes. Fibroblast-specific Smad3 seems essential
for scar organization, since deficiency accentuated adverse
remodeling with perturbed alignment of myofibroblast arrays
in the infarct. In contrast, cardiomyocyte-specific Smad3 seems
detrimental, as deficiency was associated with attenuated
cardiomyocyte apoptosis without affecting infarct size (231). In
addition, impaired TGF-β and Smad3 activation in fibroblasts
depleted of the primary cilium resulted in decreased ECMprotein
levels and contractile function (232). Attenuating post-ischemic
inflammation by administration of anti-inflammatory IL-10
improved cardiac remodeling and function by stimulation of
fibroblast activation influenced by M2 macrophage polarization
(233). Furthermore, increased cardiac hyaluronan synthesis
contributed to post-ischemic infarct healing by promoting
the myofibroblast response and supporting macrophage
survival (234).

Neovascularization
Neovascularization is initiated by angiogenic growth factors
followed by the recruitment of a muscular coat and formation
of neoarterioles during scar maturation, which may stabilize
infarct vasculature by inhibition of endothelial cell proliferation
and vascular sprouting (235). Vascular endothelial growth factor
(VEGF)-induced endothelial cell migration and proliferation
cause hyperpermeable neovessel formation. Numerous factors,
such as fibroblast growth factors (FGFs), TGF-β, MCP-1, IL-
8, and IP-10 modulate angiogenesis, indicating its complexity.
The post-ischemic increase in angiopoietin (Ang)-2 expression
and reciprocal decrease in Ang-1 expression, suggested a
predominant role for Ang-2 in the angiogenic response to
MI (236). Furthermore, platelet-derived growth factor receptor

(PDGFR) activation is involved in vasculature maturation, which
promotes resolution of inflammation and stabilization of the
myocardial scar (237). Following MI, cardiomyocyte-specific
deficiency of HSPB1 resulted in decreased angiogenesis and
collagen deposition with aggravated adverse remodeling and
cardiac dysfunction as a result of enhanced leukocyte infiltration
and expression of inflammatory cytokines (238).

Resolution of the Post-ischemic
Inflammatory Response
The acute transient inflammatory response finally promotes to
a stage of tissue repair and scar formation (98, 225). Inhibition
of chemokine and cytokine synthesis after they peaked is
crucial for the repair process resulting in resolution of the
inflammatory response (239). Although identifying the precise
mechanisms controlling the switch from formation of pro-
inflammatory to anti-inflammatory reparative pathways is an
ongoing process, components of resolution include apoptosis,
autophagy, necrosis, and formation of anti-inflammatory
cytokines (240). Clearance of the neutrophilic infiltrate and
removal of debris, inhibition of chemokine and cytokine
synthesis, removal of the fibrin-based provisional matrix,
and activation of fibroblasts and collagen deposition finally
contribute to the myocardial reparative process and mature scar
formation. This complex process of infiltration, differentiation,
activation, and interaction of various cell types eventually
provides accomplishment of complete infarct wound healing,
which takes about 2 weeks in mice compared with 6 months in
humans (241).

IMMUNOMODULATORY THERAPIES IN
CLINICAL PRACTICE

Although therapeutic interventions following myocardial
infarction have been dramatically improved over the years,
morbidity and mortality remain high. This could largely be
explained by the practically lacking capability of the heart
to regenerate (242), since differentiated cardiomyocytes
predominantly lost their capacity to proliferate. In addition,
myocardial wound healing occurs under continuous rhythmic
contraction of the non-infarcted myocardium, thus under
continuous mechanical stress (241). Treatment of patients to
interfere in myocardial remodeling by healing of ischemic
myocardium and preventing scar formation with concomitant
preservation of cardiac function would be the ultimate goal.
In the last years, cardiac regeneration has experienced a
watershed moment, and it is believed that even in adult
mammals, latent regeneration can be awakened. Combining
stem cell-based methods with gene regulatory elements seems
promising; however, correct electromechanical incorporation of
transplanted cardiomyocytes remains a challenge as yet (243). In
addition, combination of selected therapies might be promising
exerting synergistic effects, for example, by inhibition of the early
pro-inflammatory response with subsequent activation of the
anti-inflammatory or the so-called reparative response. At the
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same time, effects regarding the non-inflammatory components,
such as cardiomyocytes, platelet activation, microvascular
obstruction, and coronary endothelial dysfunction should also
be taken into account (244).

Already in 1973, the use of the anti-inflammatory agent
corticosteroid for the first time showed limitation of myocardial
infarct size in dogs (245). However, a subsequent clinical
trial resulted in deleterious effects (246), possibly caused by
delayed wound healing due to an impaired inflammatory
response (247). This emphasizes the necessity of wound healing
and illustrates the difficulty of counteracting maladaptive
inflammatory pathways without interfering in benign
wound healing endorsing inflammatory mediators to be
notoriously pleiotropic. Current research focuses on targeted
anti-inflammatory or immunomodulatory treatment, cardiac cell
therapy and regeneration, mechanical therapeutic interventions,
pharmacological therapies, and microRNA (miRNA)-targeted
treatment. Below, anti-inflammatory and immunomodulatory
therapies will be briefly highlighted. In addition, the selection
of an appropriate animal model to ensure optimal translation of
novel cardioprotective therapies from bench-to-bedside is
of the utmost importance (248, 249), ideally allowing for an
atherosclerotic phenotype and myocardial ischemia–reperfusion
injury (250).

Although the immune response includes an essential part of
the reparative myocardial wound healing process, no specific
immunomodulatory treatments are available for patients on a
large scale. Finished or discontinued clinical trials failed to
translate promising results from experimental MI studies in
animals toward clinical practice in human patients, although
the post-ischemic inflammatory response remains amenable for
therapeutic intervention where success depends on timing and
topography emphasizing the necessity of real-time visualization
of the extent and time course of cellular damage (251). In
addition, right selection of subpopulations regarding distinct
pathophysiologic perturbations and underlying mechanisms
needs to be taken into account. Glucocorticoids were the
first to be thought beneficial in post-ischemic remodeling.
On the one hand, they attenuate the responses to danger
signals during the acute inflammatory phase and reduce
leukocyte infiltration; on the other hand, they are known to
promote clearance of apoptotic cells and direct macrophages
toward an anti-inflammatory phenotype. However, clinical
studies showed conflicting results, and considering their broad
actions on cell types involved in ischemic injury and effects
on several molecular cascades, they are unattractive as a
therapeutic option because of a wide variety of adverse
events (252).

IL-1 signaling is suggested to play a crucial role in
post-ischemic adverse remodeling and cardiac dysfunction,
which is attenuated following IL-1 blockade with anakinra
in animals (115), and represents a promising therapeutic
approach following acute MI in patients (111, 112). Moreover,
targeting the IL-1β innate immunity pathway with canakinumab
reduced recurrent cardiovascular events in high-risk patients
(253). Furthermore, administration of an IL-6R antagonist
tocilizumab in patients suffering an acute coronary syndrome
attenuated the inflammatory response (120). TNF-α blockade by
etanercept reduced systemic inflammation but increased platelet
activation following acute MI and was therefore concluded to
be unfavorable (254). Targeted interventions regarding anti-
inflammatory effects of IL-10 and TGF-β have not made it to
a serious clinical trial yet. Trials with humanized recombinant
antibody therapy directed against integrins (180) or the
complement system (67, 255) failed to show positive effects.
On the other hand, intracoronary nitrite following primary
PCI for acute MI reduced neutrophil numbers and activation
associated with a reduction in infarct size and microvascular
obstruction (256). Immunomodulation with cyclosporine, which
inhibits the opening of mitochondrial permeability-transition
pores and exerts potent immunosuppressive effects, attenuated
lethal myocardial injury (257), but did not preserve cardiac
function following acute MI (258). Finally, anti-inflammatory
therapy with colchicine following MI (259) as well as in patients
with chronic coronary disease (260) led to reduced recurrent
ischemic cardiovascular events.

CONCLUSION

Acute myocardial infarction especially followed by reperfusion
results in a complex post-ischemic inflammatory response
encompassing a multifactorial and dynamic process consisting
of overlapping inflammatory, reparative, and maturation phases.
Therefore, MI-R injury is exceptionally amenable and, above all,
suitable for immunomodulatory therapies. However, successful
development and translation of future therapeutic strategies
should focus on the sensitive balance between anti-inflammatory
and pro-reparative effects and should be tested in translational
research models exposed to clinically relevant pathophysiologic
mechanisms and comorbidity.
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