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Recent advancements in cybergenetics have led to the development of new

computational and experimental platforms that enable us to robustly steer

cellular dynamics by applying external feedback control. Such technologies

have never been applied to regulate intracellular dynamics of cancer cells. Here,

we show in silico that adaptive model predictive control (MPC) can effectively

be used to steer the simulated signalling dynamics of Non-Small Cell Lung

Cancer (NSCLC) cells to resemble those of wild type cells. Our optimisation-

based control algorithm enables tailoring the cost function to force the

controller to alternate different drugs and/or reduce drug exposure,

minimising both drug-induced toxicity and resistance to treatment. Our

results pave the way for new cybergenetics experiments in cancer cells, and,

longer term, can support the design of improved drug combination therapies in

biomedical applications.
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1 Introduction

Cybergenetics is a recent field of synthetic biology, which refers to the forward

engineering of complex phenotypes in living cells applying principles and techniques

from control engineering (Del Vecchio et al., 2016; Khammash et al., 2019).

Three main approaches have been proven to be effective for the control of different

processes (such as gene expression and cell proliferation), namely: i) open- or closed-loop

controllers embedded into cells by means of synthetic gene networks (Bloom et al., 2015;

Hsiao et al., 2015; Briat et al., 2016; Ciar et al., 2018; Aoki et al., 2019; Pedone et al., 2019;

Ye et al., 2016; Andrews et al., 2018; Gao et al., 2018; Siu et al., 2018; Bashor et al., 2019;

Cuba Samaniego and Franco, 2021; Shakiba et al., 2021); ii) external controllers, where the

controlled processes are within cells, while the controller (either at single cell or cell-

population level) and the actuation functions are implemented externally via

microfluidics-optogenetics/microscopy-flow cytometry platforms and adequate

algorithms for online cell output quantification and control (Milias-Argeitis et al.,
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2011; Toettcher et al., 2011; Uhlendorf et al., 2012; Menolascina

et al., 2014; Lugagne et al., 2017; Postiglione et al., 2018; Khazim

et al., 2019; Shannon et al., 2020; de Cesare et al., 2021; Khazim

et al., 2021; Pedone et al., 2021; de Cesare et al., 2022); iii)

multicellular strategies, where both the control and actuation

functions are embedded into cellular consortia (Matyjaszkiewicz

et al., 2017; Fiore et al., 2016; Fiore et al., 2017; Kylilis et al., 2018;

Postiglione et al., 2019; Ren et al., 2021). Plenty of examples of

embedded controllers have been engineered across different

cellular chassis; instead, applications of external and

multicellular controllers in mammalian cells are scarce and

either just theoretical or limited to proofs of concept.

Here, we propose to apply cybergenetics, in particular

external feedback control, to predict combinations of drugs

(i.e., control inputs) which can bring deregulated cellular

variables (i.e., gene expression, control output of the system)

within tightly controlled ranges in cancer cells. We take Non-

Small Cell Lung Cancer (NSCLC) as an example; using a

previously proposed differential equations mathematical

model which describes the dynamics of the EGFR and IGF1R

pathways, we show in silico that external feedback controllers can

effectively steer intracellular gene expression dynamics in cancer

cells to resemble those of wild type cells.

The use of feedback control is advantageous as it enables

coping with changes in both steady-state levels and temporal

dynamics of genes involved in deregulated signalling cascades.

The control action is implemented by means of adaptive model

predictive control (MPC), using either a full-order and physics-

based non-linear model (linearised at each time step to be, at best,

locally accurate), or a simpler, data-based reduced order model.

In the latter case, our controller does not require an exact model

of the system; this is particularly advantageous in biological

applications, where the derivation of detailed models can be

time-consuming and troublesome (Marucci et al., 2011; Marucci,

2017; Browning et al., 2020). Experimentally, the controller

would not have access to measurements of all the internal

states of the model, as just a few variables would be measured

(for example, by means of fluorescent proteins in time-lapses);

therefore, we included a Kalman filter to estimate the internal

states.

If the results proposed here were applied experimentally (e.g.,

to steer signalling and/or proliferation dynamics in living cells, or

in patient-cell derived organoids), they could predict

combination therapies which target different nodes in

signalling cascades. In this regard, our optimisation-based

control algorithm also enables tailoring the cost function to

force the controller to alternate different drugs and/or reduce

drug exposure. The controller should also be able to cope with the

crosstalk of signalling pathways, which might be one of the

mechanisms causing drug resistance (Vasan et al., 2019).

In what follows, we demonstrate via simulations that

adaptive MPC can be used to effectively steer the

concentration of proteins involved in cancer, whilst reducing

the dose of each drug provided as an input. Our results pave the

way for extending the scope of synthetic biology cybergenetic

applications for the direct and automatic control of cancer cell

intracellular dynamics.

2 Methods

2.1 Control scheme used in external
feedback

We applied a feedback controller to regulate the

concentrations of two downstream genes (ERK and Akt) of

the mTOR and MAPK pathways, as modelled in (Bianconi

et al., 2012), and as shown in Figure 1.

Figure 2 shows the response of y1 (ERK) and y2 (Akt) in a

wild type (−) and in a NSCLC (−) cell to a phosphorylation of

EGFR and IGF1R as modelled by varying the system’s initial

conditions as in (Bianconi et al., 2012), referred to as an

activation. A wild type cell’s activation is modelled using an

active concentration of 8,000 μM for EGFR and 800 μM for

IGF1R, while an activation in NSCLC cells is triggered by an

active concentration of 800,000 and 400,000 μM for EGFR and

IGF1R, respectively. The term ‘free’ refers to an open loop

response (i.e. if no feedback control is applied) in NSCLC

cells. It can be seen that y1 (ERK) and y2 (Akt) activation

dynamics are different in cancer vs. wild type cells in

Figure 2; of note, the activation of y1 (ERK) occurs over a

timescale of an order of magnitude faster than the activation

of y2 (Akt). The notation (−) shows the colour of the plot in the

related figure that is being discussed.

The two pathways are both kinase activated cascades,

meaning that an activation at the receptors at the cell

membrane causes a cascade of phosphorylation in

downstream genes. Therefore it is difficult to robustly control

the system as, once an error is measured in the outputs, it can be

too late to have a significant effect by acting on the internal states

higher up the cascade.

Embedding a model of the system in the controller helps

predict the difference between a small change in the output due to

an oncoming activation and a small change which is just due to a

disturbance in the states, because the controller has knowledge of

other states within the cascade. On the other hand, model-free

feedback strategies with large gains can have undesirable

consequences, such as poor dynamic performance. A

Proportional controller can be tuned to decrease the control

error, but gains have to be carefully chosen, and the user cannot

impose desired constraints on the input (Supplementary

Section S8).

Adaptive MPC is used as the model-based control scheme

here (Figure 1). The success of MPC relies on the quality of the

model used to predict the future behaviour of the system, and on

the cost function the controller uses to calculate the optimal
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inputs to be fed to the process. The novelty of the controller used

here lies in the choice of adaptive model and in the cost function

used. The MPC implementation is presented in Supplementary

Section S4.

2.2 MPC’s linearised model

TheNSCLCmodel (Bianconi et al., 2012) contains significant

non-linear terms and a large number of internal states. An

adaptive MPC controller computes a linear approximation of

the NSCLC model at each time step, predicts the future of the

internal states and calculates the optimal input profile. The

controller then applies the first input of its calculated optimal

input profile to the actual system. At the next time step, the

controller calculates a new linear model by linearising the

NSCLC model. The use of a linear system results in a convex

optimisation problem which can be solved quickly. Adaptive

MPC is used in all simulations unless stated otherwise.

Alternatively, non-linear MPC could be used; however, it

would introduce additional complexity in the search for the

optimal input as local minima will likely be introduced in the

cost function. Non-linear MPC is also computationally

expensive, and the time needed to compute the next input

FIGURE 1
A control scheme including three inputs (u(t) � [I1 , I2 , I3]T ) that interact with the mTOR and MAPK pathways. Two observable protein
concentrations, ERK and Akt, are used as control outputs for the two pathways (y(t) = [ERK,Akt]T). The regulator used throughout this project is an
adaptive MPC program which attempts to steer the concentrations of the outputs to the transient response of the wild type cell, set as the control
reference, as shown in Figure 2.

FIGURE 2
Simulations of the NSCLC model (Bianconi et al., 2012): free NSCLC cell response (−) compared to a wild type cell (−) (Bianconi et al., 2012) (A)
The response of y1 (ERK) (B) The response of y2 (Akt).
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could be longer than the sampling/actuation temporal intervals

(see Supplementary Section S7).

2.3 Improving the traditional MPC cost
function

The cost function used by the adaptive MPC algorithm to

find the optimal input depends on the current internal state error,

e0, and on the inputs, u(t). The error, e(t), is the difference

between the reference, r(t), and the internal states of the NSCLC

system, x(t), as shown in Figure 1. The standard cost function

used for linear MPC controllers (Rawlings et al., 2020) focuses on

how readily the inputs, u(t), are used and on reducing the

proportion error in the states, e(t).

In order to include both the magnitude and duration of the

error, the integral of the state error, ∫e(t) dt, is added to the

standard cost function. It has been shown that it is beneficial

to integrate the state error (Hornberg et al., 2005), meaning

that the controller acts due to these longer, smaller errors in

the outputs caused by states higher in the cascade. Moreover,

to avoid rapid fluctuations in the control input, u(t), a

differential cost of the inputs is also added to cost function.

The derivation of the cost function and a description of the

weights of its terms (α, β, γ, η, θ) can be found in

Supplementary Section S4.

2.4 MPC simulation parameters

The MPC simulations are reproducible thanks to the

deterministic nature of the model and controller, as long as

the cost function coefficient weights and other MPC related

parameters are kept constant. Table 1 gives a summary of

these parameters. Several key parameters are added to the

figures’ captions.

2.5 Indexes used to quantify control
performance

To assess quantitatively the performance of our controller,

we define an Error Index, EI. It is the sum of the squared error

between the output and the reference for the outputs, as used in

(Fiore et al., 2015).

EI � ∫
T

0

eTCe dt (1)

C is the output matrix of the linearised NSCLC model. A

small EI indicates a good performance of the controller.

To quantify the controller effort needed to achieve a certain

output, we assess the dose of input drug(s) using a Dose Index,

DIi. It is the integral of the input signal, where u(t) = [I1(t),

I2(t), I3(t)].

DIi � ∫
T

0

Ii t( ) dt (2)

The inputs can never be negative as they are physical

concentrations, therefore there is no need to square the input

signal.

2.6 Reduced-order models

For a given control scheme (as shown in Figure 1) it is

possible to measure various input(u)/output(y) data sets, which

can then be used to identify a model of the system. We derived

two simplified models (a three state linear and non-linear grey

box model); this identification process is discussed in

Supplementary Section S9 and will be referred to as the

‘reduced order model’, used in Section 3.5. A Kalman filter

was used at each step of the controller to estimate the internal

TABLE 1 Parameters used for MPC simulations.

Parameter Description Value

Ts Sampling time of the MPC regulator 1 min except for Figure 6

and S5, Ts = 0.02min, 30 min

N Length of the prediction horizon 10 steps

α Weight of the internal state errors 0

β Extra weight associated with the output state errors 0 except for Figure 3B, β = 1

γ Weight associated with each input (it is a row vector [ 0 0 0 ]≤ γ
with an element for each input) γ≤ 1015[ 1 1 1 ]

θ Weight of the gradient of the input profile 0 except for Figures 3D, 9

θ = 105 and θ = 108 respectively

η Weight of the integral of the output state errors 1 except for Figure 3B, η = 0
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states, using the linearised model of the previous step and the

measured outputs.

3 Results

Non-Small Cell Lung Cancer (NSCLC) accounts for 80% of

lung cancer cases and is characterised by various mutations

which usually lead to an overexpression of the EGF and

IGF1R receptors. These receptors trigger several cascades

including the mTOR and MAPK pathways; their downstream

genes FOXO1 and C-FOS regulate cell apoptosis and

proliferation. The differential equations-based mathematical

model for NSCLC signalling developed in (Bianconi et al.,

2012) includes the mTOR and MAPK pathways along with

some of the reactions between the two pathways, as shown in

Figure 1; the model enables comparing gene expression dynamics

in wild type vs. cancer cells. The model we used and its

parameters are based on two previous mathematical models of

these signalling pathways, which were fitted and validated on

existing and new experimental data (Brown et al., 2004; Orton

et al., 2009). We chose the downstream genes ERK and Akt

(noted as y1 and y2, respectively) as the control outputs for the

external feedback loop (Figure 1); if experiments were performed,

it should be possible to measure the dynamics of those proteins

using fluorescent reporters. The two outputs can be tuned by

varying three inputs (I1, I2, I3), which inhibit three specific

proteins within the mTOR and MAPK pathways. The

pathways can influence each others’ reactions, creating

internal feedback loops (crosstalk).

The code used to implement an adaptive MPC program on

this NSCLC model used in these simulations is available on

GitHub: https://github.com/Ben-Smart/Adaptive_MPC_on_

NSCLC.git.

3.1 Assessing the cost function

Firstly, Single-Input Single-Output (SISO) simulations were

performed. The controller tries to steer the dynamics of either y1

(ERK) or y2 (Akt) by varying the concentrations of a drug that

acts directly on one of the two signalling cascades (I3 for y1 (ERK)

and either I1 or I2 for y2 (Akt)). Figure 3 uses I2 to regulate y2

(Akt), and shows the effect of different cost function terms on the

performance of the controller.

Figure 3A shows that using integral terms within the cost

function reduces the error in y2 (Akt), as compared to the

proportional terms (EI → 1.945 (−)< 10.923(−)). However, it

can be seen in Figure 3C that the controller using integral terms

(−) can cause fluctuations in the input. Such fluctuations are

reduced when using a differential cost, which also has a lower

Error Index, but higher Dose Index (EI → 1.690

(−)< 1.945(−)< 10.923(−), DI2 → 603 (−)> 546(−)> 129(−)).

The cost functions used in the following simulations include

β = 0 (i.e. no output error cost), θ = 0 (i.e. no differential input

cost) and η = 1 (i.e. a non-zero integral output error cost), as in

FIGURE 3
SISO adaptive MPC simulation using I2 to control y2 (Akt), and comparing different cost functions (A) The response of y2 to different cost
functions. (B) The input profile (I2) using the proportional error (−) within the cost function. β= 1, γ= [ − ,105, − ], θ= 0 and η=0 (C) The input profile (I2)
using the integral error (−). β = 0, γ = [ − ,105, − ], θ = 0 and η = 1 (D) The input profile (I2) using the integral error and differential terms (−) in the cost
function. β = 0, γ = [ − ,105, − ], θ = 105 and η = 1. Ts = 1 min and N = 10 for all plots.
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Figure 3C, apart from the weight associated with each input, γ,

that is varied (as indicated in figures’ captions).

3.1.1 Single-input single-output control
Figure 4 shows SISO adaptive MPC simulations for I1, I2

and I3; each drug is used to control the downstream

molecule in the cascade it acts on. It can be seen that

plots C) and D) of Figure 4 are identical to (−) in plot A)

and plot C) of Figure 3 as these are both SISO responses of I2
using the chosen cost function (costing the integral and

input terms). The SISO controller moves the NSCLC

response towards the wild type one (−) using a lower dose

than just a step of each input at the maximum allowed dose

(1 μM), thus decreasing the Dose Index. The step input

response can be found in Supplementary Section S3. This

demonstrates the benefits of using an external

feedback loop compared to an open loop response with a

static step input.

3.2 Multi-input multi-output control

AdaptiveMPC can also be used to steer both outputs using all

three inputs in Multi-Input Multi-Output (MIMO) simulations,

as shown in Figure 5.

The error of y2 (Akt) (Figure 5)) is significantly smaller in

comparison to Figures 4A,C (EI → 0.791 < 1.954 < 2.75), whilst

using significantly less I1 (DI1→ 570 <1068) and I2 (DI2→ 418 <
546), suggesting that it might be advantageous to use adaptive

MPC to predict and apply combination drug profiles.

However, due to the fast dynamics of theMAPK pathway, the

output y1 (ERK) fails to adequately follow the reference

activation curve. Figure 6 shows that if the time step is

adequately reduced (for instance, to Ts = 0.02 min), the

controller can handle the faster dynamics of the pathway and

effectively control both outputs (EI→ 0.001 < 0.791) whilst using

a lower dosage of all the inputs (DI1 → 545 < 570, DI2 → 297 <
418, DI3 → 4.35 < 6.87). Figure 6 shows that the controller can

FIGURE 4
SISO adaptive MPC simulations (A,B) The response of y2 (Akt, in (A) to the input of I1 (shown in (B)); γ = [1, −, − ] (C,D) The response of y2 (Akt, in
(C) to the input of I2 (shown in D); γ= [ − ,105, − ] (E,F) The response of y1 (ERK, in (E) to the input of I3 (shown in (F)); γ= [ − , − ,109]. (A–F): Ts= 1,N= 10,
α = 0, β = 0, θ = 0 and η = 1.

Frontiers in Control Engineering frontiersin.org06

Smart et al. 10.3389/fcteg.2022.935018

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2022.935018


FIGURE 5
A MIMO adaptive MPC simulation using I1, I2 and I3 to control the concentrations of y1 (ERK) and y2 (Akt) (A) The response of ERK. (B) The
response of Akt (C–E) The inputs used in the simulations. Parameters: Ts = 1 min, N = 10, α = 0, β = 0, γ = [1, 105, 109], θ = 0 and η = 1.

FIGURE 6
A MIMO adaptive MPC simulation using I1, I2 and I3 to control the concentrations of y1 (ERK) and y2 (Akt) (A) The response of ERK. (B) The
response of Akt (C–E) The inputs used in the simulation. Parameters: Ts = 0.02 min, N = 10, α = 0, β = 0, γ = [1, 105, 109], θ = 0 and η = 1.

Frontiers in Control Engineering frontiersin.org07

Smart et al. 10.3389/fcteg.2022.935018

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2022.935018


overcome the effect of crosstalk, balancing the error in y1 (ERk)

and the use of I1 and I2.

To emulate capabilities of current microfluidics devices, the

time step will be kept at Ts = 1 min. Therefore, in what follows, we

investigate only Multi-Input Single-Output (MISO) simulations

where y2 (Akt) is controlled only with I1 and I2. In this way, we

remove the effect of the crosstalk (through the inherent negative

feedback loops shown in Figure 1), which would restrict the

MPC’s use of I1 and I2 caused by the high error in y1 (ERK) due

to the faster timescale of this output at the controller’s current

time step (Ts = 1 min).

3.3 Combination therapies using I1 and I2

If cells are exposed to drugs for an extended period of time,

side effects and resistance might become an issue (Salgia and

Kulkarni, 2018). The controller could be used to find potential

drug combinations that can achieve a low Error Index (EI) whilst

reducing the dose of the inputs (DIi). The weight associated with

using each input, γ, within the cost function can be varied for this

aim, as shown in Figure 7. The Bliss Independence (BI) formula

(Demidenkoid and Miller, 2019; Vakil and Trappe, 2019) has

been used here as a normalised Dose Index to summarise the

combined effect of multiple drugs (see Supplementary

Section S5).

Figure 7 focuses on the control of y2 (Akt) using I1 and I2 as

control inputs (MISO control). The weights in the cost function

associated with each input can be varied as a ratio of R � γ2
γ1
,

ranging from low R values (where a high weight is associated with

I1 (γ1), thus producing a SISO-like simulation only using I2), all

the way through to a high R value (where γ2 is relatively large and

the controller will only use I1). Figure 7 compares the normalised

Error Index, ÊI (−), and the Bliss Independence BI (−) to the

weight ratio (R). It shows that there is a range of R which can

significantly reduce both EI (−) and BI (−). Therefore, the control

performance of the MISO controller is better than any SISO

simulation while keeping drug concentrations low. For the

purpose of designing combination therapies, here the optimal

input is associated to the minimum value of the EI (−).

It can be seen from Figure 7 that the minimum occurs when

R = 105, corresponding to γ1 = 1 and γ2 = 105. Figure 8 compares

the responses obtained using a very low or high R value to the

MISO simulation at the optimum of EI. This optimum achieves a

significantly lower Error Index (EI → 0.25 (−) < 1.95 (−) < 2.75

(−)), and a lower Dose Index (DI1 → 568 (−)< 1068(−) and DI2
→ 423 (−) < 546(−)).

3.4 Drug holidays

If using an adaptive MPC, the user can set specific time

intervals in which the controller does not give specific drugs (for

example, to avoid toxicity induced by long exposure). These drug

holidays can be achieved by the controller by varying the weights

associated with each input, online, during a single simulation.

As an example, Supplementary Figure S3 shows that the

controller can retain a low Error Index whilst swapping inputs

after 600 min (EI→ 1.989 ≈ 1.950 <2.75, the SISO EI of Figure 4).

Therefore, a programmed change of cost function weights during

the simulation can decide which input to stop using.

Alternatively, the controller can be set to only choose one

input at each time step. The inputs shown in Supplementary

Figure S5 have an ON or OFF state, 1 μM or 0 μM (discrete

FIGURE 7
The normalised Error Index of y2 (Akt) (−), Dose Indexes of I1 (−) and I2 (−) and Bliss Independence (−), from 31 MISO adaptive MPC simulations
using varied ratio of input weights, R= γ2/γ1, for example, when R= 100, γ= [1, 100, − ]. Parameters: Ts= 1 min,N= 10, α=0, β=0, θ=0 and η= 1. The
three star markers show the ratio used in the plots of Figure 8.
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inputs). The step size Ts used makes a significant difference to the

response.When Ts = 1min the drugs can switch ON or OFF every

minute, leading to rapidly fluctuating inputs (shown in

Supplementary Figure S4). Supplementary Figure S5 shows

the discrete simulation with a larger time step (Ts = 30min).

It can be seen that there is a better performance when compared

to the SISO simulations (Figure 4) as EI → 1.6878 < 1.95 < 2.75,

whilst still using less of each input (DI1 → 630 < 1068, DI2 →

FIGURE 8
Three adaptiveMPC simulations using I1 and I2 to control y2 (Akt) (A)The responseof y2 (Akt) to three different inputweightings, SISO - I1 (−) (γ= [1, 1015,− ]),
SISO - I2 (−) (γ= [105, 1,− ]) andMISO (−) (γ= [1, 105,− ]). γwas selected from theminimumpoint of the EI and the limits ofR in Figure 7 (B,C) Inputs I1 and I2 used in
the two SISO simulations. (D,E) Inputs I1 and I2, respectively, used in the MISO simulation. Parameters: Ts = 1min, N = 10, α = 0, β = 0, θ = 0 and η = 1

FIGURE 9
Two MISO adaptive MPC simulation based of a three state model identified from input/output data including a Kalman filter to estimate the internal
states from themeasuredoutput, comparing the adaptive and the fixedmodels. I1 and I2 are used tocontrol y2 (Akt) (A)The responseof Akt to the inputs in (B)
and (C) for the fixed response and (D,E) for the adaptive response. Parameters: Ts = 1min, N = 10, α = 0, β = 0, γ = [1, 1e5, − ], θ = 108 and η = 1.
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450 < 546). However, when compared to the optimal MISO

response (Figure 8), these added constraints result in a higher

Error Index (EI → 1.6878 > 0.2534) and a higher dose (DI1 →
630 > 568, DI2 → 450 > 423).

3.5 MPC based on a reduced order model
and an estimator

If adaptive MPC was to be used experimentally, then the

controller would not have access to all of the internal states. We

tested the effectiveness of two reduced order models (three states)

within the MPC program, run alongside a Kalman filter to

estimate the other two internal states from the measurements

of Akt only.

The performance of a standard MPC using a linear reduced

order model (−) is compared to an adaptive MPC based on a

non-linear reduced order model (−), labelled ‘Fixed’ and

‘Adaptive’ respectively in Figure 9. The adaptive MPC

simulation has a lower EI than the fixed MPC simulation (EI

→ 0.319 (−) < 0.477 (−)), showing that, at least with this

identified models, updating the linear model at each iteration

improves the performance of the controller.

The reduced order model simulations with the same cost

function used in Figure 8 shows rapid fluctuations of the

inputs (Supplementary Figure S9), therefore we set the

simulation in Figure 9 with the same cost function as in

Figure 8 except for the increase of the differential cost

term, θ. It can be seen that the MISO response of the

reduced order model in Figure 9 can achieve a similar EI to

that of the optimal full order model shown in Figure 8, whilst

using a similar combined input dose. Therefore the reduced

order model manages to achieve a similar performance to the

full order model, whilst not representing all the dynamics of

the full order NSCLC model and only using the measured data

of one output.

4 Discussion

Computational approaches have been extensively proposed

in the search for effective cancer treatments. Initially,

mathematical models were used to investigate the pathways

within the system, design the inputs themselves, and observe

how the system reacts (Konstorum et al., 2017; Cova et al., 2019).

Optimisation algorithms have supported the identification of

open loop optimal input profiles for target phenotypes

(Castiglione and Piccoli, 2006; Kassara, 2006; Piccoli and

Castiglione, 2006; Castiglione and Piccoli, 2007; Ledzewicz

and Schattler, 2007; Itik et al., 2009; Ghaffari and Naserifar,

2010; Oke et al., 2018). Open loop schemes cannot compensate

for model inaccuracies or adapt to observations. Therefore,

negative feedback controllers were developed, for example to

control cancer tissues with model free controllers (Chareyron

and Alamir, 2009; Bratus et al., 2013; Goharrizi et al., 2013; Tang

et al., 2016; Ledzewicz et al., 2019) and model based controllers

(Sápi et al., 2012; Alamir, 2014; Teles and Lemos, 2019).

This is, to the best of our knowledge, the first attempt of

simulating feedback controllers to regulate intracellular

dynamics of cancer cells by using an adaptive control scheme.

We showed that an adaptive MPC program can be used to

inform treatments for NSCLC cells, steering the dynamics of

several key signalling pathways, whilst offering a tunable cost

function that allows the user to adjust the characteristics of an

optimal input. Indeed, the controller can be tuned to choose

different drug profiles that will achieve a similar control

performance whilst reducing exposure to one or more

drugs. We also mimicked future in vitro experiments

through the use of a simple model (identified through

input/output data) alongside a Kalman filter within the

adaptive MPC program.

Other control strategies, like PID controllers, cannot be

directly tuned to affect the desired input and only act on the

observed output. The use of a linear model within the MPC

makes the control algorithm running time short enough for it to

be used, in the future, in external feedback control experiments.

The implementation of those would require some practical

aspects to be considered, which we did not account for.

Firstly, there might be delays in cell responses to drugs/

actuation, which the model used by the controller should

consider. Also, the sampling/actuation time might need to be

fast enough, if aiming at controlling genes with fast dynamics.

This issue might be overcome using experimental optogenetics-

based platforms instead of microfluidics-based ones, as they can

reduce delays in the actuation.

We foresee a growing interest in applying cybergenetics

approaches, and in particular feedback controllers, to steer

mammalian cells dynamics. If we realise our ambition to

implement the experiments proposed here on living cells and,

longer term, on patient-derived organoids, feedback control

might be a valuable tool for the design of personalised

optimal treatments for a range of conditions.

5 Conclusion

It has been demonstrated, through simulations, that

adaptive MPC can be used to inform drug combinations

which can steer signalling dynamics in NSCLC cells,

offering a tunable cost function to modify ad hoc both the

rapidity of inputs’ changes and the ways inputs are chosen.

The weights can also be changed to choose different drug

profiles that will achieve a similar control performance whilst

giving the cell a break from individual drugs. In the future, we

hope to test the controller in living cells using microfluidics/

microscopy platforms.
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