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We develop a three-state agent-based language competition model that takes
into account the fact that language learning and attrition are not instantaneous but
occur over a finite time interval; i.e., we introducememory in the system.We show
that memory effects significantly impact the dynamics of language competition.
Furthermore, we find that including heterogeneity in the linguistic skills of the
agents affects the results substantially. We also explore the role of other factors,
such as different levels of language learning difficulty, initial population fractions,
and daily interaction rates.
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1 Introduction

The past two decades have witnessed a significant growth of research interest in
mathematical modeling of language dynamics. This has been mainly driven by the
consideration that according to UNESCO, about 43% of the approximately
6,000 languages currently spoken in the world are at risk of extinction by as early as
2050 (Austin, 2008; Moseley, 2010). In fact, starting from the seminal work by Abrams and
Strogatz (2003), the study andmodeling of language competition have become one of the key
research topics in complex systems theory.

While the Abrams–Strogatz model, based on Lotka–Volterra-type equations, is a two-
state model that takes into account monolingual groups only, other models, including the
first language competition models by Baggs and Freedman (Baggs et al., 1990; Baggs and
Freedman, 1990; Baggs and Freedman, 1993), also incorporate bilingual communities. The
various models introduced so far leverage a range of approaches derived not only from
population–ecology models but also from statistical physics, game theory, and agent-based
modeling (Castellano et al., 2009; Baronchelli, 2016; Marchetti et al., 2020b; Marchetti et al.,
2020a; Patriarca et al., 2020; Marchetti et al., 2021; Minett and Wang, 2008; Vazquez et al.,
2010; Ya-ping et al., 2015). The inclusion of bilingualism has led to models that demonstrate
that under certain conditions, the survival of both competing languages, coexisting within a
stable bilingual community, can be achieved (Castellano et al., 2009; Heinsalu et al., 2014;
Marchetti et al., 2021).

A feature common to many language dynamics models, encompassing bilingualism or
not, is the assumption that the key driving force for adopting one language versus another is
its relative prestige or perceived status (Abrams and Strogatz, 2003). This makes sense as it
seems plausible that perceived language status played a role, for instance, in the decline of
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Welsh and Scottish Gaelic in favor of English, or in the progressive
disappearance of Quechua, still spoken in some areas of Peru, in
favor of Spanish. However, there are other relevant factors that can
lead to a language shift (Patriarca et al., 2020). For example, based on
Indian census data, De Silva et al. pointed out that the competition
between Hindi and English over two decades from 1991 to 2011 has
resulted in the saturation of the bilingual community and a steady
growth of Hindi monolinguals, in spite of English being a higher
status language (De Silva et al., 2021). This is related to the Indian
political background and educational infrastructures. Anyway, the
main parameters of such language competition models are the
transition rates, which reflect the influence of different factors,
such as language prestige, the underlying socioeconomic and
political situation, and language similarity.

It is to be noted that three-state language dynamics models, in
which one of the states corresponds to bilinguals, are formally
similar to three-state opinion dynamics models, where one of the
states can represent undecided individuals (Castellano et al., 2009).
Importantly, in opinion dynamics, in addition to other factors and
mechanisms, the role of memory and how it influences even a simple
choice, has been recognized and studied (Dall’Asta and Castellano,
2007). For example, some voter models incorporate memory effects
in agent-based simulations or through fractional derivatives at the
analytical level (Baron et al., 2022), mimicking an opinion change
happening only after several interactions have taken place.

Memory effects are expected to play a relevant role whenever the
constituent units themselves are complex and can exchange, record,
and process information. Taking memory into account is even more
relevant when considering the complex processes that underlie
language learning and attrition. In fact, a closer analysis of the
learning process reveals that even the acquisition of a single word is
based on the memory association between the phoneme associated
to the word and, e.g., the image corresponding to a real object
(Odgen and Richards, 1923) and, thus, should be more properly
treated at a cognitive modeling level (Marchetti et al., 2020b;
Marchetti et al., 2020a; Marchetti et al., 2021; and references
therein). Thus, the acquisition of a new language, as well as its
retention, is a time-consuming process that depends on multiple
interactions over a finite time interval. Cognitive processes and, in
particular, memory-related effects, individual language learning
aptitudes, and different degrees of difficulty of learning and
retaining a language, from both a grammatical and a phonetic
viewpoint, may play a crucial role in determining the outcome of
language competition.

Most models of language dynamics describe language
acquisition and shift as simple instantaneous transitions between
different linguistic states driven by the current state of the system.
Instead, in the present paper, we study the role of memory in
language competition at a phenomenological level, focusing on the
accompanying processes of language learning and attrition (Liivand,
2018). The impact of memory on language adoption is studied as a
function of the frequency of interactions with other speakers, taking
into account both the difficulty of learning and retaining a foreign
language and the possibility of abandoning one’s mother tongue
after becoming bilingual. The combination of these effects
determines in our model the conditions that may lead to
language extinction or survival or to the attainment of an
equilibrium involving different linguistic communities.

Research on second language acquisition has shown that, in
addition to different language usage frequencies among individuals,
there exist additional relevant individual factors, including age,
personal skills, aptitude, personality, learning style, motivation,
and external (cultural and socioeconomical) environment (Ellis
et al., 1994; Griffiths and Soruç, 2020), which shape the observed
heterogeneous learning abilities of individuals. However, people also
differ vastly in how fast they forget a language (Schmid and Köpke,
2019) for mother tongue attrition and (Mickan et al., 2020) for
foreign language attrition. Without trying to model the detailed
origin of individual differences but still willing to incorporate some
degree of heterogeneity in individuals, we assigned diversified values
to the parameters related to language learning and retaining. The
inclusion of heterogeneity in the present study is motivated by the
research in language acquisition, but the importance of
heterogeneity and quenched disorder in complex processes, from
economic stability to network synchronization (Bouchaud, 2009;
Lafuerza and Toral, 2013; Zhang et al., 2021), is now well recognized.

This paper is organized as follows. Section 2 introduces a three-
state agent-based language competition model that takes into
account memory effects and the heterogeneity of speakers. We
also provide the numerical algorithm to simulate the model.
Section 3 presents the results for both homogeneous and
heterogeneous populations with identical or diversified linguistic
capabilities, respectively. We study the time evolutions and phase
portraits of the systems and analyze how the language competition
outcome depends on the interaction frequency, level of
heterogeneity, initial fractions of the monolingual populations,
and the asymmetry between language learning difficulties. Section
4 outlines the conclusions.

2 Model

2.1 Overall description

In order to investigate the impact of memory on language
competition, we develop an agent-based model of a population of
N speakers, of whom a fraction NX speak language X, a fraction NY

speak language Y, and a fraction NZ are bilinguals speaking both
languagesX and Y;NX +NY +NZ = 1. In the following, the symbolsX
and Y also represent the language state of X- and Y-monolinguals,
respectively, while Z represents the state of bilingual agents. It is
assumed that initially, there are no bilinguals, i.e., NZ (t = 0) = 0.

During the time evolution of the system, agents communicate
pair-wise. Each time step in the simulations corresponds to 1 day,
and an agent is assumed to communicate every day on average with
other Nint agents. Thus, there are daily Nint × N/2 interactions in the
system.

For the choice of the language used in a communication, we
apply the following rules.

• In the encounter between two monolinguals of different
languages, since there is no common language to be used, it is
assumed that either speaker will try to use their own language,
which the other speaker will make an effort to understand so that
eventually, either agent will learn something of the other agent’s
language.
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• The language employed in an interaction between a monolingual
and a bilingual agent is that of the monolingual agent.

• In the case of an encounter between two bilinguals, both languages
could be used in principle. The choice of the language employed
takes into account the cost of language switching (Meuter and
Allport, 1999; Jackson et al., 2001; Abutalebi and Green, 2007;
Moritz-Gasser and Duffau, 2009; Iriberri and Uriarte, 2012); i.e., it
depends on the native language and/or the number of previous
communications in one or the other language (see Section 2.3 for
details).

In the learning process, memory is taken into account, assuming
that a monolingual agent can acquire the other language and become
bilingual only through repeated interactions with monolingual
speakers of the other language. In the model, we assume that in
order to learn a new language and become bilingual, a monolingual
agent has to use the new language at least K times within a time
interval TK. If the monolingual agent has used the new language less
thanK times, as time interval TK elapses, the agent’s memory is reset.
Importantly, the model will use, in general, two different parameters
KX and KY for the two languages X and Y, respectively, reflecting the
possible different difficulties of learning; i.e., KX (KY) expresses the
difficulty of learning language X (Y) and, therefore, will be used to
determine if a monolingual agent speaking language Y (X) meets the
criterion to become bilingual or not.

Memory effects also influence language maintenance. In the
model, we assume that a bilingual has to use both languages X and Y
at leastM times within a time interval TM in order to maintain them
(for simplicity, we assume the sameM and TM for both the first and
second languages). If this condition is not fulfilled for one of the
languages, that language will be forgotten.

The model variables are discussed in Section 2.2, and the
dynamical rules of time evolution are listed in Section 2.3.

2.2 Microscopic variables

The state of agent i (i = 1, 2, . . . , N) at time step t is specified by
the following set of individual variables:

• Language variables (all agents): The linguistic state of agent i is
recorded by the variable L[1]i , representing the (main) language
(L[1]i � X or Y), and, if the agent is bilingual, also by the variable
L[2]i , recording the second language (L[2]i � Y or X, respectively).
For a monolingual agent, L[2]i � 0.

• Learning variables (monolinguals): For a monolingual agent i
(L[2]i � 0), the learning process of a new language at time t is
tracked by the time counter τki (t), recording the time elapsed
since the first interaction with a monolingual of the other
language, and the language usage counter ki(t), counting how
many times the speaker has used the other language.

• Maintenance variables (bilinguals): For a bilingual agent i
(L[2]i ≠ 0), language use at time t is tracked by the time
counter τmi (t), measuring the time elapsed since becoming
bilingual, and by the usage counters m[1]

i , m[2]
i of the two

languages. It should be noted that it is assumed that
monolinguals do not forget their language, and therefore, m[1]

i

is not tracked for them.

2.3 Numerical algorithm

The algorithm employed in the numerical simulations can be
summarized as follows:

0. At time t = 0, the population contains only a fractionNX (0) of
X-monolinguals and a fraction NY(0) of Y-monolinguals, i.e., NX (0)
+NY(0) = 1 andNZ (0) = 0. Counters τki and ki are initialized to zero.

1. A set of Nint × N/2 couples of agents are randomly selected
from the population.

2. Agents i and j of each extracted couple interact, and their
language use is tracked (Table 1; Table 2).

• If both agents i and j are monolinguals of the same language
(L[1]i � L[1]j ), nothing happens.

• If agents i and j are monolinguals with different languages
(L[1]i ≠ L[1]j ), either of them learns something about the other
agent’s language, and their language use counters are updated: ki
→ ki + 1 and kj → kj + 1.

• If agent i is bilingual and agent j is monolingual, it is assumed that
they communicate in the language of the monolingual agent j. In
this case, only the usage counter of the bilingual agent i is updated:
m[1]

i → m[1]
i + 1 if agent i used the main language or

m[2]
i → m[2]

i + 1 if the second language was used. Agent j does
not learn; consequently, there is no update for agent j. An
analogous update is carried out if agent i is monolingual and
agent j is bilingual.

• If agents i and j are both bilinguals and have the same main
language, this will be used in the communication, and therefore,
m[1]

i → m[1]
i + 1 and m[1]

j → m[1]
j + 1.

• If agents i and j are both bilinguals but their main languages are
different, they will make a decision based on their memory
information stored in the counters m[1]

i , m[2]
i , m[1]

j ,m[2]
j (see

Table 2). If both agents have used one of the two languages
more frequently, that language will be used. Instead, if the two
agents have comparable language use, but for different languages,
then the choice will be made randomly. Depending on the language
used, the corresponding counters of agents i and j are updated.

3. After the Nint × N/2 couples of agents extracted have
interacted, the time variables are updated for each agent i: if
agent i is monolingual, time counter τki is updated, τki → τki + 1;
if agent i is bilingual, time counter τmi is updated, τmi → τmi + 1.
Furthermore, the system time t is updated, t → t + 1.

4. Language use counters, time counters, and possible transitions
between the monolingual and bilingual state are checked for each
agent i (see Table 3).

• If agent i is monolingual, the counters ki and τki are checked at each
time step. If ki < K and τki <TK, the learning process continues. If,
instead, ki < K and τki � TK, the counters are reset, ki → 0 and
τki → 0, and the learning process starts over. If ki ≥ K and τki ≤TK,
agent i becomes bilingual, and the maintenance variables, τmi ,m

[1]
i ,

and m[2]
i , are initialized to zero.

• If agent i is bilingual, the counter τmi is checked at each time step. If
τmi � TM, the language usage countersm[1]

i andm[2]
i will be checked.

Ifm[1]
i ≥M butm[2]

i <M, the second language is forgotten and agent
i becomes monolingual (L[2]i → 0). If m[1]

i <M but m[2]
i ≥M, the

first language is forgotten and the second language is promoted to
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main language (L[1]i → L[2]i and L[2]i → 0). In both cases, the learning
variables of the now monolingual speaker are reset, ki → 0 and
τki → 0. If, instead, both m[1]

i ≥M and m[2]
i ≥M, the agent remains

bilingual and all the maintenance variables are reset. If bothm[1]
i <M

and m[2]
i <M, then the second language is forgotten.

5. The algorithm is reiterated from step 1 until the final
simulation time t = tfin is reached or until all speakers become
monolinguals of the same language.

It should be noted that instead of using an algorithmwhere the time
and language use counters are reset, as explained previously, one could
use an alternative more realistic algorithm based on a moving temporal
window, i.e., checking at each time step the language use during the
reference time intervals TK or TM. For computational convenience, we
used the aforementioned algorithm, but we checked that within the
parameter range used, the two methods provide equivalent results.

2.4 Including heterogeneity

As discussed in Introduction, in a language dynamics model
that aims to scrutinize the impact of memory and learning

processes, it is relevant to take into account that individual
linguistic skills to learn or retain a language are different. This
heterogeneity may depend on many factors. In our model, the
effect of these factors is described in terms of a heterogeneous
distribution of the parameters regulating the learning and
maintenance of a language, i.e., the associated time intervals
and language usage frequencies.

As far as the learning process is concerned, the global
language usage thresholds KX and KY for learning language X
and Y by monolingual speakers of language Y and X, respectively,
are replaced by a heterogeneous set of parameters KX

i and KY
i ,

respectively, assigned to each agent i. Analogously, to include
heterogeneity in language retention, in place of a single value TM,
we extract a different value TM

i for each agent i. Thus, the time
period after which a speaker forgets a language is an individual
characteristic.

In the following equation, we limit ourselves to considering a
specific case with a simple correlation between the threshold
values of language usage and attrition times of generic agent i.

KX
i � KX 1 + Si σ

X( ), (1)
KY

i � KY 1 + Si σ
Y( ), (2)

TM
i � TM 1 − Si σ

M( ). (3)
In the aforementioned three equations, Si is the same random

number extracted from a standard normal distribution, the values KX,
KY, and TM represent the means, and σX, σY, and σM represent the
relative standard deviations of the respective distributions. Thus, the
standard deviations express the degree of heterogeneity of the agents.
Equations 1, 2 describe the learning, and Eq. 3 describes the language
maintenance features of individual i. The Gaussian distribution is the
most natural one to describe the heterogeneity of the linguistic skills in
a population. A value Si > 0 in Eq. 1 or 2 describes a speaker who needs
for learning to practice language X or Y more times than on average;
instead, Si < 0 corresponds to the opposite case. The negative sign in

TABLE 1 Possible encounters between agents i and j, the language used, and corresponding updates of their variables (time counters are always updated; see text
for details). Here, X, Y, and Z denote the linguistic state of the speaker.

Encounter of agents i + j Language used Variable update

X + X X Neither of the agents learns: no updates

Y + Y Y Neither of the agents learns: no updates

X + Y X and Y Both agents learn something of the other language, and their

interaction counters are updated: ki → ki + 1, kj → kj + 1

Z + X X If X is the main (second) language of the bilingual speaker i

m[1]
i → m[1]

i + 1 (m[2]
i → m[2]

i + 1)
Agent j does not learn: no update for agent j

Z + Y Y If Y is the main (second) language of the bilingual speaker i,

m[1]
i → m[1]

i + 1 (m[2]
i → m[2]

i + 1)
Agent j does not learn: no update for agent j

Z + Z Common main m[1]
i → m[1]

i + 1, m[1]
j → m[1]

j + 1

with L[1]i � L[1]j language X or Y

Z + Z X or Y Interaction counters corresponding to the language used

with L[1]i ≠ L[1]j (see Table 2) are updated

TABLE 2 Language selection and corresponding criteria in an encounter
between two bilinguals with different main languages.

Use L[1]i if
m[1]

i >m[2]
i

or
m[1]

i � m[2]
i

or
m[1]

i >m[2]
i

m[1]
j � m[2]

j m[1]
j <m[2]

j m[1]
j <m[2]

j

Use L[1]j if
m[1]

i <m[2]
i

or
m[1]

i � m[2]
i

or
m[1]

i <m[2]
i

m[1]
j � m[2]

j m[1]
j >m[2]

j m[1]
j >m[2]

j

Toss coin if
m[1]

i � m[2]
i

or
m[1]

i >m[2]
i

or
m[1]

i <m[2]
i

m[1]
j � m[2]

j m[1]
j >m[2]

j m[1]
j <m[2]

j
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Eq. 3 reflects the fact that, in general, the individuals who learn more
slowly are, at the same time, the ones who forget more quickly, and
vice versa. For the sake of simplicity, we assume that σX = σY = σM ≡ σ.

It should be noted that since in Eqs 1–3 Si is extracted from a
standard normal distribution, KX

i , K
Y
i ,and TM

i can take also negative
values. As long as σ is small enough, this happens only for a small
fraction of the extracted values of Si. In fact, in the following section, we
limit ourselves to studying the parameter range σ ∈ (0, 0.5]. For σ = 0.5,
agents corresponding to the upper end of the range defined by ± one
standard deviation from the mean learn three times faster (and forget
three times more slowly) than agents positioned at the opposite end.
Larger values of σ would lead to unrealistic differences between the
individuals. For a given value of σ, in the case an Si value leads to a
negative parameter KX

i , K
Y
i , or T

M
i , that parameter is set to zero.

3 Results and discussion

3.1 Simulation parameters

We simulate the model for a population comprising at least N =
103 agents, unless specified differently. We checked that this is a
sufficient population size and the results remain unchanged when
increasing the number of speakers even up toN = 104. The simulation
time isNt = 4 × 10

4 days≈ 110 years.We assume that each time step in
the simulations corresponds to 1 day and each agent has an average
numberNint of daily interactions with other agents. Based on psycho-
sociological and epidemiological studies (Valle et al., 2007; Zhaoyang
et al., 2018) about social interactions, we explore a range of Nint ∈ [8,

24]. We allow for monolinguals of language Y (X) a time TK = 730
days = 2 years to acquire languageX (Y), duringwhich they should use
the language at least KX (KY) times. When exploring the symmetrical
case of an equal level of difficulty of language learning, we setKX =KY =
5,110 (i.e., on average, seven practicing events per day to learn a new
language). In the asymmetrical case, KY is maintained at 5,110 and KX

is varied. The ability of bilinguals to retain the native or acquired
language is assessed over the time period TM = 7,300 days = 20 years,
during which the speakers, to remain bilinguals, should use both
languages at least M = 43,800 times (on average, six times per day).
Unless specified differently, we set σ = 0.5 when diversifying KX, KY,
and TM in order to add heterogeneity to the aforementioned model.

It should be noted that the choice of the minimum number of
learning interactions needed to acquire a new language, determined
by the thresholds KX, KY, and TK, as well as of the minimum number
of practicing events required to retain a language, determined by M
and TM, is arbitrary. However, studying the dependence of
simulation results on the number of daily interactions Nint per
agent is equivalent to varying the aforementioned thresholds while
keeping Nint constant. This is because the competition outcome is
mainly determined by the interplay between the daily interaction
frequency and model thresholds.

3.2 Homogeneous population

We begin our study of the effects of memory on language
competition dynamics by examining first the case of a
homogeneous population.

TABLE 3 Checks made on each agent i (i =1,. . . , N). If for individual i, the conditions are fulfilled, the change described in the column “outcome” takes place and
variables are updated as described in column “Updates.”

Agent i Conditions Outcome Updates

Monolingual at each time step ki < K and τki <TK Learning continues τki → τki + 1

Or

ki < K and τki � TK Fails to become bilingual ki, τki → 0

Or

ki ≥ K and τki ≤TK Becomes bilingual L[2]i � 0 → L[2]i ≠ 0

τmi , m
[1]
i , m[2]

i → 0

Bilingual at τmi � TM
m[1]

i ≥M and m[2]
i <M Becomes monolingual L[2]i → 0

(forgets second language) ki, τki → 0

Or

m[1]
i <M and m[2]

i ≥M Becomes monolingual L[1]i → L[2]i , L[2]i → 0

(forgets main language) ki, τki → 0

Or

m[1]
i ≥M and m[2]

i ≥M Remains bilingual τmi , m
[1]
i , m[2]

i → 0

Or

m[1]
i <M and m[2]

i <M Becomes monolingual L[2]i → 0

(forgets second language) ki, τki → 0
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As long as no bilinguals are present in the system (beginning of
the time evolution), a speaker interacts daily, on average, NX(0)Nint

times with X-monolinguals and NY(0)Nint times with Y-
monolinguals. As discussed in Section 2.3, a monolingual →
bilingual transformation, X → Z (or Y → Z), takes place only if
an X (or Y)-monolingual has used the other language at least KY (or
KX) times within the maximum allowed learning time TK. This
implies the following conditions for the transition times tX and tY:

tX ≡ KX/NintNX 0( )≤TK for Y → Z, (4)
tY ≡ KY/NintNY 0( )≤TK for X → Z. (5)

If both conditions are fulfilled, then which of the two possible
transformations, Y → Z or X → Z, will take place, i.e., which
monolingual community will form the bilingual population,
depends on which of the two transition times, tX ≤ TK or tY ≤
TK, is smaller. For given values of Nint and TK, this depends on KX,
KY, and the initial fractions NX (0) and NY(0). In the symmetrical
case, when KX = KY ≡ K, the transition type is determined only by the
values of NX (0) and NY(0); if NX (0) = NY(0), both monolingual
populations turn into bilinguals; otherwise, it is the population of the
minority language that becomes bilingual. In the asymmetrical case,
when KX ≠ KY, for equal initial population fractions, NX (0) = NY(0),
the transition type is determined by the values of KX and KY: for KX >
KY, the bilingual community will be formed by X-monolinguals and
for KY > KX by Y-monolinguals, i.e., by the monolinguals of the
language that is more difficult to learn. If neither condition is
fulfilled, no bilingual community will appear.

In order to illustrate the beginning of the system time evolution,
let us consider the example of a population of 100 identical speakers
(we use in this example only 100 individuals for the clarity of
visualization) with initial population fractions NX (0) = 0.6 and
NY(0) = 0.4. The daily interaction rate is Nint = 16, KX = KY = 5,110,
and the transition times for the given parameters are tX = 532 and
tY = 798, respectively. In this case, since tX < TK < tY, all the Y-
monolinguals will become bilinguals around time t = tX.
Accordingly, in Figure 1A, the lines depicting the usage counters
ki of the Y-monolinguals stop, while the lines corresponding to the
bilinguals’ language usage counters m[1]

i and m[2]
i appear; because

NX(t) > NY(t) + NZ(t) = NY(0), the lines corresponding to m[2]
i (t)

measuring the usage of the acquired language X have larger slopes
than the lines corresponding to m[1]

i (t) measuring the usage of the
bilinguals’ first language Y. Instead, because after time tX, the
monolinguals of language X will use only language X, both in the
communication among themselves and with the bilinguals, their
language usage counters ki will remain constant until t = TK, when
they are reset to zero.

Figure 1B shows the corresponding time evolution of the
population fractions: at time tX, there is the transition Y → Z,
i.e., all monolinguals of language Y learn language X and become
bilinguals; instead, NX(t) = NX (0).

Now, if the parameters are such that one of the monolingual
populations becomes bilingual, whether this state is stable or not, it
depends on the parameters regulating the attrition process. It will be
stable if bilinguals practice both languages at leastM times during a
time interval TM. Because in the current example in the
communication between bilinguals, only their first language is
used (all bilinguals have the same first language), then NZ(t) =

NY(0) (as in our example depicted in Figure 1) or NZ(t) = NX (0); the
second language is used by bilinguals only in the communication
with monolinguals, whose population is equal to the initial one.
Consequently, the conditions for the bilingual population to
maintain languages X and Y are, respectively,

TMNintNX 0( )≥M tomaintain language X( ), (6)
TMNintNY 0( )≥M tomaintain language Y( ). (7)

The bilingual community remains bilingual only if both
conditions are satisfied. If one of the conditions is not fulfilled,
the respective language is forgotten and the bilinguals become
monolinguals of the language for which the condition is satisfied.
If none of the conditions is fulfilled, the bilinguals become
monolinguals of their original language. In the aforementioned
example (Figures 1A, B), the bilinguals maintain both languages
and the state reached is stable.

The behavior of the system under different initial conditions is
illustrated by the phase portraits in Figure 2A for KX = KY

(symmetrical language learning difficulty) and Figure 2B for KX ≠
KY (asymmetrical language learning difficulty). Possible initial
conditions are represented by the points on the line NX (0) +
NY(0) = 1, where NZ (0) = 0. In this example, we chose Nint =
10, allowing us to observe different regimes: some trajectories evolve
toward a final state, where, in addition to bilingual speakers, there
are also monolinguals of language X (or Y)—as shown by the dots on
the NX-axis (NY-axis); for the rest of the initial conditions, the
representative point remains in the initial state. This behavior can be
understood by expressing conditions (4)–(5) in terms of the initial
fractions NX (0) and NY(0).

NX 0( )≥KX/NintT
K ≡ N*

X for Y → Z, (8)
NY 0( )≥KY/NintT

K ≡ N*
Y for X → Z, (9)

which define implicitly the critical initial fractions NX* and NY* ,
above which a transition to bilingualism takes place. In the
symmetrical case, when KX = KY = 5,110, the values of the
critical initial fractions are N*

X � N*
Y � 0.7. For the asymmetrical

case with KX = 5,840 and KY = 4380 depicted in Figure 2B,NX* � 0.8
andNY* � 0.6. No transition to bilinguals takes place if the trajectory
starts from an initial condition for which neither inequality is
satisfied, i.e., when NX(0)<N*

X and NY(0)<N*
Y, corresponding

to the interval 1 −N*
Y <NX(0)<N*

X (see Figures 2A, B). In this
case, the two monolingual communities remain isolated and coexist
together so that NX(t) = NX (0) and NY(t) = NY(0). If the parameters
are such that 1 −N*

Y >N*
X, such an interval does not exist; for

example, for the KX, KY, and TK values used in Figure 2, it disappears
in both symmetrical and asymmetrical cases, if Nint ≥ 14.

Now, from the last remark, as well as from conditions (4)–(5)
and (6)–(7), it is also clear that the number of daily interactions,Nint,
is a very important quantity in determining the dynamics and
outcome of the language competition. In Figure 3, the final
population composition is plotted as a function of Nint, dashed
lines, for the homogeneous system. This figure shows clearly how the
final outcome of the language competition is determined by the
interplay of the learning and attrition processes. Let us determine the
conditions for the learning and maintenance of languages X and Y
for the example with KX = KY = 5,110 and NX (0)/NY(0) = 60/40.
From Eqs (4) and (5), one obtains the conditions on the interaction
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rate: Nint ≥ KX/NX (0)T
K = 11.6 and Nint ≥ KY/NY(0)T

K = 17.5, for X-
and Y-monolinguals, respectively. Therefore, nothing happens until
the value Nint = 11.6 is reached (it should be noted that in Figure 3,
Nint assumes only integer values), and the two populations speaking
languages X and Y remain isolated and do not generate any bilingual
community. At Nint ≥ 11.6, Y-monolinguals learn language X
and become bilingual. However, in order to remain as such, they
have to maintain both languages. According to Eqs (6) and (7),
the condition for a bilingual to maintain language X is Nint > M/
NX (0)TM = 10, whereas for maintaining language Y, the interaction
frequency has to satisfy the condition Nint > M/NY(0)T

M = 15. Thus,
in the interval 11.6 ≤ Nint ≤ 15, bilinguals who appeared in the system
during the time evolution will turn into X-monolinguals so that there
are only X-monolinguals in the final state of the system. Instead, for
Nint > 15, the bilinguals can maintain both languages, and the final
population consists of X-monolinguals and bilinguals. Thus,
depending on the value of the interaction frequency, one can
observe three regimes (see the dashed lines in Figure 3): 1)
coexistence of the two monolingual populations (with NX(t) = NX (0)
and NY(t) = NY(0)); 2) only the majority language surviving; and
3) coexistence of monolingual speakers of majority language and
bilinguals whose first language is the minority language.

Not taking the memory effects into account, i.e., assuming a
time unit much larger than the time scales TK and TM, the
homogeneous version of the proposed model, discussed in the
this section, reduces to the Minett–Wang model that is local in
time. The Minett–Wang model with neutral volatility has only two
stable equilibrium points: one of the two competing languages
surviving and the other one disappearing; which of the two
languages survives depends on the model parameters. Instead,
introducing the time-consuming language learning and retention

processes, for a wide range of parameters, both languages can
survive due to two opposing mechanisms: 1) not learning the other
language (coexistence of the two isolated languages) or 2) frequent
language contact between the minority language speakers, who
eventually become bilinguals, and monolinguals of the majority
language.

3.3 Heterogeneous population

In the example illustrating the time evolution in a homogeneous
population—Figures 1A, B—all monolinguals of language Y become
bilinguals around time tX. The population time evolution is
characterized by a simple behavior and sharp transitions because
agents are identical to each other in their features and they behave in
the same way. The only source of randomness in the homogeneous
system is related to the random choice of the interacting agents.

In the corresponding example of a heterogeneous
population—Figures 1C, D—because in conditions (4)–(5), KX

and KY are replaced by KX
i and KY

i , respectively, for each
individual i, the transition Y → Z takes place at a different time,
resulting in a bundle of parallel lines, as shown in Figure 1C, instead
of the overlapping ones, as in (A).

As a consequence, the step-like curves describing the transitions
NY → 0 and NZ → 0.4 are replaced by smoother sigmoids.
Depending on the value of σ, it can also happen that not all
monolinguals of language Y become bilingual at some time t ≤
TK, whereas some X-monolinguals may do so. Similar
considerations are valid for the attrition. In fact, in Figure 1C,
one can notice that there is a line m[1]

i (t) which has a slope much
larger than that of the other lines, and a linem[2]

i (t) with slope equal

FIGURE 1
(Symmetrical case). Time evolutions in a homogeneous system [(A) and (B)] and in a heterogeneous system with σ = 0.2 [(C) and (D)]. (A), (C)
Language usage counters ki, m

[1]
i , and m[2]

i versus time. (B,D) Fractions of speakers versus time. The results are obtained using N = 100 agents; NX (0)/
NY(0) = 60/40, and Nint = 16. For comparison, the transition times tX and tY for homogeneous populations and threshold time TK are marked by vertical
lines for both systems.
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to zero. These lines correspond to a bilingual that used to be an X-
monolingual and not Y-monolingual as the other bilinguals in this
figure.

Such diversity in the behavior of individuals induces significant
differences in the dynamics and final competition outcome between
the homogeneous and heterogeneous systems. To understand how
this happens, let us have a look at the time evolution of the speakers’

fractions NX,NY, and NZ on a longer time scale, depicted in Figure 4,
for a heterogeneous population with σ = 0.5, initial ratio NX (0)/
NY(0) = 60/40, KX = KY = 5,110, and three different values of Nint

corresponding to low (Nint = 8), medium (Nint = 16), and high
(Nint = 24) daily interaction rates.

In the example of the homogeneous system (Figures 1A, B),
only the speakers of minority language Y contributed to the
formation of the bilingual community. Instead, in the
heterogeneous system, as shown already in Figure 1C, the
speakers of majority language X also contribute (see the initial
decrease in NX in all panels of Figure 4), but their contribution is
smaller than that of Y-monolinguals. It should be noted that the
larger the interaction rate, the larger the contribution of Y-
monolinguals (compare the three panels in Figure 4). In the

FIGURE 2
Phase portraits of homogeneous [σ = 0—(A) and (B)] and
heterogeneous [σ = 0.2—(C) and (D)] systems with symmetrical [KX =
KY = 5,110—(A) and (C)] and asymmetrical [KX = 5,840, KY = 4380—(B)
and (D)] language learning difficulties. The gray triangle
represents the area accessible to the system. The initial conditions are
represented by the red dots, and the final positions are represented by
the blue dots (overlapping the red ones on the diagonal). The results
are obtained using N = 100 agents and Nint = 10. For the
homogeneous system, the critical initial densities NX* and NY* are
marked by the dashed lines. Trajectories are averaged over 100 runs.

FIGURE 3
(Symmetrical case). Comparison of the final speakers’
compositions versus Nint for homogeneous (σ=0) and heterogeneous
(σ = 0.5) populations; NX (0)/NY(0) = 60/40.

FIGURE 4
(Symmetrical case, heterogeneous population). Time evolution
of speakers’ fractions evolving from NX (0)/NY(0) = 60/40 for different
daily interaction rates: (A) Nint = 8, (B) Nint = 16, (C) Nint = 24.
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following, the formed bilingual community decreases in time due
to the attrition process, leading to a corresponding growth of NX.
The decrease in NZ and the corresponding increase in NX become
larger for higher values of Nint.

The appearance of a maximum in the bilingual population size is
also observed in the Minett–Wang model (Minett and Wang, 2008;
Heinsalu et al., 2014), in which, however, finally only one of the
languages survives, as mentioned previously.

Before proceeding with the discussion, we analyze the presence
of the small zigzagged segments in the time evolution curves shown
in Figure 4. They are related to attrition processes taking place at
times close to each other due to diversity and initial conditions. We
verified that they tend to disappear for t →∞ and their amplitudes
decrease with the system size, as N→∞. We also checked that they
do not significantly influence the final results.

Figures 4A, B show that in a heterogeneous system, it is possible
for the two monolingual and bilingual populations to coexist in the
final state. The same becomes evident from the phase portraits in
Figures 2C, D and from the curves shown in Figure 3 for the
heterogeneous system. Although in Figure 3, the dashed curves for
the homogeneous system and the solid ones for the heterogeneous
system might seem to be qualitatively similar, the fraction of Y-
monolinguals decreases and the fraction of bilinguals increases with
Nint, and the fraction of X-monolinguals passes through a maximum,
and even the phase portraits for heterogeneous and homogeneous
populations in Figure 2 might seem to be not so different, the systems
are actually fundamentally different. That is, it appears that adding
heterogeneity to the population can, for a wide range of parameters,
lead to the coexistence of the three linguistic groups, which is not
possible in a corresponding homogeneous system. Therefore, we
conclude that diversity in linguistic abilities is one of the key
factors leading to the possibility of the coexistence of all linguistic
groups in a three-state system, and this is the most important
difference between the homogeneous and heterogeneous systems.

The reason behind the smoothing of the curves shown in
Figure 3 when adding heterogeneity in the population is similar
to why the step-like transitions shown in Figures 1B are replaced by
smoother curves shown in Figures 1D. That is, the replacement of
KX, KY, and TM byKX

i ,K
Y
i , and T

M
i consequently satisfies conditions

(4)–(5) and (6)–(7) for each individual i at a different value of Nint,
instead of a global fixed Nint value, as in the case of a homogeneous
population.

In order to evaluate how the degree of heterogeneity, expressed
as the relative standard deviation σ, influences the results, we ran
simulations for the same system with NX (0)/NY(0) = 60/40 and
KX = KY = 5,110 studied previously, varying σ between 0 and 0.5.
The results are depicted in Figure 5 for three different values of
Nint. Furthermore, the figure shows that adding a certain level of
heterogeneity to the system can result in a situation where, in the
final state, all three linguistic groups are present in the system: see
the lowest group of lines appearing as σ increases. For fixed
parameter values and initial composition of the total
population, the value of σ leading to such a final state increases
slightly when Nint is increased. Furthermore, the diversity of
individuals increases the competition advantage of the majority
language, with respect to the homogeneous system, for all values of
Nint (c.f. also Figure 3), and the effect of varying σ is the largest at
intermediate values of Nint.

From the discussion in Section 3.2, it became clear that the
initial conditions play a relevant role in determining the final
outcome of the language competition in the homogeneous
system. This is also true in the case of heterogeneous
populations, as observed from Figures 2C, D and from
Figure 6. In the case of equal initial population sizes, NX (0) =
NY(0) = 0.5, equal fractions of X- and Y-monolinguals become
bilingual. If the interaction frequency is low, e.g., Nint = 8, at
equilibrium, relatively large X- and Y-monolingual populations
coexist with a small bilingual community. The size of the formed
bilingual population increases as the interaction frequency Nint

increases; Figure 6 shows the results for NX (0)/NY(0) = 50/50 for
three different values of Nint. If the ratio NX (0)/NY(0) is
increased, i.e., X becomes the majority language and Y

FIGURE 5
(Symmetrical case). Final population composition versus σ for
three values of Nint; NX (0)/NY(0) = 60/40. The thin green horizontal
lines are a guide to the eye corresponding to the case σ = 0.

FIGURE 6
(Symmetrical case, heterogeneous population). Final speakers’
compositions as a function of NX (0)/NY(0) for different values of Nint.
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becomes the minority language, the final population composition
tends to be more and more dominated by majority language X, as
shown in Figure 6. ForNX (0)/NY(0) ≳ 80/20, minority language Y
becomes extinct, unless the interaction frequency is very low
(Nint = 8). In the low interaction limit, the two language
populations remain practically isolated from one another and
can, in this way, coexist.

3.4 Asymmetrical learning difficulty

So far, we mostly concentrated on the symmetrical case KX = KY

≡ K. Next, we examine in detail the asymmetrical case when KX ≠ KY,
i.e., the two competing languages have different degrees of learning
difficulty.

From conditions (8)–(9) for the homogeneous population, it is
clear that the asymmetry between the parameters KX and KY induces
asymmetry also in the critical fractions NX* , NY* , e.g., for KX > KY,
also NX* >NY* (c.f. Figures 2A, B). Therefore, the asymmetry in the
language learning difficulty implies that in order to preserve a
monolingual community of the language that is more difficult to

learn and to induce, at the same time, the transition of the other
(minority) language speakers into bilinguals, its minimal initial
population fraction has to be larger with respect to the
symmetrical case. Similar trends are also present for the
heterogeneous systems (c.f. Figures 2C, D). In practice, this
means that the more difficult a language is for the learners, the
harder it is to integrate the foreign language community members,
e.g., immigrants, and the smaller should their proportion in the
population be, or/and some measures should be taken to favor the
learning of the local language in order to avoid the formation of
linguistically isolated communities.

Figure 7 presents the results for a heterogeneous system
characterized by the parameter values summarized in Section
3.1 and with NX (0) = NY(0) = 0.5. In this figure, the value of
KX is increased from KX = KY (corresponding to the symmetrical
case) up to KX = 6KY in order to observe how the asymmetry in the
language learning difficulty influences the language competition
outcome. As observed already in Figure 6, for NX (0) = NY(0) and
KX = KY, in the final state, NX = NY and the fraction of bilinguals
increases with increasing values of Nint. Now, when KX > KY (see
Figure 7), the final fractions of X-monolinguals and bilinguals are
decreased with respect to the symmetrical case, while NY(tfin) is
increased; the larger the Nint is, the larger the influence of
asymmetry. However, increasing the asymmetry between the
language learning difficulties beyond KX/KY ≈ 3 does not
substantially influence the results. For KX/KY = 3, in order to
become bilingual within the time interval TK, a speaker of language
Y should practice language X, on average, 21 times per day.
Comparing this with the number of average daily interactions
(Nint ∈ [8, 24]), it is obvious that the task is very hard for any agent.
Therefore, the monolinguals of language Y will remain
monolinguals of their mother tongue and NY(tfin) ≈ NY(0) = 0.5
for all studied values of Nint. Instead, the monolinguals of language
X will become bilingual, the final fraction of bilinguals being larger
for larger Nint values. In fact, for Nint = 24, almost all monolinguals
of language X will turn into bilinguals, leaving only a very small
fraction of X-monolinguals in the system.

Figure 8 illustrates the case where the initial populations have
different sizes and set NX (0)/NY(0) = 60/40. However, we now
vary the value of KX so that the ratio KX/KY goes from 1/7 to 4

FIGURE 7
(Heterogeneous system). Final population composition versus
KX/KY (KY = 5110) for three values of Nint; NX(0)/NY(0) = 50/50.

FIGURE 8
(Heterogeneous system). Final population composition versus KX/KY (KY = 5110) for different values of Nint; NX(0)/NY(0) = 60/40.
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(i.e., we go from the case where minority language Y is seven
times more difficult to learn for monolinguals of language X than
majority language X for monolinguals of Y, to the symmetrical
case corresponding to KX/KY = 1, up to the case where majority
language X is three times more difficult to learn for
monolinguals of Y than minority language Y for
monolinguals of X). Figure 8 shows that for all studied values
of Nint, an increase in KX/KY, i.e., the learning difficulty of
language X, leads to a decrease in NX, as expected, and an
increase in NY and NZ. It should be noted that while in the
case NX (0)/NY(0) = 50/50, an increase of KX/KY leads to a
decrease in bilinguals (see Figure 7), in the case NX (0)/NY(0) =
60/40, the fraction of bilinguals, instead, increases.

4 Conclusion

In this paper, we developed an agent-based three-state language
competition model that incorporates elements mimicking language
learning and retention and the underlying memory processes.

We showed that upon including memory in a Minett–Wang-
type model with a population of speakers having homogeneous
linguistic skills, the final outcome of the language competition can be
1) the extinction of one of the competing languages; 2) the
coexistence of two isolated language communities; and 3) a state
where the minority language survives due to the bilingual speakers.
Which of the three possible scenarios is realized depends on the
initial population composition, the parameters that determine
learning/attrition (among which is the asymmetry between the
language learning difficulties), and the interaction frequency
between individuals.

The results of our study suggest that while language prestige is
certainly crucial for language shift and in determining the outcome
of language competition, memory effects may also play a critical
role, and their relative importance versus prestige may depend on
the specific features of the system under consideration.

Another relevant issue addressed in the present work concerns
the impact of heterogeneity on language dynamics models. We
showed that the outcome of language competition depends, in
addition to other parameters, on the level of population diversity
in terms of language learning and retention skills. In fact, adding
heterogeneity to the model significantly changes the time evolution of
population fractions and the final population composition. Diversity
also allows us to observe, differently from the corresponding
homogeneous system, a final equilibrium state where all three
linguistic groups—the two monolingual and the bilingual
groups—are present. Therefore, we conclude that, in addition to
the learning and retention processes, the impact of heterogeneity
on language dynamics deserves a broader investigation.
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