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Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and

symptoms of heart failure in the presence of a normal left ventricular ejection fraction.

Although it accounts for up to 50% of all clinical presentations of heart failure,

there are no evidence-based therapies for HFpEF to reduce morbidity and mortality.

Additionally there is a lack of mechanistic understanding about the pathogenesis of

HFpEF. HFpEF is associated with many comorbidities (such as obesity, hypertension,

type 2 diabetes, atrial fibrillation, etc.) and is coupled with both cardiac and extra-cardiac

abnormalities. Large outcome trials and registries reveal that being obese is a major

risk factor for HFpEF. There is increasing focus on investigating the link between

obesity and HFpEF, and the role that the adipose tissue and the heart, and the

circulating milieu play in development and pathogenesis of HFpEF. This review

discusses features of the obese-HFpEF phenotype and highlights proposedmechanisms

implicated in the inter-tissue communication between adipose tissue and the heart in

obesity-associated HFpEF.
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HEART FAILURE WITH PRESERVED EJECTION FRACTION
(HFPEF): A NEW TERM FOR AN OLD DISEASE

Heart failure (HF) is a clinical syndrome caused by structural and functional abnormalities in the
heart that impair the ability of the ventricles to fill or eject blood. The cardinal manifestations of
HF are breathlessness, dyspnea and fatigue, which may lead to limited effort tolerance; and fluid
retention, thus resulting in pulmonary congestion and/or peripheral edema (1, 2). HF is a leading
cause of morbidity and mortality both in the United States and worldwide. As of 2012, 5.8 million
Americans had HF with the number of individuals with HF projected to continue to increase in the
next 20 years (3–5).

Segregating patients with HF by left ventricular (LV) ejection fraction (EF) is an important
phenotypic marker as it indicates unique pathophysiological mechanisms and thus subsequent
responses to therapy (6–8). Patients with clinical HF and normal or preserved EF represent a
phenotype that is different from those with reduced EF (HFrEF). HFpEF is due to the inability
of the heart to fill with blood because it may be thick or stiff. HFpEF patients are often touted as

elderly, predominantly female, obese, have long-standing hypertension, may have diabetes, and
some degree of LV hypertrophy (9, 10). HFpEF was initially labeled as “diastolic HF” because
impaired filling of the LV was thought to be the underlying etiology to differentiate it from “systolic
HF” (HFrEF) (11). However, LV diastolic dysfunction is not unique to HFpEF and is also observed
in patients with HFrEF (9, 12). Similarly, “diastolic HF” patients may have some degree of impaired
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systolic function (13, 14). Thus, the term “diastolic” HF was
abandoned and replaced by HFpEF. The definition of HFpEF
moved away from a primary focus on echocardiographic
evidence of diastolic dysfunction, and toward a definition
inclusive of cardiac structural abnormalities resulting from
high filling pressures, diastolic abnormalities, elevated
biomarkers, and increased left heart filling pressures by
invasive hemodynamic measurements in the setting of an EF
≥50% (15–17).

In contrast to HFrEF, there are no evidence-based therapies, to
date, which have shown improved outcomes in HFpEF (2), likely
because of the marked heterogeneity of the HFpEF syndrome
(16, 18). It has been suggested that phenotyping patients into
pathophysiologically homogeneous groups in clinical trials may
result in better outcomes (19–21). Increased adiposity in obesity
has been suggested to be a therapeutic target in HFpEF (22).
This review, therefore, summarizes the current understanding of
HFpEF in context of obesity, and how “crosstalk” exists between
the heart and the adipose tissue in these two conditions.

The Obese-HFpEF Phenotype
Obesity has reached epidemic proportions worldwide and is a
major comorbidity in HFpEF patients (23–25). The prevalence
of being overweight and obese is as high as 84% in clinical trials,
epidemiological studies and HF registries (26–28) and presently
there are >1.8 million persons in the U.S. with an overweight
or obesity-associated HFpEF phenotype (22). Earlier studies
suggested that symptoms in obese HFpEF patients were simply
related to excess body mass and not to cardiac abnormalities (29).
However, recent disease paradigms have incorporated obesity
into the pathophysiology of HFpEF (24). Obesity and related
cardio-metabolic traits are also more strongly associated with
the risk of future HFpEF rather than HFrEF (30), suggesting
that obesity-associated HFpEF represents a distinct clinical
phenotype within the broad spectrum of HFpEF (24, 31). Studies
from murine models have highlighted the relationship between
obesity, diastolic dysfunction and HFpEF. Increased adiposity
and metabolic alterations in obesity were associated with cardiac
structural remodeling and diastolic dysfunction in mice and rats
(32, 33), and have recently been described to induce HFpEF
(34–38). These models are useful tools to investigate mechanisms
linking obesity and HFpEF and to explore the use of potential
therapies in this specific phenotype (39). However, there is no
animal model that can completely mimic the human disease,
partly because human HFpEF is heterogeneous and encompasses
a broad range of signs, symptoms, and disease presentation
(39). Thus, the paucity of highly characterized HFpEF animal
models that reflect cardiopulmonary and metabolic changes seen
in obesity associated-HFpEF in humans contributes to the lack
of understanding of the mechanisms underlying HFpEF and the
development of treatments.

THE ADIPOSE TISSUE AND THE HEART
CROSS-TALK IN HFPEF

There is an increasing appreciation of the complex connection
between the adipose tissue and the heart, which highlights

the importance of the heart-adipose-axis in the pathogenesis
of cardiovascular disease and specifically HF (40). However,
the putative mechanisms that connect both tissues and link
obesity and HF have not been fully elucidated (23, 41). It
was long assumed that the burden of obesity in HF was a
physical/mechanical one (42). Thus, hemodynamic alterations
that result from excessive adipose accumulation in obese patients
would have subsequent effects on cardiac morphology and
ventricular function (43). Although volume overload plays a role
in HF and specifically HFpEF, in recent years, the endocrine,
metabolic and cellular signaling behind the obesity-related
HFpEF phenotype has received much attention.

Current evidence supports the hypothesis that obesity-related
HFpEF may result from adipokines imbalance, neprilysin over-
activity and/or augmented mineralocorticoid signaling (44).
Adipose tissue is a potent endocrine organ that synthesizes and
secretes a number of adipose-specific cytokines, aka adipokines,
such as leptin or adiponectin, which elicit a variety of local
and systemic responses (45). Leptin originates mainly from
subcutaneous adipose tissue (46) and circulating levels of
leptin directly correlate with fat mass in both obese rodents
and humans (40). Leptin plays an important role in the
regulation of the sympathetic nervous system, affecting heart
rate and blood pressure (47) and exert its effects by activating
various mediators including the Janus kinases (JAK)/Signal
Transducer and Activator of Transcription proteins (STAT), the
phosphoinositide 3-kinase (PI3K)/ cGMP-dependent protein
kinase B (PKB) and the p38 mitogen-activated protein kinase
(p38-MAPK) pathways (48). Alterations in leptin signaling
have deleterious effects in cardiac remodeling in pre-clinical
models of obesity (33). Additionally, leptin is a major stimulus
for the production of aldosterone in obesity (49, 50), and
might be responsible for the exacerbated mineralocorticoid
receptor signaling in obesity-related HF (51, 52). In addition
to aldosterone-mediated changes in cardiac structure, such as
exacerbated cardiac remodeling (53, 54), increased leptin results
in impaired calcium handling and impaired relaxation in the
heart (55, 56). However, although the contribution of leptin
to the genesis and progression of the obese-HFpEF phenotype
has been speculated (42), there are no mechanistic or clinical
evidences to support leptin’s role in the HFpEF phenotype.
In contrast to leptin, adiponectin levels are highest in lean
subjects but decline as body mass increases (57). Adiponectin
have multiple beneficial effects in the heart and the vasculature
(45) and, not surprisingly, depressed levels in obesity are
associated with inflammation and greater cardiovascular risk
(58–60). Experimental evidence showed that adiponectin has
anti-inflammatory properties (61) and modulates oxidative
stress-induced autophagy (62) and cardiac remodeling (63).
These beneficial effects of adiponectin have been linked to
direct effects of this adipokine on the cellular in the heart
and blood vessels. It has been postulated that the ability of
adiponectin to attenuate cardiac hypertrophy and fibrosis is
likely due to its ability to stimulate AMP-activated protein
kinase (AMPK)-dependent and extracellular-signal-regulated
kinase (ERK) signaling within cardiac myocytes and endothelial
cells (63–65). However, although adiponectin levels are not
predictive of HF development in humans (66), human studies
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indicate that elevated circulating adiponectin is associated with
increased mortality in chronic HFrEF patients (67–69). These
findings have been partly explained by the fact that adiponectin
upregulation seems to be liked to cachexia and adiponectin
raised levels may just reflect the hyper-catabolic state in severe
HF (70, 71). This is consistent with the fact that overweight and
obese HFrEF patients had normal levels of adiponectin (72). In
contrast, circulating levels of adiponectin are markedly reduced
in obese HFpEF patients, particularly in women (73), and it
has been suggested that adiponectin may prevent some of the
pathophysiologic mechanisms underlying the obese-HFpEF such
as myocardial hypertrophy, cardiac fibrosis, oxidative stress,
and inflammation (44, 60). The relationship of adiponectin
to aldosterone appears to be polar opposite in HFpEF, as
adiponectin deficiency in a preclinical model of hypertension-
associated HFpEF where aldosterone is elevated, exacerbated
cardiac remodeling, diastolic dysfunction and pulmonary
congestion (74); and adiponectin overexpression protected
against the progression of HFpEF by regulating oxidative
stress and modulating calcium-handling proteins, specifically
cAMP-dependent protein kinase (PKA) phosphorylation
of phospholamban (75).

Chronic, low-grade inflammation is also a hallmark of
obese adipose tissue (76) and systemic metabolic inflammation,
accompanied by an increased activity of the inducible nitric
oxide synthase (iNOS) and augmented nitrosative stress, may
play an important role in the pathophysiology of obesity-
associated HFpEF (77). This is supported by the hypothesis
that imbalance in the nitrate-nitrite-nitric oxide pathway plays
a role both in the peripheral abnormalities that contribute to
HFpEF, such as increased arterial stiffness and abnormalities in
skeletal muscle fiber type and capillary density (78). Increased
oxidative stress in the coronary microvascular endothelium due
to decreased nitric oxide bioavailability and reduced cGMP
dependent protein kinase (PKG) activity in cardiac myocytes,
results in increased cardiac stiffening and hypertrophy (5)
thus contributing to the cardiac abnormalities. Additionally,
the clinical relevance of proinflammatory cytokines in obesity-
associated HFpEF is being actively investigated, with promising
targets including inflammasome, toll-like receptors, cytokines
and macrophages (79, 80). Notably, interleukin 1 (IL-1) has been
strongly associated with adverse cardiac remodeling and heart
failure and strategies targeting the IL-1 pathway are currently
undergoing clinical evaluation (81, 82).

Obesity and Exercise Tolerance in HFpEF
Decreased exercise tolerance is an early symptom of HFpEF
and is a major determinant of prognosis and associates with a
reduction in quality of life (83). Exercise capacity is defined as the
rate of O2 consumption (VO2) at peak exercise, and any factor
that limits peak VO2, by impeding O2 delivery and/or utilization,
can cause exercise intolerance (84). Although exercise intolerance
in HFpEF was classically attributed to changes in cardiac output,
new findings suggest that peripheral, non-cardiac factors play an
important role in the limitations in exercise capacity in patients
with HFpEF (85). Of these, obesity has been also proposed to be a
major driver of exercise intolerance, independent of the effects

of cardiac function (86). Interestingly, the pattern of regional
adipose deposition, with increased intra-abdominal and inter-
muscular fat appear to associate with decreased peak VO2, and
may thus be related to adverse consequences in exercise tolerance
in HFpEF beyond total body adiposity (87).

It has been suggested that higher levels of exercise training
may attenuate the increased risk of HF associated with obesity
(88). Exercise, in addition to caloric restriction-induced weight
loss, are the only interventions shown to improve exercise
capacity outcome inHFpEF (89–92). Furthermore, a recent study
demonstrated that exercise training improved not only exercise
capacity but also body composition, with a reduction in total fat
mass and thighmuscle/inter-muscular fat ratio, and with reduced
inflammation and LV mass (92). Similarly, preclinical studies
in obese HFpEF rats showed that exercise training improved
exercise capacity (36). Further studies are warranted in order to
investigate specific mechanisms involved.

The Obesity Paradox
Although obesity is linked to the development of HF (23) and
associates with abnormal hemodynamics and adverse cardiac
remodeling in HFpEF (93), in epidemiological studies mild to
moderate overweight or obesity status (body mass index, BMI, of
30-34.9) was reported to have a protective effect in patients with
HF (94, 95). This phenomenon was termed “the obesity paradox”
and initially observed in small population studies (96, 97) and
confirmed in large observational studies in both HFrEF and
HFpEF patients (26, 98–101). However, other studies have not
shown that the obesity paradox exists in HFpEF (102–104), and
thus, the causal link between this scientific observation and
its clinical implications are limited and remain hotly debated.
Several hypotheses are proposed to explain the presence or
absence of the obesity paradox (105, 106), and have been
extensively reviewed (107–109).

Cardiac Natriuretic Peptides and Obesity
in HFpEF
Cardiac natriuretic peptides are mainly released from the
heart in response to myocardial stress and have a key role
in cardiovascular homeostasis (110). There are three types of
natriuretic peptides in humans, atrial natriuretic peptide (ANP),
brain natriuretic peptide (BNP) and C-type natriuretic peptide
(CNP). ANP and BNP are released from the atria and ventricles
of the heart respectively and are the most physiologically active
natriuretic peptides. In contrast, CNP is thought to act locally, as
a paracrine/autocrine regulator, since it is cleared rapidly from
the circulation and present at very low concentrations in plasma
(111) with effects primarily on bone growth (112). ANP and
BNP bind to two homodimeric receptors, natriuretic peptide
active and clearance receptors (NPRA and NPRC respectively),
which are expressed in many tissues, including white and brown
adipose tissue (113). This broad distribution is indicative of
the wide biological effects of the natriuretic peptides. Although
ANP and BNP were initially characterized by their actions
promoting diuresis and natriuresis, contributing to maintenance
of extracellular fluid volume and vascular tone (114), they
mediate actions beyond simply control of blood pressure and
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volume homeostasis. These include but are not limited to
obesity and metabolic regulation, atherosclerotic and thrombotic
control, and cardiac remodeling (115).

ANP and BNP are synthesized as precursor pro-hormones
(proANP and proBNP) which are then processed to their
biologically active forms ANP and BNP, and biologically inactive
N-terminal proANP (NT-proANP) andNT-proBNP forms (116).
Of these, BNP and NT-proBNP have demonstrated diagnostic
and prognostic value in patients with HF (117). Increased
BNP is independently associated with the increased risk of
developing HF even within an asymptomatic general population
(118) and once HF manifests, higher BNP levels are associated
with increased risk of adverse events (119). Whereas, BNP and
NT-ProBNP are elevated in clinical HF regardless of the LV
EF, these levels are usually higher in HFrEF than in HFpEF
(120, 121). Circulating BNP levels are also typically lower in
patients with obesity compared to normal weight counterparts
given a similar degree of clinical HF. This is evident in HFpEF,
where obese patients with HFpEF usually have lower circulating
BNP and NT-ProBNP levels than non-obese patients (24, 122).
However, despite the reduced levels of natriuretic peptides in
obese patients, they still serve as an important tool in HF both
for screening and prognostic purposes, albeit at a lower threshold
(93, 123, 124). Obesity in mice and rats is associated with a
reduction in natriuretic peptides levels (125, 126), even in the
setting of impaired cardiac function (127).

The Natriuretic Handicap
The inverse relationship between circulating cardiac BNP and
obesity (defined by BMI) is termed the “natriuretic handicap” and
has been described in both healthy subjects and patients with HF
(31, 128). It has been hypothesized that BNP levels are reduced
in obesity due to the differential expression of their clearance
receptor (NPRC) resulting in enhanced degradation in adipose
tissue (129). Additionally, others showed that obese patients have
decreased natriuretic peptides production (130, 131); consistent
with pre-clinical studies in murine obesity models showing
reduced levels of natriuretic peptides cardiac mRNA expression
(126, 132). Other mechanisms linking natriuretic peptides
reduction and insulin resistance have also been proposed to
explain this inverse relationship (133, 134). ANP and BNP can
be also degraded by extracellular proteases such as neprilysin
(116, 135). Neprilysin is secreted by adipocytes and promotes
adipogenesis, creating a positive feedback loop. People with
obesity have increased levels of neprilysin in proportion with
their body mass (136) and neprilysin levels are particularly
elevated in obese patients with HFpEF (137). NT-proBNP is
mainly cleared by renal excretion and is not a substrate for
neprilysin degradation (138). A recent phase II clinical trial
investigated the effect of an angiotensin receptor neprilysin
inhibitor (LCZ696) in overweight/obese HFpEF patients for 36
weeks and found left atrial reverse remodeling and improvement
in NYHA class. These results were accompanied with a reduction
in NT-proBNP suggesting that LCZ696 reduced left ventricular
pressures and wall stress (139), and provided the rationale for an
outcomes trial in HFpEF, which is presently underway (140).

Cardiac Natriuretic Peptides Signaling in
the Adipose Tissue
White adipose tissue was previously thought to only function
as an energy storage unit with limited metabolic activity, and
human brown adipose tissue to be active only in infants before
disappearing in childhood. It is now known that both, white and
brown adipose tissues have in highly active roles in metabolic
regulation (141–143). We and others recently showed that
cardiac natriuretic peptide signaling causes alterations in energy
expenditure and metabolism, and promotes brown adipose-like
features in white adipose tissue depots (144–147) and that
this is evident in HFpEF (146). Natriuretic peptide signaling
is mediated predominantly through the binding of NPRA,
which possesses intrinsic guanylyl cyclase activity. Conversely,
NPRC serves primarily as the clearance receptor, sequestering
natriuretic peptides from the circulation for internalization
and subsequent degradation (112). Thus, the ratio of NPRA
to NPRC is an important regulator of overall natriuretic
peptide activity (148). Upon binding of natriuretic peptides
to NPRA in the adipocyte, the receptor’s guanylyl cyclase is
activated, producing cGMP, which then activates intracellular
PKG (112, 149). PKG phosphorylates several lipolytic proteins,
including hormone-sensitive lipase (HSL), perilipin, and adipose
triglyceride lipase (ATGL), resulting in the breakdown of stored
lipids into free fatty acids. In parallel, PKG phosphorylates p38-
MAPK, which modulates the brown-fat thermogenic program by
increasing transcription of proteins such as uncoupling protein-1
(UCP-1) and peroxisome proliferator activated receptor gamma
coactivator 1 alpha (PGC-1α) (146, 149). UCP-1 is responsible
for the uncoupling of oxidative phosphorylation and PGC-
1α is the key regulator of oxidative metabolism (141, 150).
UCP1 and PGC-1α promote mitochondrial biogenesis and
coupled and uncoupled respiration resulting in enhanced energy
expenditure and thereby limiting adipose tissue expansion (110).
Natriuretic peptide signaling in adipose tissue shares activity
homology and similar potency with sympathetic activation via
β-adrenergic receptors (145). Sympathetic stimulators, such
as cold temperature, increase circulating catecholamines that
bind to β-adrenergic receptors on adipose tissue (151–153).
This increases PKA via a cAMP-dependent mechanism. PKA
shares homology with PKG thus both sympathetic nervous-
system and natriuretic peptide signaling increase metabolic
activity in adipose tissue by activating lipolysis, and modulating
the brown-fat thermogenic program through p38-MAPK
(113, 147, 149) (Figure 1).

Metabolic disorders such as obesity and type 2 diabetes
are associated with dysregulation of the natriuretic peptide
system (154, 155). The natriuretic peptide receptor ratio in
adipose tissue was inversely associated with obesity, glucose
intolerance and insulin resistance in a cross-sectional analysis
of subjects with a wide range of BMI and glucose tolerance
(156). Insulin, which modulates blood glucose levels, exerts
potent lipogenic effects, and is also an important regulator
of natriuretic peptide activity. A low insulin fasting-state
leads to an increase in NPRA mRNA and a decrease in
NPRC mRNA whereas conversely, in hyperinsulinemic ob/ob
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FIGURE 1 | Natriuretic peptide signaling in adipose tissue. Cardiac stress, such as HFpEF, induces increased natriuretic peptides levels. These natriuretic peptides

bind to their receptor, natriuretic peptide active receptor (NPRA), in the adipocyte, and activate guanylyl cyclase (GC), increasing cGMP levels. Adipocytes also

express natriuretic peptide clearance receptor (NPRC) that functions to remove natriuretic peptides from the circulation. The cGMP produced by NPRA-GC activates

cGMP dependent protein kinase (PKG), which triggers a signaling cascade that results in enhanced lipolysis and activation of p38 mitogen-activated protein kinase

(p38-MAPK), culminating in the transcription of uncoupling protein 1 (UCP-1) and inducing the brown fat thermogenic program. In parallel, other stimuli, such as cold

exposure, can also induce this program via the β-adrenergic signaling pathway. Here catecholamines bind to the β-adrenergic receptor which activates adenylate

cyclase (AC), producing cAMP. Binding of cAMP to the regulatory subunits (R) of cAMP-dependent protein kinase (PKA) releases its catalytic subunits (C), which also

activate lipolysis and induce p38-MAPK phosphorylation. During obesity, insulin resistance and diabetes, the natriuretic peptide signaling is diminished leading to a

decrease in the browning thermogenic program. Red and green arrows represent the down-regulatory or up-regulatory effects that metabolic disorders have in this

signaling pathway. To date, the combined effect that obesity and HFpEF would have in adipose tissue is unknown and needs further investigation.

mice, levels of NPRC mRNA are increased and levels of
NPRA mRNA are decreased (157, 158). Similarly NPRA
mRNA levels are lower in human adipocytes obtained from
individuals with pre-diabetes and type 2 diabetes. Treatment
with BNP also increases glucose uptake in adipose tissue
independent of insulin levels. This is mediated via PKB
phosphorylation and the mechanistic target of rapamycin
complex (mTORC)1/2 activation, leading to translocation of
glucose transporter 4 (GLUT4) to the cell membrane (159).
Thus, insulin inhibits natriuretic peptides, while natriuretic
peptides increase insulin sensitivity and help to control blood
glucose levels.

There is also interplay between natriuretic petides released
from the heart and adipokines released by adipose tissue.
ANP decreases the secretion of leptin in cultured human
subcutaneous adipose tissue (160) and isolated human adipocytes
from obese individuals (161). An inverse relationship between
circulating BNP and plasma levels of leptin also exists in HFrEF
patients (162). Yet, adiponectin synthesis and secretion has
been positively associated with natriuretic peptides. ANP acutely
increased systemic levels of adiponectin in healthy subjects
(163) and both, ANP and BNP, promoted the expression and
secretion of adiponectin in human adipocytes in culture and in
chronic HFrEF patients (164). These findings are also consistent
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with observational studies showing positive associations between
circulating levels of adiponectin and BNP in healthy subjects
without HF (165) and HFrEF patients (67). Thus, higher
adiponectin levels tend to be associated with reduced LV systolic
function in humans (166).

CONCLUDING REMARKS

HFpEF is a major public problem that is increasing in
prevalence yet lacking in evidence-based therapies. A more
tailored approach in HFpEF is needed to investigate the
pathophysiological mechanisms that underlie this syndrome.
Obesity-associated HFpEF is an important sub-phenotype of
HFpEF, with evidence supporting crosstalk between the heart and
the adipose tissue. Thus, the ability to modulate the signaling
pathways that regulate adipose tissue and the heart in HFpEF

might have clinical implications and be translated into effective
therapies for HFpEF, particularly obesity-associated HFpEF.
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