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We benchmark Quantum Annealing (QA) vs. Simulated Annealing (SA) with

a focus on the impact of the embedding of problems onto the di�erent

topologies of the D-Wave quantum annealers. The series of problems we study

are especially designed instances of the maximum cardinality matching problem

that are easy to solve classically but di�cult for SA and, as found experimentally,

not easy for QA either. In addition to using several D-Wave processors, we

simulate theQA process by numerically solving the time-dependent Schrödinger

equation. We find that the embedded problems can be significantly more

di�cult than the unembedded problems, and some parameters, such as the

chain strength, can be very impactful for finding the optimal solution. Thus,

finding a good embedding and optimal parameter values can improve the

results considerably. Interestingly, we find that although SA succeeds for the

unembedded problems, the SA results obtained for the embedded version

scale quite poorly in comparison with what we can achieve on the D-Wave

quantum annealers.

KEYWORDS

quantum annealing, simulated annealing, benchmarking, maximum cardinality

matching problem, minor embedding

1 Introduction

In theory, quantum computing has the potential to yield significant, potentially even

exponential, speed-up compared with the best known algorithms of traditional computing.

Whether quantum computing can meet these high expectations is not yet clear. The

current technological state of the art only allows for rather modest results: Even though

some computing advantage has been shown on some corner cases (Arute et al., 2019;

King et al., 2021), no computing advantage that is relevant for practical applications has

been shown so far, and although successful application of quantum error correction has

been reported (Ryan-Anderson et al., 2022; Takeda et al., 2022; Acharya et al., 2023), the

threshold for fault-tolerant quantum computing has not yet been reached.

However, especially when focusing on the field of optimization, there exist quantum

processors that do not rely on quantum gates but on Quantum Annealing (QA)—

the natural time evolution of a “programmable” quantum system—to find a solution

of an optimization problem. The Canadian company D-Wave Systems Inc. builds and

commercializes such quantum processors comprising over 5,000 qubits. As these types

of quantum computers act as optimizing black boxes, an important aspect from a user

perspective is to characterize the quality of the outcome. Furthermore, such benchmarking
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activities are of high interest for commercial and scientific

prospects. There are several aspects of benchmarking:

(i) One aspect is the investigation of whether or not quantum

effects are at play in the annealing process of the D-

Wave processors. Studies with this aim were conducted by

comparing D-Wave data with (simulated) QA and classical

models often including, among others, Simulated Annealing

(SA). Such studies either showed that previously considered

classical models cannot reproduce the D-Wave results,

for instance for freeze-out time vs. temperature (Johnson

et al., 2011), for success probability distributions over many

random spin glass instances (Boixo et al., 2014), and for

the non-uniform probability of degenerate ground states of

specially crafted problem instances where the probability

of one ground state is suppressed in the quantum case

and enhanced for SA (Boixo et al., 2013; Albash et al.,

2015) or introduced another classical model such as noisy

Boltzmann distributions (Chancellor et al., 2022), classical

spin dynamics (Smolin and Smith, 2013), and spin-vector

Monte Carlo (SVMC, also called SSSV model—from Shin

Smith Smolin Vazirani) (Shin et al., 2014), which shows

agreement with the studied D-Wave data.

(ii) A second aspect is the comparison between different

generations of processors to judge possible improvements.

Previous studies compared D-Wave 2000Q and Advantage

system (Calaza et al., 2021; McLeod and Sasdelli, 2022;

Willsch et al., 2022a), D-Wave 2000Q, Advantage system and

Advantage2 prototype (Pelofske, 2023), and D-Wave Two, D-

Wave 2X, D-Wave 2000Q, and Advantage system (Pokharel

et al., 2021).

(iii) Another aspect is the search for quantum speedup (Rønnow

et al., 2014) and investigations of the performance of quantum

processors in comparison to classical algorithms. Studies

were performed for academic instances such as random spin

glasses (Rønnow et al., 2014), specially crafted problems with

or without planted solutions (Hen et al., 2015; King et al.,

2015; Albash and Lidar, 2018; Vert et al., 2020; McLeod and

Sasdelli, 2022), a variety of problems with different level of

difficulty (Jünger et al., 2021; McGeoch and Farre, 2023) and

problems with industrial application such as the multi-car

paint shop problem (Yarkoni et al., 2021), job shop scheduling

problem (Carugno et al., 2022), and Earth-observation satellite

mission planning problem (Stollenwerk et al., 2021). Studies

benchmarking QA against classical algorithms comprise

annealing-like algorithms such as SA (Rønnow et al., 2014;

Hen et al., 2015; King et al., 2015; Albash and Lidar, 2018; Vert

et al., 2020; Yarkoni et al., 2021; Carugno et al., 2022; McLeod

and Sasdelli, 2022; Ceselli and Premoli, 2023; McGeoch and

Farre, 2023), parallel tempering (McGeoch and Farre, 2023),

simulated QA and SVMC (Hen et al., 2015; Albash and Lidar,

2018), and heuristic algorithms such as Tabu search (McGeoch

and Wang, 2013; Yarkoni et al., 2021; Carugno et al., 2022),

Hamze-de Freitas-Selby algorithm (Hen et al., 2015; King

et al., 2015), or greedy algorithms (Yarkoni et al., 2021;

Carugno et al., 2022; McGeoch and Farre, 2023), as well as

exact solvers (McGeoch and Wang, 2013; Jünger et al., 2021;

Stollenwerk et al., 2021; Ceselli and Premoli, 2023).

Benchmarking QA by comparing it to SA is a common

approach since these two meta-heuristics share some similarities,

SA being inspired by statistical physics and QA relying on quantum

processes to achieve an optimization. In essence, SA (slowly)

converges toward a Boltzmann-like distribution with a high

probability of sampling low-cost solutions, whereas QA attempts

to converge toward a quantum state which contains with high

probability the low-energy states of an Hamiltonian. SA works well

for a variety of problems, including NP-hard problems, to obtain

a solution of reasonably good quality without spending too many

computational resources.

In this study, we extend previous study on earlier generations

of the D-Wave quantum processors in which QA was compared

with SA on a specially crafted series of problems that are known

to be asymptotically difficult for SA: the Gn series of the Maximum

Cardinality Matching (MCM) problem. In Vert et al. (2020) and

Vert et al. (2021), this problem was studied on the D-Wave 2X

processor and showed how the sparse connectivity of this particular

machine adds to the difficulty of solving this series of problem.

In McLeod and Sasdelli (2022), the same problem was studied,

and it was pointed out that the Gn series may be exponentially

difficult for the QA meta-heuristic as well, as preliminary results

indicated that the spectral gap could decrease quickly in this series

of problem. Indeed, the spectral gap is an important element in

deciding if a given problem requires a long annealing time to reach

the solution with a high probability.

In this study, we extend the study of the Gn series further:

• We added the results obtained from simulating the ideal QA

process on conventional computers to assess how problem

difficulty is affected by the embedding procedure even under

ideal conditions.

• We provide some order of magnitude estimation to

check that intrinsic precision limitations of the D-

Wave processor are not the main cause of error up to

the largest problem which was possible to map onto

these processors.

• We compare the results including improved embeddings

between several generations of the D-Wave quantum

processing units (QPUs), which have different levels of

connectivity, to investigate improvements between the

different generations and assess the performance gain due to

the higher connectivity.

• We show that the embedding is a sensitive parameter for the

quality of the results obtained from the QPUs by studying the

performance of SA using the same embedded instances on the

D-Wave processors.

Using several approaches (ideal QA, QA on different

generations of processors, and SA), we present a extensive study to

demonstrate that the minor embedding required to map a problem

instance onto the quantum processors can increase the difficulty of

the problem significantly.

The outline of the study is as follows: First, in Section 2, we

introduce the theoretical background and the applied methods

relevant for the study. Second, we show and discuss the results of

several experiments in Section 3 before concluding our study in

Section 4.
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2 Theoretical background and
methods

In this section, we introduce basic concepts to understand the

important ideas of this study and outline why a particular series of

problems aimed at theoretically probing the worst-case complexity

of SA which is relevant to test some aspects of QA. Therefore,

in this section, we briefly introduce the key concepts of SA, the

MCM problem, and QA with a focus on how it is implemented and

what are the concrete limitations of its implementation on D-Wave

quantum processors.

2.1 Simulated annealing

SA is a probabilistic meta-heuristic algorithm that is commonly

used for solving optimization problems (Kirkpatrick et al.,

1983). The name “annealing” comes from the annealing

process in metallurgy, and the idea is strongly inspired by

statistical physics.

In SA, an initial solution is randomly generated, and

the algorithm gradually explores the search space by making

small changes to the solution. The algorithm can even accept

these changes in detrimental cases with a probability that

decreases over time, i.e., with a parameter corresponding

to temperature, similar to a cooling process. This allows

the algorithm to escape local optima and search for

better solutions.

SA has been used to solve a wide range of optimization

problems, including the Traveling Salesman Problem (TSP),

scheduling problems, and other NP-hard problems. It is

particularly useful for problems where the search space

is large and the objective function is noisy or difficult

to evaluate.

One of the key advantages of SA is that it can find a

good solution even if the objective function has multiple local

optima. However, it can be slow to converge, and it may

require a large number of iterations to find a good solution.

Additionally, the performance of the algorithm can be sensitive

to its parameters, such as the cooling schedule and the acceptance

probability function.

As SA has been around for so long, there is no need to

further introduce the general method but rather to specify the key

free parameter choices for reproducibility. In our case, we have

used a standard cooling schedule of the form Tk+1 = 0.95Tk

starting at T0 = |c0| (c0 is the high cost of the initial random

solution) and stopping when T < 10−3. The key parameter of

our implementation, however, is the number of iterations of the

Metropolis algorithm running for each k at constant temperature

which we set to n and n2 (where n denotes the number of

variables in the QUBO). For n iterations per plateau of temperature,

the algorithm is very fast but the Metropolis algorithm has less

iterations to reach its stationary distribution, and hence, the

algorithm is expected to provide lower quality results. On the other

end of the spectrum, n2 iterations per plateau means that one can

expect high-quality results, but the computation time is then much

more important.

2.2 Quantum annealing principles and
D-wave processors

Like SA, QA is a meta-heuristic, but instead of being inspired

by statistical physics, QA lays its base on quantum physics. While

first intended as a variation of SA where thermal fluctuations are

replaced by quantum fluctuations (Finnila et al., 1994; Kadowaki

and Nishimori, 1998), in case of a closed system, QA can also be

understood by the adiabatic theorem of quantummechanics (Farhi

et al., 2000; Albash and Lidar, 2018). More accurately, a specific

utilization of the adiabatic theorem applies: If a quantum system is

prepared in an initial state that is the ground state of a Hamiltonian,

and if the Hamiltonian is slowly and continuously changed over

time, the system will remain in the instantaneous ground state of

the Hamiltonian throughout the evolution. The time of the total

process from the initial (or “driver”) Hamiltonian to the final one is

known as the annealing time tA.

Let H0 denote the initial (driver) Hamiltonian and Hf the

final one. For A(s) and B(s), respectively decreasing and increasing

functions of s = t/tA with support in the interval [0, 1] so that

A(0)≫ B(0) and A(1)≪ B(1),

H(t) = A(t/tA)H0 + B(t/tA)Hf

interpolates between H0 and Hf . A usual illustration is given by

using a linear ramp:

H(t) =

(

1−
t

tA

)

H0 +
t

tA
Hf

In QA, the system is initialized in the ground state of a

simple Hamiltonian H0, and the Hamiltonian is slowly changed

to Hf that encodes the cost function of interest. In theory, the

adiabatic theorem ensures that the system remains in the ground

state throughout this process, allowing the cost function to be

effectively minimized.

In the case of D-Wave quantum annealers,H0 andHf are given

as follows:

H0 =−

N
∑

i=1

σ x
i , (1)

Hf =

N
∑

i=1

hiσ
z
i +

∑

(i,j)

Ji,jσ
z
i σ

z
j , (2)

where σ x
i and σ z

i are the Pauli x- and z operators, N is the number

of qubits, and the summation index (i, j) indicates that the sum is

over pairs of qubits that are connected on the hardware. The initial

quantum state |ϕ0〉 =
⊗

i |+〉 is the uniform superposition of all

basis states in the z-basis or equivalently the state with all spins

aligned with the x-axis. The final solution is a vector of spins s with

si ∈ {−1, 1} aligned with the z-axis.

The Ising Hamiltonian Equation (2) is formally and bijectively

a Quadratic Unconstrained Binary Optimization (QUBO) problem

formulation. Therefore, finding the energy of the fundamental state

of Hf is equivalent to solving a QUBO problem, which is in the

general case an NP-hard problem. Since NP-complete problems

are polynomially reducible to one another (Garey and Johnson,

1979), many NP-hard problems such as the TSP or many logistics
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and other important optimization problems can be expressed as

a QUBO formulation. However, this is easier said than done as

finding quadratic reformulations allowing faster resolution for

some NP-hard problems is still an active domain of research in

the Operations Research community (see Anthony et al., 2017 for a

recent reference). A few important examples are further presented

in Lucas (2014).

A QUBO problem is defined as follows:

min
x∈{0,1}N

(C(x) = xtQx) ,

where C(x) is the cost function to be minimized, x is a binary vector

with xi ∈ {0, 1}, and Q is a matrix inMN×N(R). It is worth noting

that Q is often expressed as an upper triangular matrix, although it

is not mandatory. Note that constrained quadratic binary problems

can also be transformed to QUBO if constraints are incorporated

into the cost function as soft constraints (Lucas, 2014).

2.2.1 The embedding problem on D-Wave
machines

Coupling coefficients of the Ising problem can only be set

to values different from zero if the physical connection between

the qubits exists. The connectivity between qubits on D-Wave

quantum processors is given by a sparse graph which is different

for the three generations of devices that we benchmark in our

present study. The architecture of the connectivity graph in the

DW_2000Q Quantum Processing Unit (QPU) is called “Chimera.”

The average number of connections per qubit is equal to 6, and

the number of qubits of DW_2000Q processors is slightly more

than 2,000. The topology on the current D-Wave Advantage series

is called “Pegasus,” and it has an average of 15 connections per

qubit. Advantage processors have more than 5,000 qubits (the

exact number varies between processors). The latest generation

topology, which will be available in the future Advantage2 QPU and

is already available in a prototype processor, is called “Zephyr” and

has an average of 20 connections per qubit. While the Advantage2

will have more than 7,000 qubits, the prototype only comprises

approximately 500 qubits.

As the number of connections per qubit is low compared

with the number of available qubits in any D-Wave QPU (e.g., 15

connections for over 5,000 possible destination qubits), the graph

defined by the connections of a given Ising or QUBO problem

is rarely isomorphic to (a subgraph of) the hardware topology.

To circumvent the connectivity problem of the QPU, it is often

required to combine several physical qubits to form a single logical

qubit with an effectively higher connectivity to represent a given

logical variable of the problem (Choi, 2008, 2010). These sets

of physical qubits, also called a qubit chain, have to act like a

single qubit to produce valid outputs. To achieve this, a strong

ferromagnetic coupling is applied between them. Such a procedure

in which multiple qubits of the QPU are used to constitute a

logical variable of the target problem is called minor embedding.

The D-Wave Ocean SDK (D-Wave Systems Inc, 2023a) provides a

heuristic algorithm to generate aminor embedding for a given Ising

(or QUBO) problem. The coupling strength of the ferromagnetic

coupling between the physical qubits of a qubit chain is called chain

strength, and this hyperparameter can be set by the user.

The value of the chain strength has to be chosen carefully (Choi,

2008; Raymond et al., 2020). If the chain strength is chosen too

weak, low-energy solutions of the embedded problem might favor

solutions where qubit chains are broken, i.e., physical qubits that

represent the same logical variable have different values. In such

a case, post-processing has to be applied to obtain a valid logical

variable from the physical qubits, but the resulting bitstring does

not necessarily have to be a low-energy solution of the original

problem. If the chain strength is chosen too strong, all qubit chains

act as one logical variable but their actual value might be random.

This is due to the limited range and precision of the hi and Jij values.

The problem has to be rescaled too much so that the hi and Jij
values become too small (i.e., below the precision limit) so that all

valid solutions get too close and, thus, difficult to separate, leading

to random outcomes. Moreover, in principle, the chain strength

should be optimized to find the sweet spot (Grant and Humble,

2022). The default procedure “uniform torque compensation” (D-

Wave Systems Inc, 2023b) provided in the Ocean SDK may (see

Chen et al., 2021) or may not (see Carugno et al., 2022) work

well enough.

Here, we use the relative chain strength r, i.e., we scan the chain

strength by setting it to sc = rm in relation to the maximum

value m = max(maxi |hi|, maxij |Jij|), occurring in the particular

problem instance.

2.2.2 Searching for better embeddings
Finding an optimal embedding generally is computationally

intractable in the worst-case: When both the application graph

and the hardware topology are part of its input, the problem is

NP-hard [even when the set of topologies is limited to subgraphs

of the Chimera or Pegasus graphs (Lobe and Lutz, 2021)]; when

the hardware topology is fixed, the problem becomes polynomial

but the large constants hidden in the big-O do not lead to

practical algorithms (Roberston and Seymour, 1995). Therefore,

generating an optimal embedding would annihilate any possible

quantum advantage a QPU would provide. Nonetheless, quickly

finding a good-enough embedding is required to try and solve any

given problem on a D-Wave quantum annealer. Finding a good

embedding can be advantageous because it reduces the complexity

of the problem to solve on the QPU and may reduce the number

of utilized qubits (Gilbert and Rodriguez, 2023) while taking

potentially more time on the classical computer to be generated.

From our experiments, we find that the embeddings generated

by the default heuristic provided in D-Wave’s Ocean library can be

quite far from optimal. Nonetheless, it has the advantage of ease of

use so that it does not overly complicate the procedure of solving a

problem on the QPU.

We try and probe what kind of gain can be achieved by looking

at better embedding results.We note that we do not aim for a highly

optimized embedding here but for a reasonably good one to assess

the performance improvement compared with a randomly picked

embedding of potentially poor or average quality. Themethodology

we utilize here is to use a large number of different seeds for

the Ocean’s embedding procedure to generate many different

embeddings (between 100 for the larger instances and up to 500

for the small ones) and select the best outcome of this process. For
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FIGURE 1

An illustration of the (A) G1, (B) G2, (C) G3 maximum cardinality

matching problems. The maximum matching is reached when all

edges are selected in the sparse parts of the graph (in green).

all except the smallest problem size, we utilized the most obvious

measure to estimate the quality of the embedding, namely, the

number of qubits required by the embedding. Another option

would be to also try to deduce the lengths of qubit chains. Trying

to avoid particularly noisy parts of the QPU could be an additional

consideration. For the smallest problem size, we could not apply

either of the first two measures as all embeddings require eight

physical qubits (on Pegasus and Zephyr topologies), which equal

the number of the logical variables (i.e., no minor embedding is

required). We show and discuss the results obtained from the QPU

with these improved embeddings in Section 3.2.2 below. Of course,

this modus operandi would not be considered for any consistent

quantum advantage as such because of the amount of required pre-

processing. However, used for benchmarking purposes, it can show

the influence of the quality of the embedding.

2.3 The maximum cardinality matching
problem

Given an undirected graph (V ,E) where V is a set of vertices

linked by a set of edges E ⊂ V × V , the MCM problem is a

combinatorial optimization problem aimed at finding the highest

number of edges |Ẽ|, Ẽ ⊆ E, such that each vertex V is linked by

at most one edge e ∈ Ẽ. While being a combinatorial problem, this

problem is polynomial.

To demonstrate explicitly the slow convergence of SA in some

cases, in 1988, Sasaki and Hajek (1988) devised a series of special

variants of this class of problem called the Gn series. This particular

series of problem instances is trivial to solve, but it is demonstrated

to be exponentially hard to solve by utilizing SA.

The simplest problem of the series is the G1 problem with only

eight edges and one densely connected subgraph. Each increment

in the series adds one new line of vertices and edges and one new

densely connected subgraph. Therefore, G2 adds 10 vertices and 19

edges resulting in 18 vertices and 27 edges. Only nine of these edges

constitute the optimal solution. To summarize, for each instance of

the Gn series, there are 2(n + 1)2 vertices and (n + 1)3 edges but

only (n + 1)2 edges in the optimal subgraph. Thus, the probability

of selecting an adequate edge in the random selection operated by

SA vanishes quickly. This provides a hint as to why this series of

problem instances is exponentially difficult to solve for SA. Figure 1

provides an illustration of the G1, G2, and G3 problems.

2.3.1 QUBO formulation
The MCM problem is a problem with constraints, and

therefore, the MCM problem and the Gn series have to be

transformed to a QUBO problem that can be executed on D-Wave

machines. There are three steps required for this transformation.

The first step is to associate relevant aspects of the original

problem with binary variables, the second step is to find the cost

function and constraints separately, and the third step is to add the

constraints as soft constraints by incorporating them as penalties in

the cost function.

The first two steps are usually closely related and also

performed when the problem is solved classically with linear

programming. The obvious choice for the binary variables, as we

aim to maximize the number of edges in the graph, is to associate

the binary variable xe with the fact that a given edge e ∈ E is selected

for the matching (xe = 1) or not (xe = 0). Then, the cost function

to be maximized would be C0(x) =
∑

e∈E xe, where E, as already

defined, is the set of the edges of the Gn graph. The constraints are

such that, for each vertex ν, at most one of its associated edges is

selected:
∑

e∈Ŵ(ν) xe ≤ 1, where Ŵ(ν) ⊆ E denotes the set of edges

associated to vertex ν. Under the additional assumption that any

maximum matching is a perfect one (which is the case for the Gn

family of graphs), the penalty terms added to the cost function are

then C1 = λ
∑

ν∈V

(

1−
∑

e∈Ŵ(ν) xe
)2

with λ > 0 and which are

zero if and only if all vertices are associated with one and only one

selected edge.

By constructing the total cost function Ct(x) = −C0(x)+ C1(x)

so that the cost is minimized when the solution is found, the

following is obtained for the coefficients of the Qmatrix:

qee′ =















−1− 2λ if e = e′

2λ if e 6= e′ ∧ ∃ν∈ V:(e ∈ Ŵ(ν) ∧ e′∈ Ŵ(ν))

0 else .

By choosing λ = |E| as |E| ≥
∑

e∈E xe, we ensure that the

configuration with the minimal cost satisfies the soft constraints.

As an illustration, Figure 1 shows the graph for G1, and the

associated QG1 matrix is given by:

QG1 =











−17 0 16 16 0 0 0 0
−17 0 0 16 16 0 0

−17 16 16 0 16 0
−17 0 16 0 16

−17 16 16 0
−17 0 16

−17 0
−17











.

It is easy to verify that the cost of the optimal solution is CGn (xopt) =

−(n + 1)2 − 2(n + 1)5, where −2n(n + 1)5 is an offset introduced

by neglecting the constant term of C1 which is irrelevant to

the optimization.
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FIGURE 2

Annealing schedules of the DW_2000Q_6 (light and dark blue,

dash-dotted), Advantage_system4.1 (light and dark green, solid), and

Advantage2_prototype1.1 (red and orange, dashed) QPUs as well as

a linear annealing schedule (pink and purple, dot-dash-dotted).

2.4 Principles of ideal quantum annealing
simulation

We simulate the (ideal) QA process by solving the time-

dependent Schrödinger equation (h̄ = 1)

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉

numerically, where |ψ(t)〉 denotes the state vector. For this, we

use the Suzuki-Trotter product-formula algorithm (Trotter, 1959;

Suzuki, 1976, 1985; De Raedt, 1987; Huyghebaert and De Raedt,

1990). This method yields a full state vector simulation of an

ideal, closed system, i.e., we have direct access to the theoretical

success probability, and we do not need to acquire an estimate

from sampling. For the decomposition of the Hamiltonian, we use

H(t) = A(t/tA)H0 + B(t/tA)Hf , with A(s = t/tA) and B(s = t/tA)

either linear annealing schedules or the annealing functions of

the particular D-Wave processor that we simulate. All annealing

schedules are shown in Figure 2, and H0 and Hf are given in

Equations (1, 2), respectively.

Since the memory requirement to store the full state vector

grows exponentially, specifically with 2N with N number of qubits,

we have to use supercomputers with distributed memory to

simulate systems withmore than 30 qubits. The communication via

the Message Passing Interface (MPI) follows the same scheme that

is used for the gate-based quantum computer simulator JUQCS (De

Raedt et al., 2007, 2019; Willsch et al., 2022b). The code utilizes

OpenACC and CUDA-aware MPI to be run on GPUs. To speed

up the simulation, we also run the 27-qubit cases on 4 GPUs (on

one node).

The ideal QA simulation can be used to compare aspects of the

D-Wave processors which are inaccessible on the real devices. For

instance, we can compare the different annealing schedules of the

processors without the need to apply minor embedding since in the

simulation, we have all-to-all connectivity between the qubits.

FIGURE 3

Success probability for the G1 graph (open markers) and the G2

graph (filled markers) as a function of annealing time for the

DW_2000Q_6 (blue squares), Advantage_system4.1 (green circles),

Advantage2_prototype1.1 (orange up-triangles), and linear (purple

down-triangles) annealing schedules. No embedding is used for

these simulation results.

3 Results and discussion

We present and discuss our results from QA simulation and

QA on three generations of D-Wave processors and compare them

with the results from SA. Note that most of the raw data utilized

here and program to generate them are available in Benchmarking

QA with MCM and problems (2023).

3.1 (Ideal) quantum annealing simulation

3.1.1 Influence of the annealing schedule
The shape of an annealing schedule influences the performance

of a QA device and optimizing the annealing schedule is an active

field of research (Farhi et al., 2002; Morita, 2007; Zeng et al.,

2016; Brady et al., 2021; Mehta et al., 2021; Susa and Nishimori,

2021; Venuti et al., 2021; Chen et al., 2022; Hegde et al., 2022,

2023). The D-Wave annealing schedules are partly dictated by the

hardware as the functions A and B cannot be chosen completely

independently (Harris et al., 2010). We illustrate the influence of

the annealing schedule on the difficulty of the problem exemplarily

for the G1 and G2 graphs.

Figure 3 shows the success probability as a function of

annealing time for four different annealing schedules. Three

annealing schedules are taken from the DW_2000Q_6,

Advantage_system_4.1, and Advantage2_prototype1.1 QPUs,

the fourth is a linear one, and they are shown in Figure 2.

Since the results are obtained from (ideal) simulation of the

QA process, no embedding is required regardless of the annealing

schedule. Thus, differences in success probability are only due to

the different annealing schedules. We find that using the linear

annealing schedule requires a much shorter annealing time to reach

the same success probabilities than using the D-Wave annealing
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FIGURE 4

Energy E1(s)− E0(s) between the ground state and the first excited

state for the G1 graph as a function of the anneal fraction s. (A) The

DW_2000Q_6 annealing schedule is used. (B) The

Advantage_system4.1 annealing schedule is used. (C) The

Advantage2_prototype1.1 annealing schedule is used. (D) The linear

annealing schedule is used.

schedules, which also show different performances: For the G1 and

G2 graphs, using the DW_2000Q_6 annealing schedule performs

better than using the Advantage2_prototype1.1 annealing schedule

which performs better than the Advantage_system_4.1 annealing

schedule. More subtle is the observation that by going from the

G1 to the G2 problem, the required annealing time to reach a fixed

success probability increases more for the DW_2000Q_6 annealing

schedule than for the others.

The influence of the annealing schedule onto the difficulty of

the problem can also be observed in the energy spectrum: The

energy gap between the ground state and the first excited state

can differ quite significantly between different annealing schedules.

This is presented for the G1 problem in Figure 4. The different

panels show the energy gap during the annealing process for the

DW_2000Q_6, Advantage_system4.1, Advantage2_prototype1.1,

and linear annealing schedules for the same problem instance.

Obviously, the energy gap between the ground state and the excited

state is much smaller for the Advantage_system4.1 annealing

schedule, which means the G1 problem is then harder to solve,

resulting in the longer annealing times required to achieve the

same success probabilities as with the other annealing schedules.

This might be different for other problems but especially for

small and/or sparse problems, it was observed that DW_2000Q

processors could achieve a better performance than Advantage

processors (Calaza et al., 2021; Willsch et al., 2022a).

3.1.2 Influence of the embedding
To study the influence of the embedding on the performance,

we consider three different embeddings for the G1 problem. To

exclude the influence of the annealing schedule, we only use the

DW_2000Q_6 annealing schedule for all embeddings. We perform

a scan of the relative chain strength and the annealing time.

The results are shown in Figure 5. On the left, we show the

results of a scan of the relative chain strength for three different

embeddings which require a different number of chains of different

lengths. The embeddings onto their respective topologies are shown

in Supplementary material. We normalize the problem to keep the

values for h in the range [−2, 2] and the values for J in the range

[−1, 1] as is the standard on DW_2000Q QPUs. Depending on the

embedding, the maximal relative chain strength rscalemax which does

not require further (compared with the unembedded problem)

rescaling of the h and J parameters can be different. The minimal

relative chain strength rsolmin for which the solution state is also

the ground state depends on the embedding too. The relation

between these two chain strengths is different for all three cases

that we consider. Thus, the curves exhibit different features. For

the embedding onto the Chimera topology with 4 chains of length

2, which we label by (i), rsolmin > rscalemax , the maximum success

probability is reached for relative chain strengths larger than rsolmin

and rscalemax . For the embedding onto the modified Chimera topology

with 2 chains of length 2, which we label by (ii), the solution state

is always the ground state and the success probability is maximal

for relative chain strengths smaller than rscalemax . For the embedding

onto the square grid with 2 chains of length 3, which we label by

(iii) rscalemax > rsolmin, the maximum lies between rscalemax and rsolmin. For

embeddings (i) and (iii), there is a minimal relative chain strength

one has to choose to achieve success probabilities significantly

larger than zero. Due to the rescaling of the h and J parameters,

one cannot choose an arbitrarily large relative chain strength as the

success probability also drops for large values.

The right column in Figure 5 shows the success probability as

a function of annealing time for different relative chain strengths.

We consider for the success probability only the solution state

without broken chains. This corresponds to discarding all samples

with broken chains. Here, we include chain break fixes by majority

vote (labeled by “mv” in the legend), i.e., we assign to the logical

variable the value of the majority of the qubits in a chain. If the

numbers in a chain is equal, we multiply the probability of this

particular state by 0.5 for each such chain. For the first and second

embeddings, the improvement by including chain break fixes is

marginal. For embedding (iii), however, the chain break fix by

majority vote can improve the performance a lot so that the success

probability after majority vote gets close to the success probability

without embedding. This might be surprising at first as the chain

length is largest for this case (3 compared with 2 for the other 2

embeddings). However, if only one qubit is flipped in a chain of

length 3, majority vote fixes it with 100%, while for the chains of

length 2, the probability to fix the chain correctly is only 50%.

3.2 The Gn series on D-Wave quantum
processors

The first instances of the Gn series were run on several

generations of the D-Wave quantum annealer. Here, we present

our results obtained with the default embeddings and the improved
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FIGURE 5

Success probability for the G1 graph (A–C) as a function of the relative chain strength for di�erent annealing times indicated in the legend and (D–F)

as a function of annealing time for di�erent chain strengths indicated in the legend. The DW_2000Q_6 annealing schedule is used, and the rows

show di�erent embeddings. Only the solution state is counted as success; the results with broken chains are not considered unless indicated by “mv”

which means chains are fixed by majority vote. In case of the chains of length 2, the chance to fix a chain is 50%. The success probability for the

unembedded case is shown in gray for comparison. (A, D): Embedding onto the Chimera topology with 4 chains of length 2. (B, E): Embedding onto

a modified Chimera topology with additional couplers yielding 2 chains of length 2. (C, F): Embedding onto a square grid with 2 chains of length 3.

ones. For reference, Table 1 shows the number of variables and the

optimal energy for the graphs G1 to G7.

3.2.1 Results with default embedding procedures
D-Wave’s Ocean SDK (D-Wave Systems Inc, 2023a) provides a

heuristic procedure to generate minor embeddings of the problem

graph onto the hardware’s topology. We use 5–10 different seeds

for this heuristic embedding procedure to avoid obtaining an

unluckily bad embedding. Since the chain strength can have a

strong influence on the success rate, we scan the relative chain

strength and the annealing time as well to achieve high success rates

on the different processors. The chosen relative chain strength and

annealing time values are shown in the Supplementary material.

The results are shown in Table 2 for the

processors Advantage_system4.1, Advantage_system5.2,

Advantage_system6.1, DW_2000Q_6, and

Advantage2_prototype1.1. We obtain the optimal solution up to

G3 on the Advantage processors. For DW_2000Q_6, we obtained

the solution for G1 and G2. The required number of physical qubits

is much higher on this processor due to the sparser connectivity of

TABLE 1 Number of variables and optimal energies for G1 up to G7.

# var Opt

G1 8 −68

G2 27 −495

G3 64 −2064

G4 125 −6275

G5 216 −15588

G6 343 −33663

G7 512 −65600

the Chimera topology, and since this processor has approximately

2,000 qubits, we are able to find an embedding only up to G4 while

we can embed problems until G7 onto the Pegasus topology of the

Advantage_system processors with approximately 5,000 qubits.

The Advantage2_prototype1.1 with its Zephyr topology has an

even higher connectivity than the Advantage_system processors,

but we can only find an embedding up to G4 due to the limited

number of qubits which is approximately 500.
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TABLE 2 Results obtained on various D-Wave processors for the Gn series.

#qbs #Opt Best Worst Mean Median Stdev

G1

8 1,000 −68 −68 −68 −68 0

8 1,000 −68 −68 −68 −68 0

8 993 −68 −52 −67 −68 1.3

8 1000 −68 −68 −68 −68 0

13 998 −68 −51 −68 −68 0.7

G2

42 840 −495 −335 −486 −495 21.3

41 951 −495 −388 −492 −495 12.5

43 863 −495 −387 −487 −495 19.4

37 912 −495 −388 −490 −495 15.4

84 849 −495 −387 −488 −495 19.1

G3

144 9 −2, 064 −1, 171 −1, 736 −1, 683 140.9

144 15 −2, 064 −1, 298 −1, 802 −1, 808 125.8

150 27 −2, 064 −1, 423 −1, 773 −1, 808 127.7

121 110 −2, 064 −1, 551 −1, 884 −1, 936 104.6

315 0 −1, 937 −1, 295 −1, 608 −1, 554 98.5

G4

427 0 −5, 527 −3, 526 −4, 766 −4, 776 308.5

424 0 −5, 526 −3, 775 −4, 947 −5, 024 279.2

396 0 −5, 527 −3, 278 −4, 514 −4, 527 358.7

322 0 −5, 775 −4, 030 −5, 042 −5, 027 227.5

917 0 −5277 −3774 −4785 −4775 232.0

G5

923 0 −12, 994 −8, 676 −11, 122 −11, 266 733.4

952 0 −13, 428 −9, 114 −11, 779 −11, 702 615.9

987 0 −12, 997 −7, 817 −11, 396 −11, 271 686.9

G6

2,018 0 −27, 487 −18, 574 −23, 302 −23, 374 1, 463.9

1,853 0 −27, 489 −19, 943 −24, 008 −24, 058 1, 309.0

1,880 0 −27, 488 −17, 883 −23, 136 −23, 373 1, 528.0

G7

3,573 0 −51, 266 −31, 819 −41, 678 −42, 048 2, 807.0

3,562 0 −52, 284 −36, 921 −44, 852 −45, 113 2, 413.0

3,410 0 −50, 239 −34, 883 −43, 029 −43, 072 2, 827.0

For each graph, rows show the results on Advantage_System4.1, Advantage_System5.2, and Advantage_System6.1 (until G7) and Advantage2_prototype1.1 and DW_2000Q_6 (until G4 , resp.

gray background and gray background with bold font). The columns show the graph, the number of physical qubits (after minor embedding), the number of optimal solutions found, the best,

worst, mean and median energies, and the standard deviation of the energies obtained. The sample size is 1,000, and the used annealing times and relative chain strengths are given in the

Supplementary material.

Taking into account the results on the older generation D-Wave

2X processor which can be found in the study mentioned in the

reference (Vert et al., 2021), we find significant improvement from

D-Wave 2X (5.1%) to D-Wave 2000Q (84.9%) for the G2 graph.

For the G1 graph, all processors perform quite well, and there

is no significant difference in success rates between the different

generations. Similarly, there is not much difference in the success

rates between the D-Wave 2000Q and newer generations for the G2

graph, although the embedding onto the DW_2000Q_6 requires

approximately twice as many physical qubits as embeddings onto

the newer processors. For the G3 graph, neither D-Wave 2X nor

D-Wave 2000Q returned the optimal solution in our case, but

the “best” energy returned by the D-Wave 2000Q is lower than

the D-Wave 2X. We note that in the study mentioned in the

reference (McLeod and Sasdelli, 2022), D-Wave 2000Q was able to

return the optimal solution at least once. Advantage_system and

Advantage2 prototype processors were able to sample the optimal

solution several times, and with improved embedding (see below),

Advantage2 prototype even reached a success rate of approximately

50%. For G4, none of the tested processors returned the optimal

solution, and surprisingly, D-Wave 2X and the Advantage_system

processors all achieved (almost) the same “best” energy (unless an

improved embedding was used on Advantage_system4.1). McLeod

and Sasdelli (2022) also found the same “best” energy on the
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DW_2000Q processor, and a slightly lower “best” energy on

Advantage_system4.1 is very close to the one which we obtained

with the Advantage2 prototype processor. For graphs G5 and

higher, only embeddings onto the Advantage_system processors

were possible, and the results are compatible with each other. We

note that the values of the energies and the standard deviation are

stretched due to the choice of λ = |E| = (n + 1)3. Division

by λ (as is also done to fit the values into the parameter ranges

of the QPUs) would give more compact values and especially

standard deviations, which are more comparable among the

different instances. However, we decided not to divide by λ to keep

the easy comparison to the previous studies in Vert et al. (2021);

McLeod and Sasdelli (2022).

3.2.2 Results with improved embeddings
Table 3 shows the results of the Advantage_system4.1 QPU

from G2 to G7 for a random embedding and the improved

embedding (cf. Section 2.2.2). Table 2 shows the results of the

Advantage2_prototype1.1. The annealing time was set to 500µs,

and the chain strength values are shown in Supplementary material.

The Advantage2 prototype is a preview of what will be available

for the future Advantage2 full system. Its main limitation, when

compared with the planned release QPU, is the number of available

qubits which is only approximately 500 compared with the over

7,000 that are planned for the release-ready QPU. This limitation

means we can only test the chip up to G4.

We find that usually the solution quality is comparable;

however, there are cases (for instance G3) where the improved

embedding also leads to a significant improvement in the

solution quality (increased probability of finding the solution). The

number of utilized qubits for an improved embedding is typically

approximately 7% to 17% lower than the random one.

At first glance of Table 4, we can observe the number of

qubits required for the random embedding comes close to the

number of qubits required for the improved embedding of the

Advantage_system4.1. As can be expected, the results become

much better than what can be achieved on systems 2X and 2000Q.

The fact that the Pegasus architecture provides more

connections means that any heuristic for generating a better

embedding has more options and therefore the chance of finding a

good embedding is much higher. This can decrease the complexity

of finding a better heuristic for this particular QPU, hence greatly

improving the overall quality of the solutions.

3.3 Comparison of SA, ideal QA, and QA on
D-Wave processors

As the Gn series was especially crafted to probe the SA meta-

heuristic, it is also a potential good candidate to probe the QA-

based meta-heuristics. In this study, we did so with an ideal QA

process simulated from the Schrödinger equation on a standard

supercomputer, and we also completed a full set of experiments

on several generations of D-Wave’s quantum annealers. The latter

requires to take into account several parameters that can have

significant impacts on the results such as relative chain strength,

annealing time, and the particular embedding.

As stated in the study mentioned in Vert et al. (2021), finding

the optimal solution without the embedding for the Gn series

up to G7 is not difficult for SA with a relatively low number of

iterations. Nonetheless, taking the embedding into account, D-

Wave QPUs compare very favorably to SA. When using the same

embedding of the Chimera topology for the cases up to G4 also for

SA, SA yields similar results as the 2X QPU only when utilizing

αcard(E)2 annealing steps (α being chosen around 1,000) per

plateau of temperature, which is considered a costly but usually

accurate parametrization of SA. Table 5 shows the results of SA

on the embeddings onto the Advantage_system4.1 QPU. As can

be observed, the D-Wave results remain mostly comparable to

the same high-quality SA heuristic with αcard(E)2 annealing steps

per plateau of temperature. Nonetheless, it is worth noticing that

obtaining these SA results with G7 costed more than 5 days of

computing time on a AMD 7,702 P, 2 GHz with 64 cores (C++

optimized SA code running in parallel with several instances per

core to obtain a statistical significance). In this regard, we can

conclude that even by taking the pre-processing into account,

the Advantage_system4.1 QPU compares well with SA on the

embedded versions of the Gn series.

Table 6 shows the same results with the embedding of

the Advantage2 prototype. In this case, we can too strong

observe that the Advantage2 prototype outperforms any reasonably

parameterized SA metaheuristic on embedded problems both in

quality and in processing time (which may also be transferable to

better energy performance).

We compare the results from ideal QA obtained by simulation

to the results obtained on the Advantage2_prototype1.1 processor.

In Figure 6, we show the success probability obtained by ideal QA

for the G2 problem instance.

Three cases are shown: The unembedded instance with the

maximum h-range on the Advantage processors (hmax = 4)

indicated by orange asterisks, the unembedded instance with

maximum h-range on D-Wave 2,000Q processors (hmax = 2)

indicated by blue squares, and the embedded instance requiring 33

qubits using a relative chain strength of 0.35 with the maximum h-

range of the Advantage processors indicated by red triangles. The

latter two are actually quite close, suggesting that the embedding

(with reasonably good chain strength, cf. Figure 7) has similar

effects than a rescaling of the problem parameters hi and Jij. This

is not totally surprising since a (required minimum) chain strength

may force the problem parameters to be rescaled (cf. Figure 5A).

Figure 8 shows the success probability obtained by ideal QA for

the embedded case in comparison to the results obtained on the

Advantage2_prototype1.1 with the same embedding. Obviously,

the time scales are very different. While in the ideal case

approximately 20 ns is sufficient to reach a success probability

of approximately 1, the shortest time possible on the D-Wave

processor is 1µs where the success rate only reaches approximately

0.9. For an annealing time of≈ 35µs, the success rate exceeds 0.98.

From this observation, we conclude that for this problem instance,

the D-Wave processor works in the quasistatic regime (Amin, 2015)

as the ideal simulation shows that the coherent regime would

have to be at approximately 1–20 ns. We note that the time to

simulate the ideal QA process requires much more time (on the
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TABLE 3 Results for the Gn series obtained on the Advantage_system4.1 processor for a random embedding (Grand
n

) and the improved embedding (G
imp
n ).

#qbs #opt best worst av. best av. worst av. mean av. std

Grand
2 44 981.3± 10.2 −495 −388 −495.0± 0.0 −434.1± 16.9 −494.0± 0.6 7.0± 2.0

G
imp
2 38 975.1± 6.0 −495 −387 −495.0± 0.0 −428.9± 21.6 −493.7± 0.3 8.4± 1.0

Grand
3 142 61.8± 23.0 −2, 064 −1, 172 −2, 064.0± 0.0 −1, 422.8± 53.7 −1, 825.6± 19.0 122.8± 3.6

G
imp
3 129 167.5± 27.9 −2, 064 −1, 298 −2, 064.0± 0.0 −1, 547.2± 61.8 −1, 906.0± 10.4 101.0± 2.5

Grand
4 438 0.0± 0.0 −5, 776 −3, 533 −5, 546.7± 67.3 −3, 992.9± 172.0 −4, 965.1± 25.7 229.2± 6.6

G
imp
4 360 0.0± 0.0 −6, 025 −3, 776 −5, 811.2± 86.2 −3, 983.2± 169.9 −5, 076.1± 32.4 279.3± 7.9

Grand
5 935 0.0± 0.0 −13, 861 −8, 250 −13, 257.3± 227.5 −9, 379.8± 309.2 −11, 668.2± 74.5 620.0± 16.9

G
imp
5 870 0.0± 0.0 −13, 862 −9, 113 −13, 490.8± 149.1 −10, 019.1± 289.1 −12, 217.1± 53.8 555.5± 16.5

Grand
6 1, 971 0.0± 0.0 −28, 865 −17, 208 −28, 191.0± 422.0 −19, 825.0± 652.5 −24, 574.9±146.8 13, 08.6± 37.2

G
imp
6 1, 801 0.0± 0.0 −28, 865 −19, 266 −28, 739.1± 262.6 −20, 949.8± 630.9 −25, 596.2±174.1 1, 209.7± 43.1

Grand
7 3, 635 0.0± 0.0 −55, 361 −32, 847 −53, 907.7± 649.7 −38, 367.4±1, 661.8 −47, 159.0±657.4 2397.5± 109.8

G
imp
7 3, 293 0.0± 0.0 −55, 360 −35, 910 −53, 478.4± 747.6 −38, 018.6±1, 145.5 −46, 677.0±384.6 2366.4± 59.6

The columns show the graph with the corresponding embedding, the number of (physical) qubits, the average number of optimal solutions found, the best, worst, average best, average worst,

and average mean energies, and the average standard deviation of the energies obtained. The sample size is 1,000, averages are over 50 repetitions and given with standard deviation. Best and

worst energies are over all samples of all repetitions.

TABLE 4 Results for the Gn series obtained on the Advantage2_prototype1.1 processor for a random embedding (Grand
n

) and the improved embedding

(G
imp
n ).

#qbs #opt best worst av. best av. worst av. mean av. std

Grand
2 37 996.0± 3.3 −495 −440 −495.0± 0.0 −442.6± 7.5 −494.8± 0.2 3.1± 1.3

G
opt
2 33 999.9± 0.2 −495 −442 −495.0± 0.0 −491.8± 12.6 −495.0± 0.0 0.1± 0.4

Grand
3 126 278.4± 110.1 −2, 064 −1, 555 −2, 064.0± 0.0 −1, 669.4± 45.5 −1, 952.2± 20.0 80.9± 6.9

G
opt
3 112 724.6± 103.9 −2, 064 −1, 554 −2, 064.0± 0.0 −1, 750.3± 77.2 −2, 027.5± 14.0 58.7± 7.1

Grand
4 333 0.0± 0.0 −5, 777 −4, 278 −5, 687.1± 119.3 −4, 474.5± 102.8 −5, 185.6± 35.1 188.2± 11.8

G
opt
4 307 0.0± 0.0 −6, 026 −4, 529 −5, 881.5± 122.8 −4, 773.4± 92.6 −5, 429.7± 36.4 171.4± 12.5

The columns show the graph with the corresponding embedding, the number of (physical) qubits, the average number of optimal solutions found, the best, worst, average best, average worst,

and average mean energies, and the average standard deviation of the energies obtained. The sample size is 1,000, averages are over 50 repetitions and given with standard deviation. Best and

worst energies are over all samples of all repetitions.

TABLE 5 SA results using the embedding graphs onto the Pegasus topology of the Advantage_system4.1 QPU.

#iter #Opt Best Worst Mean Median Stdev

n 1,000 −68 −68 −68 −68 0
G1

n2 1,000 −68 −68 −68 −68 0

n 187 −495 −334 −435 −442 38.8
G2

n2 937 −495 −389 −491 −495 13.2

n 0 −1, 682 −787 −1, 336 −1, 300 148.8
G3

n2 0 −1, 937 −1, 299 −1, 626 −1, 680 107.2

n 0 −5, 601 −4, 026 −4, 849 −4, 844 225.0
G4

n2 0 −6, 054 −5, 048 −5, 585 −5, 570 185.6

n 0 −13, 367 −9, 355 −11, 395 −11, 404 633.8
G5

n2 0 −14, 949 −13, 125 −13, 813 −13, 775 286.9

n 0 −27, 019 −18, 867 −23, 091 −23, 131 1,370.4
G6

n2 0 −33, 245 −30, 524 −32, 112 −32, 119 470.4

n 0 −37, 073 −11, 152 −24, 083 −24, 187 4,137.3
G7

n2 0 −58, 859 −52, 187 −56, 192 −56, 204 999.3

The columns show the graph, the number of iterations, the number of optimal solutions found, the best, worst, mean and median energies, and the standard deviation of the energies obtained.

The sample size is 1,000.
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TABLE 6 SA results using the embedding graphs onto the Zephyr topology of the Advantage2_prototype1.1 QPU.

#iter #Opt Best Worst Mean Median Stdev

n 1000 −68 −68 −68 −68 0
G1

n2 1,000 −68 −68 −68 −68 0

n 840 −495 −389 −486 −495 19.6
G2

n2 997 −495 −442 −495 −495 2.9

n 0 −1, 937 −1, 299 −1, 628 −1, 681 94.2
G3

n2 118 −2, 064 −1, 681 −1, 889 −1, 937 98.5

n 0 −5, 528 −3, 843 −4, 761 −4, 778 259.5
G4

n2 0 −6, 026 −4, 979 −5, 433 −5, 526 190.2

The columns show the graph, the number of iterations, the number of optimal solutions found, the best, worst, mean and median energies, and the standard deviation of the energies obtained.

The sample size is 1,000.

order of minutes to hours depending on system size and simulated

annealing time).

3.4 E�ects of systematic errors in the QPU

When a given problem is assigned to a D-Wave QPU, there is

a limited precision and several sources of potential noise. While

some of the sources of errors and imprecisions are compensated for

by the electronic controllers and the base software, some of these

so-called ICEs (Integrated Control Errors) are intrinsic, e.g., the

precision of the Digital to Analog (DAC) converters to control the

couplers. As a consequence, any user of the QPU can not expect an

infinite precision of the given values of the coupling. The D-Wave

documentation points at an expected precision for coupling values

between 0.1% and 2%.

When dividing by 2λ, the non-zero off-diagonal elements of the

QUBO matrix take the value qij = 1 and the diagonal elements

qii = −1 − 1/2λ, which is between −1 and −2 for λ ≥ 0.5, and

thus does not require further rescaling.

Nonetheless, the important element to consider is the

associated Ising model as this is what is actually mapped to the

QPU after renormalizing the values in the interval [−1, 1] for Jij
and [−2, 2] (on D-Wave 2,000Q and older systems) or [−4, 4] for

hi (on Advantage and Advantage2 systems). Going from the QUBO

formulation to the Ising model (where we use the convention

xi = (1 − si)/2, cf. also Section 2.2) yields non-zero Jij = λ/2

(it is non-zero for all adjacent edges j of a given edge i) and hi ∈

{(nλ − λ − 1)/2, nλ − 1/2} for the outermost edges and all the

others, respectively. The dependence on n of the hi arises from the

number of edges connected to the vertices which also grows with

n. Rescaling by 2/n yields hi ∈ {λ − (λ + 1)/n, 2λ − 1/n} and

Jij = λ/n. As we can observe, the coupling matrix J tends toward 0

in an inverse law of n independent of the choice of λ as choosing a

λ growing with n enforces a rescaling by 1/λ due to the hi.

Nonetheless, the coupling should be an order of magnitude

above the noise and biases of ICE up to n ≈ 20 considering a 0.5%

accuracy or better on the coupling. Therefore, this particular point

would not constitute a large contributor to the limitation of the D-

Wave QPUs in the near term future. It can thus be considered safe

FIGURE 6

Success probability obtained from simulation for the G2 graph as a

function of annealing time for an embedding onto the Zephyr

topology (rcs = 0.35, red triangles) with the

Advantage2_prototype1.1 annealing schedule in comparison to

direct embedding with the allowed range on Advantage processors

(−4 ≤ hi ≤ 4, orange asterisks) and direct embedding with the

reduced range available on DW2000Q QPUs (−2 ≤ hi ≤ 2, blue

squares).

to assume that the limitations of D-Wave compared with ideal QA

are due to the other limitations of the QPU in our experiments.

4 Conclusion and outlook

In summary, we have benchmarked three generations of

D-Wave quantum processors by studying the performance when

using different embeddings and by comparing to simulated

annealing and ideal quantum annealing (i.e., solving the

Schrödinger equation numerically) using a particular series

(the Gn series) of maximum cardinality matching problems. From

ideal quantum annealing with all-to-all connectivity, we find that

for the problems without minor embedding (at least for the smaller

instances), the annealing schedule of the DW_2000Q performs

better, but this improvement is compensated by the decrease in
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FIGURE 7

Relative chain strength scan for G2 with a 33-qubit embedding on

Advantage2_prototype1.1. with annealing time 1.0µs and sample

size 10,000.

FIGURE 8

Success probability for the G2 graph as a function of annealing time

for a 33-qubit embedding onto the Zephyr topology obtained on

the D-Wave quantum processor Advantage2_prototype1.1 (blue

circles) and by simulation using the same annealing schedule (red

triangles). The relative chain strength was set to 0.35. The sample

size on the D-Wave processor is 10,000.

performance due to the required embedding onto the Chimera

topology. Results for theG1 andG2 graphs are comparable between

DW_2000Q_6 and Advantage processors, which is reasonable

given the investigation using ideal QA. Although embeddings onto

the Pegasus topology are possible with less than 2,000 qubits (≈ the

size of the DW_2000Q processors) up to G6, we could not find an

embedding onto DW_2000Q_6 for G5. Moreover, not only the size

of the processor but also the connectivity between the qubits are

important to map larger problems onto the QPU’s hardware graph.

For the Advantage_system4.1 and Advantage2_prototype1.1

processors, we explicitly compared the performance with different

embeddings (a random one and the one with the least number of

qubits found).

For most of the embeddings, we found little variation in the

performance (either in the success rate if the optimal solution

was found or in the minimal energy obtained). Only in a few

cases, we found a significant difference suggesting that the utilized

embedding might have been an unluckily bad one. Thus, trying

more than a single embbedding can be useful, but trying to find

an embedding with a particularly low number of qubits does not

seem to be worth the effort.

The comparison to SA underlines the drop in performance

when minor embedding has to be applied. While the unembedded

problems are easy to solve with SA, especially the larger ones (G3

or larger) become increasingly difficult to solve with SA if the

embedding is taken into account. The performance when utilizing

the embedding onto the Zephyr topology is worse than what we

obtained from the Advantage2_prototype1.1 processor even for n2

iterations per plateau of temperature. When using the embedding

onto the Pegasus topology, the performance of SA is comparable

(sometimes better sometimes worse) to the performance of the

Advantage_system4.1 processor. However, the actual computing

time required to obtain the SA results was significantly larger than

what was used on the QPUs.

In conclusion, we find that the main bottleneck is the minor

embedding required to solve an arbitrary problem on a QPU.

The annealing schedule does have an influence but at least in

the current study, it was found that it could only compensate for

the larger embeddings required for DW_2000Q compared with

Advantage_system in the cases of the smaller instances.

Possible future directions to continue the present study

could include the benchmark of other embedding algorithms

(such as Lucas, 2019; Zbinden et al., 2020) or a more in-depth

investigation of annealing schedule variations such as pausing

and quenching or reverse annealing in the spirit of Ikeda et al.

(2019); Marshall et al. (2019); Venturelli and Kondratyev (2019);

Gonzalez Izquierdo et al. (2021); Grant et al. (2021); Carugno et al.

(2022). Another interesting path to include in these studies would

be to consider the general QUBO formulation studied by McLeod

and Sasdelli (2022) and different values for λ in the soft constraint

to investigate whether all three algorithms (SA, ideal QA, and QA

on the D-Wave) show the same behavior in performance change.
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