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Dependable utilization of computer vision applications, such as smart

surveillance, requires training deep learning networks on datasets that su�ciently

represent the classes of interest. However, the bottleneck in many computer

vision applications lies in the limited availability of adequate datasets. One

particular application that is of great importance for the safety of cities and

crowded areas is smart surveillance. Conventional surveillance methods are

reactive and often ine�ective in enable real-time action. However, smart

surveillance is a key component of smart and proactive security in a smart city.

Motivated by a smart city application which aims at the automatic identification

of concerning events for alerting law-enforcement and governmental agencies,

we craft a large video dataset that focuses on the distinction between small-

scale violence, large-scale violence, peaceful gatherings, and natural events. This

dataset classifies public events along two axes, the size of the crowd observed

and the level of perceived violence in the crowd. We name this newly-built

dataset the Multi-Scale Violence and Public Gathering (MSV-PG) dataset. The

videos in the dataset go through several pre-processing steps to prepare them

to be fed into a deep learning architecture. We conduct several experiments on

the MSV-PG datasets using a ResNet3D, a Swin Transformer and an R(2 + 1)D

architecture. The results achieved by these models when trained on the MSV-

PG dataset, 88.37%, 89.76%, and 89.3%, respectively, indicate that the dataset

is well-labeled and is rich enough to train deep learning models for automatic

smart surveillance for diverse scenarios.

KEYWORDS

crowd analysis, smart surveillance, violence detection, human action recognition,

computer vision

1 Introduction

Early identification of violent events and potential security risks is of crucial

importance to governmental and law enforcement agencies. City-wide surveillance systems

are setup in many countries for this purpose. For example, China, the United States of

America, and the United Kingdom deploy around 15 million, 112 thousand, and 628

thousand Closed Circuit Television (CCTV) cameras, respectively (Global, 2022). These

cameras are often deployed outdoors and their real-time feed is often monitored by

humans to detect crime and other concerning events. Effective use of security cameras

allows for the early detection and the deployment of adequate responses to such events.

Video footage coming from security cameras often require real-time continuous

monitoring by humans, which poses several limitations and challenges. First, a significant

amount of human capital is required whenever thousands or hundreds of thousands
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of cameras are deployed in a country or city. If an insufficient

number of individuals are allocated for the monitoring of CCTV

cameras, many concerning events caught by these cameras can

go undetected. In addition, having a human inspect surveillance

footage can be inefficient and prone to errors. Missing certain

events, such as a protest or a large fight, or delaying their detection

may have seriously negative consequences for public peace. Finally,

traditional surveillance methods are reactive, requiring events to

occur and bemanually detected by inspectors before action is taken.

Intelligently automating the detection of concerning events,

such as fights and unusually-large gatherings, captured by

surveillance cameras is critical and has two main advantages.

Firstly, it moves surveillance from the traditional reactive approach

to a proactive approach since it alerts authorities regarding the

potential for violence. Secondly, it significantly reduces the number

of human operators needed for surveillance.

There is no doubt that Deep Learning (DL) has transformed

many aspects of society. For instance, the literature has

demonstrated that DL models have the capability to detect

certain human behaviors (action recognition tasks) (Dhiman

and Vishwakarma, 2019). Therefore, in order to streamline the

identification of potential security risks in surveillance footage,

we propose a computer vision based approach for the automatic

identification of various human behaviors caught on CCTV

footage. To this end, the contribution of this paper is two fold.

First, we embark on a novel data collection effort to collect a video

dataset that collectively represents the human behavior classes of

interest. Secondly, the developed dataset is used to train a human

behavior prediction model that automatically detects the human

behavior classes of interest, possibly in real-time.

There were four classes of human behavior that have been

identified and selected; namely Large Peaceful Gathering (LPG),

Large Violent Gathering (LVG), small-scale fighting (F), andNatural

(N) events. Note that these classes exist along two axes, where one

axis identifies the size of the crowd and the other identifies whether

or not the crowd detected is violent. In addition to conveying

the behavior of the crowd to law enforcement, this multi-scale

distinction, as opposed to the binary distinction often discussed

in the literature (distinction between “fighting” and “no fighting”

or “violence” and “no violence”), can provide information on the

scale of the appropriate law enforcement response. For instance,

prior works did not distinguish between a small fight between

two individuals and a violent gathering of hundreds of people;

both scenarios would be classified as “violent” in those works. The

two scenarios, however, clearly require radically different responses

from law enforcement, and thus should be seen as two different

classes of events. Dedicating different classes for each of those two

scenarios, “F” for the small-scale fight and “LVG” for the large

violent crowd, makes for a smart surveillance system with greater

utility to law enforcement. Such system detects violent action and

informs law enforcement of the nature of the required response.

In addition, “non-violent” crowds may sometimes require law

enforcement attention, especially when the crowd is relatively large.

Large crowds hold the potential for a security hazard (i.e., breaking

out of violence within the peaceful crowds), thus the developed

dataset also distinguishes between a small peaceful crowd and a

large peaceful crowd.

A surveillance system with the capability of automatically

classifying video footage into one of the aforementioned classes

would provide immediate information about any concerning

or potentially concerning events to governmental and law-

enforcement agencies for immediate response. The benefits of such

a system is that it is scalable to large-scale surveillance, whereas

human supervision of a large geographical area through CCTV is

unrealistic.

Motivated by the detection task outlined above, we have

developed a novel video dataset, called the Multi-Scale Violence

and Public Gathering (MSV-PG) dataset, that comprehensively

covers the aforementioned classes of behavior. To the best of our

knowledge, a similar dataset does not exist or is not available

to the public. Additionally, this paper trains, tests, and assesses

several DL architectures on the automatic recognition of the

relevant human behaviors based on the developed and diverse

dataset. The aim of employing DL on the MSV-PG dataset is

to showcase the robustness of the developed dataset in training

various DL algorithms for behavior recognition applications.

Such an application has not been investigated in the literature.

The corresponding author of this paper will make the dataset

available upon request. The remainder of this paper is organized

as follows: Section 2 discusses the pre-processing, labeling of

the dataset and the training of selected DL models. Section 3

outlines the results achieved by the selected models. Finally,

Section 4 details previous DL-based approaches for video analysis,

describes previous Human Action Recognition datasets, provides

commentary on possible causes for the miss-classification of

samples in the proposed dataset, and outlines the main conclusions

of the paper.

2 Materials and methods

Next, we outline the process of video collection and pre-

processing, illustrated in Figure 1, that we used to build the MSV-

PG dataset. Videos with at least one instance of one of the relevant

classes are identified and obtained. Then, the starting and ending

time stamps of each occurrence of an event belonging to one of the

relevant classes is recorded, alongside the class of that event. In this

paper, an instance is defined as an occurrence of one of the classes

whose starting and ending time stamps are identified and recorded.

In the training and validation phases, we feed equal-sized image

sequences to a DL network. We refer to these image sequences as

samples.

2.1 Dataset collection, labeling, and
prepossessing

In order to identify instances of LPG, LVG, F, and N events,

we define the criteria that differentiate each of the four classes as

follows:

• LPG: A large number of individuals who are gathered for a

singular purpose. Examples of this class are peaceful protests

and gatherings of sports fans.
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FIGURE 1

Flowchart illustrating the steps taken to build the MSV-PG dataset.

• LVG: A cluster of individuals of whom a “significant” number

are engaged in violent action. Examples of violent action

include clashes with police, property destruction, and fighting

between members of the crowd.

• F: A “small” group of individuals fighting one another.

• N: Footage that shows no concerning behavior. This is a class

of footage that one expects to see during regular, everyday life.

It’s of crucial importance to recognize that the above definitions

are not objective; they are general guidelines that were used to

inform the manual video-labeling process. Specifically, during

labeling, the determination of whether or not a group of people

is large or small is left to the judgment of the person labeling

the videos. We elected to do this because, in reality, there does

not exist an objective threshold for the number of individuals

that would make a group of people a “large” group as opposed

to a “small group.” However, to avoid subjectivity in the labeling

process, each member of our team (a total of four researchers)

labeled the data and majority voting was conducting to select the

final label. The first step taken to develop theMSV-PG dataset was

to identify sources from which to attain relevant videos. To this

end, we obtained relevant videos from YouTube and relevant video

datasets which were readily available online. Relevant YouTube

videos are those that include at least one instance of at least

one of the relevant classes. Key words such as “demonstration,”

“violence,” and “clash” were used during the crawling process of

YouTube videos. In addition, relevant current and historic events

(i.e., George Floyd protests, Hong Kong protests, The Capitol

riot, etc.) were searched and some of the resultant videos were

included in the dataset. The aim was to gather a large and diverse

set of videos to enable the model to generalize to a variety of

concerning scenarios.

Similarly, relevant datasets in the literature which include

videos that contain instances of one or more of the four classes of

interest in this paper were collected.Wemerged subsets of the UBI-

Fights (Degardin and Proença, 2020) and the dataset introduced

in Aktı et al. (2019) into the MSV-PG dataset. Although these

two datasets are divided into fighting and non-fighting videos, we

re-labeled these videos according to our set of classes. Figure 2

illustrates examples of samples of the four considered classes. It is

important to note that data from pre-existing datasets onlymake up

∼16% of the total dataset. The remainder of the MSV-PG dataset

was collected by crawling relevant YouTube videos.

In order to ensure uniformity among the collected videos, the

frame-rate of all the videos are unified according to a frame-rate

R of choice. Furthermore, a single video may contain instances

of different classes at different time periods; thus, an entire video

cannot be given a single label. Instead, we opted to identify portions

of each video where one of the classes occurs. Namely, we identify

the instances of each class in every video collected and record these

instances in an annotation table. Each row entry of this table is used

to define a single instance of one of the relevant classes. The row

entry of an instance defines the numeric ID of the video wherein

the instance was found, the starting and ending time stamps of the

instance, and the class to which the instance belongs. Table 1 shows

an example of an annotation table.

To facilitate model training on the MSV-PG dataset, each

labeled sample should be of equal length. Thus, a length of N

seconds is chosen for the length of each training/validation sample.

Each sample is a sequence of frames extracted from one of the

videos. Assuming that an instance of class Ci occurs in the timespan

from (hi :mi : si) to (hf :mf : sf ) of video Vi, the frames of that time

range are extracted. Subsequently, a sliding window of length RN ,

the number of frames per sample, is moved through the frames of

the timespan from (hi :mi : si) to (hf :mf : sf ). Note that the number

of frames per sample is equal to the length of the sample, in seconds,

multiplied by the frame-rate of the video; Thus, RN = R × N.

Since consecutive samples are almost identical, they share RN − 1

frames, adding all consecutive samples inside an instance to the

dataset would inflate the size of the dataset while providingminimal

additional information. Instead, we define a stride parameter S that

defines the number of frames that the sliding window skips after

extracting each sample from a given instance. Additionally, long

instances may bias the dataset in both the training and validation

phases. To prevent this, we define a parameter Emax that represents

the maximum number of samples to be extracted from a single

instance. If the maximum number of samples that can be extracted

from an instance exceeds Emax, we extract Emax samples with an

equal number of frames between consecutive samples.

In the final stage, we label each sample with its class label Ci,

the class of the instance from which that sample was extracted. The

procedure of building the dataset is described in Algorithm 1.
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FIGURE 2

Examples of instances of each of the four classes in MSV-PG. (A) N. Protests continue for sixth day in Seattle, uploaded by Kiro 7 News, 4 via YouTube,

licensed under YouTube Standard License. Ghjkmnfm, uploaded by Ganesh Sardar via YouTube, licensed under YouTube Standard License Inside

Apple’s store at World Trade Center Mall. Westfield. New York, uploaded by Another World via YouTube, licensed under YouTube Standard License.

Unpermitted Vendors Defy Police, uploaded by Santa Monica via YouTube, licensed under YouTube Standard License. (B) LPG. How George Floyd’s

killing has inspired a diverse range of protesters uploaded by PBS NewsHour via YouTube, https://www.youtube.com/watch?v=UQFQ9Q6GT00,

licensed under YouTube Standard License. China’s Rebel City: The Hong Kong Protests uploaded by South China Morning Post via YouTube, licensed

(Continued)
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FIGURE 2 (Continued)

under YouTube Standard License. Death of George Floyd drives protests across the U.S. -and beyond, uploaded by PBS NewsHour via YouTube,

licensed under YouTube Standard License. Demonstrators march through downtown Seattle streets on Election Night, uploaded by KING 5 Seattle via

YouTube, licensed under YouTube Standard License. (C) LVG. Raw Video: Egypt Protesters Clash with Police, uploaded by Associated Press via

YouTube, licensed under YouTube Standard License. Reproduced with permission from Hassner et al. (2012), via Violent Flows - Crowd Violence

Database. (D). F. “Antifa Tries To Beat Man With Metal Baton and Gets Knocked Out In One Shot,” uploaded by American Dream via YouTube, licensed

under YouTube Standard License. Reproduced with permission from Soliman et al. (2019) via “Real Life Violence Dataset”. Boxing Random Strangers

At A Gas Station In The Hood! *Gone Wrong*, uploaded by Kvng Reke via YouTube, licensed under YouTube Standard License. Reproduced with

permission from Soliman et al. (2019) via “Real Life Violence Dataset.”

TABLE 1 An example annotation table describing five instances of the

relevant classes occurring in three separate videos.

Video ID Starting time Ending time Class

1 00:00:30 00:01:30 LVG

1 00:02:03 00:02:21 N

2 00:00:35 00:00:36 LPG

2 00:01:25 00:01:29 F

3 00:00:00 00:00:03 N

Bold values indicate the class type.

Input: T; The annotation table where each entry is a tuple (i, s, e, c)

where i is the ID of the video, s and e are the starting and ending

time stamps, respectively, of the recorded instance, and c is the class

of the instance (refer to Table 1 for an example of an annotation

table).

Emax; The maximum number of samples to be extracted from an

instance.

S; The stride size of the shifting window.

RN : The number of frames per sample

Output: The dataset D consisting of samples extracted from the

videos.

1: D← {}

2: for all (i, s, e, c) ∈ T do

3: F = getInstanceFrames(i, s, e)

4: /* F = {f1, f2..., fm} */

5: L← {}

6: j← 1

7: while (j+ RN − 1) < |F| do

8: Sample← {fj, ..., fj+RN−1}

9: L← L ∪ (Sample, c)

10: j← j+ S

11: end while

12: C← max
(

1,
⌊

|L|
Emax

⌋)

13: k← L

14: while k < |L| do

15: D← D ∪ L[k]

16: k← k+ C

17: end while

18: end for

19: return D

Algorithm 1. The Procedure for building the MSV-PG dataset given a set

of videos and the annotation table that records when instances of the

relevant classes occur in those videos.

2.2 Dataset summary

The frame-rate of the videos collected is set to 10 frames-per-

second (FPS), which is a reasonable frame-rate that allows us to

analyse videos in sufficient detail without requiring excess storage

space. The length N of each sample is chosen to be 2 s, which is

the minimum duration of any instance that can be recorded given

the format of our annotation table, since the shorest instance that

can be recorded is a 2-s instance that starts at timestamp h :m : s

and ends at timestamp h :m :(s + 1). Given the 10 FPS frame-rate

and the 2-s length of each sample, RN , the number of frames per

sample, is 10 × 2 = 20 frames. In our experiments, we feed a DL

architecture with 10 of the 20 frames of each sample, skipping every

second frame. The stride parameter S is set to 10 frames, indicating

that consecutive samples from the same instance share 10 frames,

or 1 s. Setting S at 10 frames would allow the trained model to

thoroughly learn the actions in the videos without requiring too

much storage space. Finally, the maximum number of samples to

be extracted from any instance, Emax, was set to 200 samples. The

200-sample limit is determined to achieve a good balance between

limiting storage space and producing a sufficiently rich dataset.

The MSV-PG dataset consists of 1,400 videos. The total

duration of the instances in the dataset is ∼30 h. The length

distribution (in seconds) of the instances is shown in Figure 3.

2.3 Model training and testing

In this section, we discuss the models adopted to validate the

MSV-PG dataset. In particular, we adopt three different DLmodels,

(i) an 18-layer ResNet3D model (Hara et al., 2017), (ii) a Tiny Swin

Transformer model (Liu et al., 2021), and (iii) an R(2 + 1)D model

(Tran et al., 2018), for the validation. The selected models have

produced state-of-the-art results in vision tasks and thus have been

selected for the task at hand given the developed dataset. In this

section, the training and testing details are outlined.

2.3.1 Deep learning models
2.3.1.1 ResNet3D model

Residual networks (ResNets) were first introduced for image

classification (He et al., 2016). The architecture introduces residual

connections to connect non-consecutive convolutional layers. The

purpose of adding those connections between non-consecutive

layers, called short-cut connections, is to overcome the problem of

the degradation of training accuracy when layers are added to a DL

model (He and Sun, 2015; Srivastava et al., 2015).

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1242690
https://www.youtube.com/t/terms
https://www.youtube.com/watch?v=3ueIS4hCe1k
https://www.youtube.com/t/terms
https://www.youtube.com/watch?v=T3F2KaFyumU
https://www.youtube.com/t/terms
https://www.youtube.com/watch?app=desktop&v=Kr-R7d40_s0
https://www.youtube.com/t/terms
https://www.openu.ac.il/home/hassner/data/violentflows/
https://www.youtube.com/watch?v=93FMl6nujr4
https://www.youtube.com/t/terms
https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset
https://www.youtube.com/watch?v=SA4iUvYlb4w
https://www.youtube.com/t/terms
https://www.kaggle.com/datasets/mohamedmustafa/real-life-violence-situations-dataset
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Elzein et al. 10.3389/fcomp.2024.1242690

FIGURE 3

The length distribution of the instances in the MSV-PG dataset.

2.3.1.2 R(2 + 1)D model

An R(2 + 1)D model (Tran et al., 2018) utilizes (2 + 1)D

convolutions to approximate conventional 3D convolutions. The

(2 + 1)D convolutions split the computation into a spatial

2D convolution followed by a temporal 1D convolution. This

splitting of the computation into the steps offers the advantage

of increasing the complexity of functions that can be represented

due to the additional ReLU between the 2D and 1D convolutions,

rendering optimization easier. The (2 + 1)D convolutions are

also computationally cheaper than 3D convolutions. The contrast

between 3D and (2 + 1)D convolutions.

2.3.1.3 The Swin Vision Transformer

Transformer-based DL models have provided state-of-the-art

performance for many computer vision problems in recent years

(Chromiak, 2021). The Swin Transformer is one of the transformer

architectures that is used in many computer vision works as a

general backbone for both image and video based problems. In

this paper, the Video Swin architecture (Liu et al., 2022), which is

proposed for video recognition, is used.

The most important feature that distinguishes the Swin

Transformer from other transformer-based models is that its

computational complexity increases linearly with respect to image

resolution. In other models, the computational complexity is

quadratic with image resolution since the attention matrix is

computed among all the tokens of the image. Generating pixel-level

features is critical in vision problems such as image segmentation

and object detection. However, the quadratic computational

complexity of the attention matrix prevents the use of patches that

will enable the extraction of features at the pixel level in high-

resolution images. In the Swin Transformer architecture, attention

matrices are computed locally in non-overlapping windows. Since

the number of patches in the windows is fixed, the computational

complexity grows linearly with the image resolution. In addition,

the Swin Transformer generates the features in a hierarchical

manner. In the first layers, small patches are used, while in the next

layers, neighboring patches are gradually combined.

2.4 Training setup

For training and validation, we aimed to use 80% of the samples

of each class in the dataset for training and 20% for validation.

However, we also require that the samples extracted from a video

be used exclusively for training or exclusively for validation. The

purpose of this requirement is to make the training and validation

sets totally independent to avoid biasing the DL network. In order

to achieve a split that approximates this 80–20 desired split for

each class while satisfying the requirement that videos used in the

training and validation phases be unique, we used a simple random

search method. At each iteration, a randomly-sized set of random

videos from our video set is assigned for training and the rest of the

videos are assigned for validation. The per-class training/validation

split is then calculated. After 2 h of searching, the video split with

the best per-class ratios (closest to 80:20 for each class) is used for

training and validation. In our experiment, we used 1,121 videos for

training the Swin Transformermodel and 279 videos for validation.

Furthermore, the number of instances and samples for each class

used for training and validation is provided in Table 2. From

Table 2, we note that the training/validation splits for each class

are as follows: (1) N—79.72%/20.28%, (2) LPG—79.03%/20.97%,

(3) LVG—80.01%/19.99%, and (4) F—79.80%/20.20%. Also note

that there exists a significant degree of imbalance in the number

of samples per class; the dataset consists of 36% N samples, 44%

LPG samples, 10% LVG samples, and 10% F samples. This is due

to the fact that the duration of violence is usually brief compared to

the duration of peaceful events given that violence is an anomalous

human behavior. Despite this, we observe that the three chosen DL

models are able to recognize the general form of the four classes of

interest through learning theMSV-PG dataset.The full dataset can
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TABLE 2 Number of instances and samples per class used for training and

validation.

Class Training
samples

Validation
samples

Training
instances

Validation
instances

N 23,152 5,889 816 103

LPG 27,952 7,418 1,240 223

LVG 6,478 1,618 865 222

F 6,584 1,667 1,194 344

Total 64,166 16,592 4,115 892

Bold values indicate the class type.

be made available upon contacting the corresponding author of

this work.

3 Results

Pre-trained models on the Kinetics-400 dataset are used in all

the experiments. We train these models for five epochs and report

the best result. In all the experiments performed, we set the learning

rate to 0.0001 for the pre-trained layers and 0.001 for the randomly

initialized classification layer. We decay the learning rates three

times for each epoch by a factor of 0.9. A standard SGD is used

as an optimizer with momentum and weight decay which are set to

0.9 and 0.0001, respectively. In all the experiments conducted, the

input images are resized to 224×224 via bi-cubic interpolation and

the batch size is set to 16. We applied random horizontal flipping as

an augmentation technique during training.

In our experiments, two types of accuracy scores were recorded,

a “sample accuracy” and an “instance accuracy.” The sample

accuracy of a model is obtained by performing inference on all

samples in the validation set, then dividing the number of correctly-

classified validation samples by the total number of validation

samples. On the other hand, the instance accuracy is recorded

by first performing inference on all samples inside an instance.

Then, if the class to which most samples inside the instance are

classifiedmatches the label of the instance, the number of correctly-

classified instances is incremented by one. The number of correctly-

classified instances is divided by the total number of instances in the

validation set to obtain the instance accuracy of the model.

3.1 Performance analysis

In this section, we present the performance of the three adopted

deep learning networks on the developed MSV-PG dataset. Then,

in Section 4, will examine some validation samples whose assigned

label does not match the output of our trained Swin Transformer

model and show that there are some samples whose appropriate

labels are indeed ambiguous.

3.1.1 Performance evaluation results
The sample accuracy and instance accuracy scores for the

validation set of each class, using the three different architectures

adopted, are shown in Table 3. The results demonstrate that

TABLE 3 Performance (accuracy) on the MSV-PG dataset using the R(2 +

1)D, ResNet3D, and Swin Transformer.

Model N LPG LVG F Overall

R(2 + 1)D 96.32 85.74 83.00 86.86 89.34

Sa
m
p
le

ResNet3D 94.43 88.34 68.67 86.26 88.37

Swin 93.62 89.04 77.94 90.82 89.76

R(2 + 1)D 94.17 77.13 85.59 88.08 85.43

In
st
an
ce

ResNet3D 91.26 77.13 75.68 88.37 82.74

Swin 90.29 82.06 81.53 92.44 86.88

Bold values indicate highest performance achieved per class among the tested models.

TABLE 4 Sample confusion matrix of the Swin Transformer.

N LPG LVG F

N 93.62 02.29 00.22 03.87

LPG 06.27 89.04 04.48 00.22

LVG 02.66 10.57 77.94 08.84

F 05.40 00.24 03.54 90.82

TABLE 5 Instance confusion matrix of the Swin Transformer.

N LPG LVG F

N 90.29 00.97 00.00 08.74

LPG 09.87 82.06 08.07 00.00

LVG 01.80 10.36 81.53 06.31

F 03.49 00.29 03.78 92.44

the three architectures were able to adequately learn the MSV-

PG dataset. The performance indicates that the dataset is well-

labeled and can be effectively used in real-world applications. In

addition, the sample and instance confusion matrices for the Swin

Transformer model, the best-performing model out of the three

used, are shown in Tables 4, 5, respectively.

4 Discussion

Over the last several years, significant advances have been

made in the domain of video analysis using DL (Sharma et al.,

2021). DL-based video processing techniques are usually focused

on human action recognition (Huang et al., 2015; Sudhakaran

and Lanz, 2017; Arif et al., 2019; Dhiman and Vishwakarma,

2019; Mazzia et al., 2022), anomaly detection (Sabokrou et al.,

2018; Nayak et al., 2021), and behavior analysis (Gómez A et al.,

2015; Marsden et al., 2017; Sánchez et al., 2020). These techniques

often utilize convolutional neural networks (CNNs) (Ji et al., 2012;

Karpathy et al., 2014; Simonyan and Zisserman, 2014; Xu et al.,

2015; Feichtenhofer et al., 2016; Sahoo et al., 2019; Elboushaki et al.,

2020). Tran et al. (2015) first proposed inflating 2D CNNs into

3D CNNs to allow for the extraction of spatio-temporal features

for human action recognition tasks. Carreira and Zisserman (2017)

then introduced a Two-Stream Inflated 3D (I3D) ConvNet, which

inflates the usual 2D Convnets into 3D ConvNets for the purpose
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of performing video analysis. Through this I3D ConvNet, they

inflate the 2D ConvNets of CNN-based image classification models

into 3D ConvNets and test these architectures on the Kinetics

(Kay et al., 2017) video dataset. However, 3D CNNs suffer from

short-term memory and are often only capable of learning human

actions that occur in 1–16 frames (Varol et al., 2017). To counter

this limitation, Shi et al. (2015) propose convolutional LSTMs,

which replace the fully-connected input-to-state and state-to-

state transitions of conventional LSTMs, a variant of RNNs, with

convolutional transitions that allow for the encoding of spatial

features. Furthermore, the literature includes other works where

RNNs were used for a wide variety of applications including

group activity recognition (Ibrahim et al., 2016), facial expression

recognition (Guo et al., 2019), video segmentation (Siam et al.,

2017), anomoly detection (Murugesan and Thilagamani, 2020),

target tracking (Gao et al., 2019), face recognition (Gong et al.,

2019), and background estimation (Savakis and Shringarpure,

2018). Many hybrids of two types of DL architectures were also

proposed in the literature. For instance, Arif et al. (2019) combine

3D CNNs and LSTMs for different action recognition tasks while

Yadav et al. (2019) use 2D CNN in combination with LSTMs

to recognize different yoga postures. Finally, Wang et al. (2019)

combine the I3D network with LSTMs by extracting low level

features of video frames from the I3D network and feeding it onto

LSTMs to achieve human action recognition.

Recently, transformer-based architectures have attracted

significant attention. Transformers use self-attention to learn

relationships between elements in sequences, which allows for

attending to long-term dependencies relative to Recurrent Neural

Networks (RNNs), which process elements iterativly. Furthermore,

transformers are also more scalable to very large capacity models

(Lepikhin et al., 2020). Finally, transformers assume less prior

knowledge about the structure of the problem as compared to

CNNs and RNNs (Hochreiter and Schmidhuber, 1997; LeCun

et al., 2015; Goodfellow et al., 2016). These advantages have led

to their success in many Computer Vision tasks such as image

recognition (Dosovitskiy et al., 2021; Touvron et al., 2021) and

object detection (Carion et al., 2020; Zhu et al., 2020).

Dosovitskiy et al. (2020) proposed ViT, which achieved

promising results in image classification tasks by modeling the

relationship (attention) between the spatial patches of an image

using the standard transformer encoder (Vaswani et al., 2017). After

ViT, many transformer-based video recognition methods (Arnab

et al., 2021; Bertasius et al., 2021; Liu et al., 2021; Neimark et al.,

2021) have been proposed. In these works, different techniques have

been developed for temporal attention as well as spatial attention.

Early video datasets for action recognition include the

Hollywood (Laptev et al., 2008), UCF50 (Reddy and Shah, 2013),

UCF101 (Soomro et al., 2012), and the HMDB-51 (Kuehne et al.,

2011) datasets. The Hollywood dataset provides annotated movie

clips. Each clip in the dataset belongs to one of 51 classes,

including “push,” “sit,” “clap,” “eat,” and “walk,” while the UCF50

and UCF101 datasets consist of YouTube clips grouped into

one of 50 and 101 action categories, respectively. Examples of

action classes in the UCF50 dataset include “Basketball Shooting”

and “Pull Ups” while the action classes in UCF101 includes a

wider spectrum of classes subdivided into five different categories,

namely, body motion, human-human interactions, human-object

interactions, and playing musical instruments and sports. The

Kinetics datasets (Kay et al., 2017; Carreira et al., 2018, 2019), more

recent benchmarks, significantly increase the number of classes

from prior action classification datasets to 400, 600, and 700 action

classes, respectively. The aforementioned pre-existing datasets are

useful for testing different DL architectures but are not necessarily

useful for specific practical tasks, such as surveillance, which likely

require the distinction between a limited number of specific action

classes.

In terms of public datasets that encompass violent scenery, a

dataset focused on violence detection in movies is proposed by

Demarty et al. (2014). Movie clips in this dataset are annotated

as violent or non-violent scenes. Bermejo Nievas et al. (2011)

introduce a database of 1,000 videos divided into two groups,

namely, fights and non-fights. Hassner et al. (2012) propose the

Violent Flows dataset, which focuses on crowd violence and

contains two classes; violence and non-violence. Sultani et al. (2018)

collected the UCF-Crime dataset, which includes clips of fighting

among other crime classes (e.g, road accident, burglary, robbery,

etc.).

Perez et al. (2019) proposed CCTV-fights, a dataset of 1,000

videos, whose accumulative length exceeds 8 h of real fights caught

by CCTV cameras. Aktı et al. (2019) put forward a dataset of

300 videos divided equally into two classes; fight and non-fight.

UBI-fights (Degardin and Proença, 2020) is another dataset which

distinguishes between fighting and non-fighting videos.

We note that none of the aforementioned datasets are usable

for our application independently. The Hollywood (Laptev et al.,

2008) dataset does not include classes relevant to our desired

application. On the other hand, the UCF50 (Reddy and Shah, 2013),

UCF101 (Soomro et al., 2012), HMDBI51 (Kuehne et al., 2011), and

Kinetics (Kay et al., 2017) datasets are not sufficiently focused on

the task of violence detection as they also include a vast range of

actions that are not interesting for violence-detection applications.

Training a DL model on a dataset that cover a vast number of

actions, while generally useful, is potentially detrimental when the

desired application is only interested in a small subset of the actions

included in that dataset. Instead, it’s preferable to limit the number

of classes in a dataset to ensure that the trained DL model is highly

specialized in recognizing certain behaviors with high accuracy.

Examples of datasets that are exclusively focused on violence

detection are the Hockey (Bermejo Nievas et al., 2011), Violent

Flows (Hassner et al., 2012), CCTV-fights (Perez et al., 2019),

SC Fight (Aktı et al., 2019), and the UBI-fights (Degardin and

Proença, 2020) datasets. These datasets are specifically constructed

for violence-detection tasks and are useful for an application such

as ours. However, these datasets classify human behavior along

a single dimension (whether or not the behavior is violent), as

opposed to our application which seeks to recognize the size and

violent nature of a crowd. Due to these limitations, we conclude that

the field of smart surveillance requires a new dataset which classifies

human behavior according to its extent as well as its violent nature.

No video dataset in the literature, to the best of our knowledge,

contains large gatherings, such as protests, as an action class. Protest

datasets in the literature, for instance, are limited to image datasets

(Clark and Regan, 2016), which documents protester demands,
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FIGURE 4

(A) A sample whose appropriate label lies in the blurry area between LPG and N because of the subjective nature of the term "large." Pop-up protest

against the permanent pandemic legislation on Tuesday - 09.11.21, uploaded by Real Press Media via YouTube, licensed under YouTube Standard

License. (B) A sample depicting a group of individuals who, by chance, are gathered near a tra�c light. Crowd walking on street, uploaded by

LionReputationMarketingCoach via YouTube, licensed under YouTube Standard License.

FIGURE 5

An Illustration of two scenes demonstrating the ambiguity between LVG and F events. (A) A scene with a violent gathering which may or may not be

deemed su�ciently large to warrant an LVG label instead of an F label. Reproduced with permission from Soliman et al. (2019) via Real Life Violence

Dataset. (B) A scene with large gathering with only a few people fighting, making it unclear if the label if the scene should be LVG or F. Vancouver

Canucks Game 5 Stanley Cup Finals- Rogers Arena - Granville Street Party", uploaded by Marlo via YouTube, licensed under YouTube Standard License.

government responses, protest location, and protester identities.

Thus, the novelty of our developed video dataset is that it is

specifically aimed toward the identification of scenarios of public

unrest (violent protests, fights, etc.) or scenarios which have the

potential to develop into public unrest (large gatherings, peaceful

protests, etc.). Large gatherings are particularly interesting and

important to be carefully surviellanced as they can lead to unruly

events. In specific, large gatherings that seem peaceful can evolve

into a violent scenario with fighting, destruction of property, etc.

In addition, the scale of violence captured can inform the scale of

the response from law-enforcement. Thus, for the current task, we

divide violence into small-scale violence (i.e., F) and large scale

violence (i.e., LVG). To our knowledge, these aspects have been

largely neglected in existing datasets, which motivates this work.

From the confusion matrices in Tables 4, 5, we note that

ambiguity in labeling occurs mostly in samples whose appropriate

label lies between LPG/N and F/LVG. Furthermore, we explain

why a DL model could be reasonably expected to missclassify some

LVG samples as LPG and some F samples as N. The confusion

between these pairs of classes, in both the labeling and inference

processes, accounts for the vast majority of the error illustrated in

the confusion matrices in Tables 4, 5.

4.1 LPG-N misclassification

We define the class of LPGs, according to the criteria outlined

in Section 2.1, as events consisting of a “large” congregation of

individuals who are gathered for a singular purpose. Firstly, the

threshold for the number of individuals required for a gathering

to be considered a “large” one is inherently subjective.

Additionally, even if we decide that some video footage

contains a “large” number of people, we must substantiate that

the individuals in the footage are gathered for a singular purpose,

as opposed to a large group of individuals who happen to be in

one place by mere chance, before we classify said footage as LPG.

This is because a large group of individuals who are gathered by
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FIGURE 6

(A) A scene showing a large crowd where violence only occurs in the periphery of the scene, making it hard to notice. Serbian protesters clash with

police over government handling of coronavirus, uploaded by Guardian News via YouTube, licensed under YouTube Standard License. (B) A scene of

a large crowd where violence occurs only at the end of the scene, which may lead to a DL model failing to catch the late-occurring violence in this

scene. Green Pass, ta�erugli a Milano: polizia a�ronta i No Green Pass, uploaded by Local Team via YouTube, licensed under YouTube Standard

License.

FIGURE 7

(A) A fight scene in a largely-empty area which may be misclassified as N. Reproduced with permission from Soliman et al. (2019) via Real Life

Violence Dataset. (B) A mostly-natural scene where a fight occurs at the end, possibly confusing a DL model to classify it as N instead of F.

Reproduced with permission from Degardin and Proença (2020) via UBI-fights dataset.

chance, such as people in a public park on a holiday, is an example

of a Natural (N) event. Given that our DL model classifies 2 s of

footage at a time, we would expect that the classification would

sometimes fail to account for the larger context of a gathering and

thus missclassify some LPG samples as N, or vice-versa.

Consider the sample in Figure 4. This sample consists of a

group of individuals at a traffic stop crossing the road. It’s intuitive

that this sample constitutes an N sample since seeing a group of

people crossing a traffic light should obviously not raise concern.

However, since the sample is only 2 s long and since the model

receives no information about the context of the scene, a DL model

might (and in this case has) missclassified this sample as an LPG,

despite the fact that the appropriate label for the sample shown in

Figure 4 is clearly N.

4.2 F-LVG misclassification

We define an LVG as a gathering of a “large” number of

individuals engaged in violent actions. A subset of such violent

actions is fighting that might occur among a subset of the

individuals in the gathering. Similarly to the N-LPG distinction,

there’s a subjective threshold for the number of people in a violent

scene for it to be labeled as LVG instead of F. A scene where

it’s unclear if the number of individuals depicted satisfies this

subjective threshold is shown in Figure 5A. The scene in the figure

illustrates a group of individuals engaged in fighting one another.

However, it’s not clear if the number of people in the scene is large

enough to constitute a large violent gathering (LVG) as opposed to

a small-scale fight (F).

If a violent scene is determined to contain a “large” number

of people, it’s unclear how many individuals from the observed

group must participate in the violent action for the appropriate

label to be LVG. Intuitively, if the number of individuals who are

involved in violence is small, the label given to such a scene should

be F. The line between F and LVG is blurry when it comes to

samples where only a subset of the individuals in a gathering are

engaged in violence, such as the sample in Figure 5B. Additionally,

a trained model might incorrectly label a scene of a large number

of individuals, of whom only a few are engaged in fighting, as LVG
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instead of F since themodelmay see the large number of individuals

in the scene, coupled with the violent action of a few individuals

from the crowd, as clues that the appropriate classification of the

scene is LVG.

4.3 LPG-LVG misclassification

In instances where a violent crowd is gathered, the violent

action may not be central to the footage being analyzed. Namely,

the violence in a scene may occur in the background or the corner

of the footage such that it is not clearly evident in a frame. One

such instance is shown in Figure 6A. In this figure, the large crowd

is mostly peaceful, except for violence that occurs in the back of

the crowd, which is difficult to notice without observing the scene

carefully. As a result, it’s natural for this scene to be misclassified as

an LPG instead of an LVG.

In an otherwise peaceful crowds, brief moments (e.g., 0.5 s

or less) of violent action might occur. In that case, given that

our model examines 2-s samples of the incoming footage, the

information about the occurrence of violence might be drowned

out by information about a peaceful gathering. An example of this

is in Figure 6B. As we will see next, this phenomenon also occurs

in fighting scenes where the fight is ignored by a DL model in

favor of a largely empty background depicting uninteresting, or

natural, events.

4.4 F-N misclassification

A fight scene that occurs in an open or largely-empty outdoor

area, such as the one in Figure 7A, may be missclassified by a DL

model as N. This can be due to the fact that the fight only occurs in

a small region of the video scene while the rest of the scene appears

to be “natural.” Such missclassifications are particularly prevalent

with footage coming from CCTV cameras with wide fields

of view.

As is the case with LVG-labeled instances, a fight, like the one

in Figure 7B, might continue for a small fraction of a 2-s sample. It’s

predictable that such a sample may be classified as N instead of F.

4.5 Conclusions

This work was motivated by the task of surveillance in an

outdoor area and automatically identifying note-worthy events for

law enforcement. This paper presented a new dataset that divides

video footage into peaceful gatherings, violent gatherings, small-

scale fighting, and natural events. Based on the classification of the

captured video, security agencies can be notified and a respond

appropriately to the nature of the class of event identified. The

dataset presented in this work was validated by using it to train

three different architectures with different characteristics, namely,

ResNet3D, R(2 + 1)D and the Swin Transformer. The validation

results show that the dataset is sufficiently generalized and can

be used to train models that can be deployed for real-world

surveillance. The dataset described in this paper can be obtained

by contacting the corresponding author of this paper.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

Written informed consent was not obtained from

the individual(s) for the publication of any potentially

identifiable images or data included in this article because

videos collected from publicly available sites (YouTube)

and datasets.

Author contributions

The ideas presented in this paper were conceptualized by

MQ and were discussed with YY, AE, and EB. AE collected the

presented dataset and EB ran the experiments on the collected

dataset, which are presented in this paper. Finally, the text of

this paper was written by AE and EB and was reviewed by MQ

and YY. All authors contributed to the article and approved the

submitted version.

Funding

This publication was made possible by AICC03-0324-200005

from the Qatar National Research Fund (a member of Qatar

Foundation). The findings herein reflect the work, and are solely

the responsibility of the authors.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1242690
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Elzein et al. 10.3389/fcomp.2024.1242690

References
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