
TYPE Mini Review

PUBLISHED 08 January 2024

DOI 10.3389/fcomp.2023.1306064

OPEN ACCESS

EDITED BY

Hector Florez,

Universidad Distrital Francisco Jose de Caldas,

Colombia

REVIEWED BY

Tomasz Górski,

University of Gdansk, Poland

*CORRESPONDENCE

Daniel Siahaan

daniel@if.its.ac.id

RECEIVED 03 October 2023

ACCEPTED 13 December 2023

PUBLISHED 08 January 2024

CITATION

Siahaan D, Fauzan R, Widyadhana A,

Firmawan DB, Putri RR, Desnelita Y,

Gustientiedina and Putrian RN (2024) A scoping

review of auto-generating transformation

between software development artifacts.

Front. Comput. Sci. 5:1306064.

doi: 10.3389/fcomp.2023.1306064

COPYRIGHT

© 2024 Siahaan, Fauzan, Widyadhana,

Firmawan, Putri, Desnelita, Gustientiedina and

Putrian. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A scoping review of
auto-generating transformation
between software development
artifacts

Daniel Siahaan1*, Reza Fauzan2, Arya Widyadhana1,

Dony Bahtera Firmawan1, Rahmi Rizkiana Putri1,

Yenny Desnelita3, Gustientiedina4 and Ramalia Noratama Putrian3

1Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 2Department of

Electical Engineering, Politeknik Negeri Banjarmasin, Banjarmasin, Indonesia, 3Department of

Information System, Institut Bisnis dan Teknologi Pelita Indonesia, Pekanbaru, Indonesia, 4Department of

Informatics, Institut Bisnis dan Teknologi Pelita, Pekanbaru, Indonesia

Every process within software development refers to a specific set of input and

output artifacts. Each artifact models specific design information of a system,

yet they complement each other and make an improved system description.

The requirements phase is an early stage of software development that drives

the rest of the development process. Throughout the software development life

cycle, checking that every artifact produced in every development stage should

comply with the given requirements is necessary. Moreover, there should be

relatedness between elements within artifacts of di�erent development stages.

This study provides an overview of the conformity between artifacts and the

possibility of artifact transformation. This study also describes the methods and

tools used in previous studies for ensuring the conformity of artifacts with

requirements in the transformation process between artifacts. It also provides

their applications in the real world. The review identified three applications,

seven methods and approaches, and five challenges in ensuring the conformity

of artifacts with requirements. We identified the artifacts as class diagrams,

aspect-oriented software architecture, architectural models, entity relationship

diagrams, and sequence diagrams. The applications for ensuring the conformity

of artifacts with requirements are maintaining traceability, software verification

and validation, and software reuse. The methods include information retrieval,

natural language processing, model transformations, text mining, graph-based,

ontology-based, and optimization algorithms. The benefits of adopting methods

and tools for ensuring the conformity of artifacts with requirements can motivate

and assist practitioners in designing and creating artifacts.

KEYWORDS

design artifacts, resource use e�ciency, requirements conformity, software artifact,

systematic literature review

1 Introduction

A requirement is a specification or capability that a system must meet. A requirement
can be derived directly from user needs and can be specified in the software requirements
specification, a contract, a standard, or a term of reference. Regarding work material,
schedule, and commitment, requirements serve as the foundation for the software
development life cycle (SDLC) (Sagar and Abirami, 2014). Documenting requirements is

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1306064
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1306064&domain=pdf&date_stamp=2024-01-08
mailto:daniel@if.its.ac.id
https://doi.org/10.3389/fcomp.2023.1306064
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1306064/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

vital in requirements engineering (RE), regardless of the RE
mechanism. Since requirements are generally written to
communicate with various stakeholders, they should be easy
to understand. Requirements can be recorded in several ways, such
as use cases, user stories, formal specifications, or personalized
document models, but the most frequently used method is
textual explanations (Bozyigit et al., 2021). Each requirement
representation should have a certain degree of conformity with
another or with other artifacts within the software development
process. Requirement artifacts are the outputs of the software
requirements phase, which can be a list of requirements, business
processes, use case diagrams, etc.

There are two categories of requirements: (1) functional
requirements (FRs) and (2) non-functional requirements (NFRs)
(Sommerville, 2015). FRs describe a system regarding the services
it must deliver, how it should respond to specific inputs, and
how it should behave in specific circumstances. FRsFRs can also
clearly state what a system must not do in certain situations. NFRs
are limitations on the services or features of a system, including
time limits, implementation phase constraints, and standards-
based constraints. NFRs are sometimes applied to the whole system
rather than specific system functions or utilities. Requirements
are not self-contained, and one requirement always generates or
constrains others.

Any textual or graphical record is an artifact. User stories use
cases, error reports, and other illustrations are examples of artifacts,
which may be at any scale or level of granularity (Ghazi and
Glinz, 2017). Each software development activity requires the use or
successful implementation of some artifacts. These artifacts are an
SDLC (Tufail et al., 2017; Fauzan et al., 2018) pillar. Furthermore,
artifacts are used by various people with varying tasks and demands
depending on their role in the project. There is rarely one optimal
type of artifact that can meet the needs of all participants. Ventures
thus need to deploy a wide range of artifacts, which runs the risk of
contradictions or inefficiencies arising from the interdependencies
of several artifacts. In RE, efficient alignment of specifications
artifacts is critical (Liskin, 2015). Various stakeholders with
differing perspectives influence the implementation and design of
complex systems. Due to the diverse capabilities of stakeholders,
various artifacts and heterogeneous requirements are essential parts
of the development process (Haidrar et al., 2017). It is essential to
check that final system artifacts meet the requirements to deal with
this complication.

In light of the explanation above, requirements documents
are closely related to other artifacts (Irshad et al., 2018). All the
documents must be integrated and have the same understanding
of the user requirements (Ferrari et al., 2017; Muñoz-Fernández
et al., 2017). However, in a project, requirements documents
may be created by several different people (Noll et al., 2017).
Moreover, requirements documents are generally written in natural
language (NL), which can lead to misunderstandings between
stakeholders on the details of requirements. Several other studies
(Yue et al., 2011b; Souza et al., 2019; Bozyigit et al., 2021) have
performed systematic literature reviews on the conformity of
specific artifacts with requirements. However, an overview of the
conformity of artifacts in general within the software development
process is necessary as a basis for ensuring the conformity of
artifacts with requirements. A requirement is closely related to

the accompanying artifact because many artifacts can be generated
from a requirement.

This review summarizes the current research related to
requirements conformity with other artifacts. We limit our scope
to the studies that have developed a method, an approach, a
technique, a framework, or a tool that generates requirements
artifacts (such as user story, textual requirements, use case
diagram, etc.) from other artifacts (other requirements artifacts,
design artifacts, implementation artifacts, testing artifacts, etc.);
developed a method, an approach, a technique, a framework, or
a tool that generates design/implementation/testing artifacts from
requirements; developed method, an approach, a technique, a
framework, or a tool that measure similarity or consistency between
two requirements artifacts or between a requirement artifact and a
design/implementation/testing artifact; developed a method based
on method that generates requirements artifacts; compared various
automated artifact generation methods (including requirements
artifacts), or; reported real world experiences on various artifact
automated artifact generation methods (including requirements
artifacts).We summarize themethods, approaches, techniques, and
tools that have been proposed and identify which challenges they
aim to overcome. We also identify the applications of the methods
and tools. Our study is intended to help practitioners better
understand the methods and tools used to ensure the conformity
of artifacts with requirements.

2 Related works

To the best of our knowledge, a limited number of review
studies focus on the conformity of artifacts with requirements.
The studies explore various automation methods for converting
requirements into Unified Modelling Language (UML) diagrams
(Yue et al., 2011b; Souza et al., 2019; Bozyigit et al., 2021), and
automation methods for generating codes from Unified Modeling
Language (UML) diagrams (Mehmood and Jawawi, 2013). The
following is a detailed explanation of these related works.

Yue et al. (2011b) conducted a systematic literature review of
transformationmethods for converting consumer expectations into
investigation models. They concluded that a perfect methodology
for converting requirements into investigation models has the
following attributes: (1) requirements should be simple to report
using the arrangement necessitated by the methodology; (2)
the examination models created should be complete; (3) the
methodology should contain as few changes as possible (high
efficiency); (4) the methodology ought to be automated; and
(5) the methodology should be understandable. Seven of the 16
studies reviewed were able to change requirements directly into
analysis models. In contrast, the others used midway models to
bridge the gap between them. They discovered that UML diagrams
were the most commonly used among the examined methods
of representing generated research models. They suggested that
further research on transformation approaches should also address
their quality characteristics: efficiency, usability, interoperability,
scalability, and extensibility.

Mehmood and Jawawi (2013) conducted a systematic mapping
study of aspect-oriented model-driven code generation. Their
research sought methods for applying aspect-oriented principles in

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

a model-driven engineering (MDE) context. The reviewed studies
often use an automated method to create templates. They found
that models are the primary focus in an MDE framework and are
used to visualize an executable concept of the system and automate
the development of a working software system. Hence, modeling
correction and completion need more attention, as does finding
ways to verify models to incorporate aspects into the broader
context. They also identified that aspect-oriented code creation is a
difficult problem to solve, and only a few proposals have attempted
to do so. Moreover, all of the proposed solutions could only
produce portions of code. Furthermore, there are no documented
code generation methods based on UML sequence and statechart
diagrams, which present the behavioral viewpoint of the system.
This should be examined more thoroughly in the future.

Souza et al. (2019) conducted a systematic mapping study on
deriving architectural models based on requirements specifications.
Their examination intended to outline the current methods
for generating architectural models based on requirements
specifications. The bulk of the reviewed studies reviewed focused on
deriving system designs from specifications. Others were concerned
with understanding the specifications, providing decision-making
support, reusing architectural expertise, promoting modularization
in software design, or providing requirements and architecture
traceability support. Many experiments focused solely on the
architect’s experience, and only a few acknowledged their
limitations. Those that did cite apparent uncertainty and a lack
of consistent terminology, stating that portraying the design
of a software system is a highly complex challenge that is
impossible to solve in a single model. They also discovered
several unsolved problems that can be further investigated.
It included domain-specific methods that addressed a broader
spectrum of NFRs. Mainly, external NFRs address methods’
limitations, standards, or common understanding; explicit or
tacit knowledge; supporting tools; evaluation methods; and
requirements satisfaction.

Bozyigit et al. (2021) conducted a systematic literature
review on linking software requirements and conceptual
models. They discovered that the bulk of the studies were
mostly focused on coping with requirements written in English.
The growing number of groundbreaking works analyzing
English-language documentation contributes significantly to the
information engineering field. However, working in languages
other than English helps these systems reach a larger audience.
They discovered that most scientific experiments focused on
constructing UML class diagrams despite the fact that 14
types of UML diagrams are used to depict the various aspects
and characteristics of an expected software. Furthermore, the
recognition of relationships among the components of the
produced models was not completed correctly. The inability to
establish relationships may limit traceability between the design
and implementation phases. They suggested creating a well-
designed algorithm that contains more complex transition rules to
address these flaws. For future analysis, they suggested developing
novel methods with the following features: (1) thoroughly
determining all types of relationships, (2) producing diagram types
other than class diagrams, (3) creating source code for more than
one programming language, and (4) making a large-scale dataset
of various programming issues.

There have been literature reviews on the conformity of
artifacts with requirements in generating artifacts. However, all
other reviews or mapping studies have focused only on specific
artifacts (e.g., analysis models, architectural models, or code).
Table 1 summarizes the selected literature on the conformity of
artifacts with requirements in general. Yue et al. (2011b) explained
the methods commonly used to generate artifacts at the analysis
stage. Mehmood and Jawawi (2013) shows the relationship between
requirements and artifacts in aspect-oriented modeling. Souza et al.
(2019) and Bozyigit et al. (2021) explain all the methods used to
generate artifacts. Our review aims to explain the methods applied
to check conformity between requirements representations and
between requirements artifacts and other artifacts or to generate
conformance representations of requirements or different artifacts.
It also aims to explain the challenges that are encountered in
its generation. We identify the different applications of ensuring
the conformity of artifacts with requirements. We summarize
the methods, techniques, approaches, and tools used in studies
and research within the past decade (2010–2020) and state the
challenges in ensuring conformity of artifacts and requirements.
We determine whether significant development has been in the
investigated topic and identify the areas lacking research.

3 Overview of selected studies

The study follows The PRISMA 2020 guidelines for reporting
systematic reviews (Page et al., 2021) as the reference. We
designed a structured search strategy to delve into all acquirable
scientific sources relevant to the objective of this review following
distinguishing our research preferences and problems.

As shown in Table 2, the protocol included specifying the
search space, which included electronic databases. The studies
were initially retrieved from electronic sources. The search terms
used were “Compliances,” “Software requirements compliances,”
“Software requirements artifacts,” “Requirement compliances
artifacts,” “Software requirements,” and “Requirements with other
artifacts.” At this stage, we found 370 studies, including 61
studies from ACM Digital Library, 82 from IEEE Xplore, 105
from SpringerLink, and 122 from ScienceDirect. We conducted
our search on March 9, 2023, and searched for papers published
between January 2010 and our search date.

We used a list of inclusion and exclusion criteria to narrow
down the 370 studies. We used the following inclusion criteria to
ensure that all selected publications for review are relevant and
cover state-of-the-art research.

I1 This study is a peer-reviewed publication.
I2 The study is written in English.
I3 The study is related to the search terms.
I4 The study is an empirical research paper, experience report, or

workshop paper.
I5 The study was published between January 2010 and

December 2020.

In order to reduce missed selection, bias, and muddling,
we used a set of exclusion criteria. These exclusion criteria
should improve the probability of finding an important and
insightful association.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

TABLE 1 Summary of selected literature on ensuring conformity with requirements in general.

References Goal Research questions/goals

Yue et al. (2011b) Examine existing written works that change text-based
requirements into investigation models, feature open
issues, and offer ideas for future research directions.

RQ1: What are the various techniques for turning requirements into analysis models?
RQ2: What are these methods’ present limitations?
RQ3: What are the open topics that need to be investigated further?

Mehmood and
Jawawi (2013)

Give an overview of existing exploration on
aspect-oriented modeling and code generation to find
important work and recognize areas for future
examination.

RQ1: What are the most frequently discussed aspects of aspect-oriented programming
and model-driven code generation? How well have these issues been researched?
Furthermore, what kinds of contributions have been made so far?
RQ2: What are the most common places to publish research on aspect-oriented
modeling and generation of aspect-oriented code?
RQ3: What various forms of study are presented in the literature, and how much of it
has been addressed?

Souza et al. (2019) Give a thorough outline of the current methods to
obtain architectural models from requirements
specifications. Offer an exploration guide to shift the
research focus to address the recognized limits and
open issues that require further examination.

RQ1: What is the method’s key goal?
RQ2: What are the implementation domains of the method?
RQ3: What is the starting point for the method?
RQ4: What are the advantages of the system for users?
RQ5: What are the limitations of the method?
RQ6: What does the approach cover in terms of (1) knowing the problem, (2)
identifying a solution, and (3) assessing the solution?
RQ7: How does the system use architectural views?
RQ8: Does the system specify a language or notation for describing the objects
produced?
RQ9: To what extent are the enabling methods automated?
RQ10: What criteria are used to test the method?
RQ11: How is the method’s output quality validated?

Bozyigit et al.
(2021)

Provide an overview of current methods for
automatically converting software specifications into
conceptual models, as well as an assessment of their
approaches, functionalities, datasets used, validation
methods, generated model forms, languages supported,
and future research needs.

RQ1: Which languages are examined to convert software requirements into
conceptual models?
RQ2: What are the strategies for converting requirements into a computational
model?
RQ3: What types of mathematical models will the checked structures generate?
RQ4: What are the specifics of the databases used in the experiments reviewed?
RQ5: What techniques were used to determine consistency in the experiments
reviewed?

E1 The study does not focus explicitly on requirements conformity
with other artifacts.

E2 The study focuses on coverage outside of the conformity
of artifacts with requirements (e.g., the conformity
between different requirements representations or between
requirements with non-requirements artifacts).

E3 The study is an opinion, point of view, keynote, discussion,
editorial, comment, lecture, preface, narrative article, or
presentation in slide format without accompanying text.

Table 3 displays the findings of the initial search, which yielded
370 publications. Our dataset included only published, peer-
reviewed papers (I1). The researchers thoroughly examined the
titles and abstracts of the studies based on the inclusion criteria
(Round 1). The majority of the studies that were collected satisfied
inclusion criteria I2, I3, and I5. Due to the inadequacies of
web indexes in extending the search string to the entire body
of the paper, a significant number of results were eliminated,
resulting in the selection of 92 studies after the first round of
classification. We also checked that the papers we found were
empirical research papers, experience reports, or workshop papers
(I4). The researchers then tested the selected papers in Round
2 against the exclusion criteria (E1, E2, and E3). A face-to-
face consensus conference was held to review the agreements
and differences in the evaluation of the researchers. When two
researchers could not agree on whether a paper should be included,
we read the entire paper. We then omitted studies based on the
exclusion criteria. For instance, there are some publications that

TABLE 2 Search sources.

Type Source names

Electronic databases ACM digital library, IEEE Xplore, SpringerLink,
ScienceDirect

Searched items Journal articles, workshop and conference papers,
and book chapters

Search applied on Full text, skipping any articles important to the
research objective but that did not contain our
search keywords in titles or abstracts

Language English

Period of publication January 2010–December 2020

were omitted because although studies such as Abbas et al. (2021)
discuss about conformity of artifacts, they do not explicitly focus
on requirements. Other studies focus on modeling requirements
(Dalpiaz et al., 2021), generating artifacts (Sunitha and Samuel,
2018), or measuring artifact integrated quality (Landhäußer et al.,
2014). In total, 60 articles were omitted from the 92 pre-selected
studies after applying the inclusion criteria because they did not
address any subject specifically relevant to our investigation (E1–
E4). The remaining thirty-two studies fulfilled the above-listed
procedures and strategies for ensuring that the criteria were met.
As a result, we narrowed down our final list to thirty-two studies
(see the two farthest-right columns in Table 3).

Finally, we performed backward snowballing according to the
guidelines set by Wohlin (2014). Other papers are searched based

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

TABLE 3 The total studies found in each round of the systematic search.

Database Retrieved Round-1 Round-2

Included Excluded Included Excluded

ACM digital library 61 13 48 3 10

IEEE Xplore 82 23 59 7 16

SpringerLink 105 24 81 10 14

ScienceDirect 122 32 90 12 20

Total 370 92 278 32 60

on the reference list of papers selected in the previous section.
Of. From the backward snowballing on the thirty-two papers that
had been selected, 42 new papers were identified. The 42 papers
were filtered using the inclusion and exclusion criteria as previously
described. Then the 42 papers were also assessed based on the same
assessment criteria as previously described. Six papers (55%) were
considered excellent, three papers (22%) were considered to be very
good, and two papers (18%) were considered to be good. In the end,
11 additional papers were selected. There were 43 selected papers to
be reviewed in total.

The distribution of research publishing origins is shown in
Table 4. Of the forty-three studies, around 47% (n = 20) were
published in journals, 49% (n = 21) in conferences, and 4%
(n = 2) in book chapters. Our results in Table 4 show that
the Journal of Systems and Software had the highest number
of publications, followed by the India Software Engineering
Conference’s publication venue, showing that authors slightly
preferred the Journal of Systems and Software. The years of
publication, shown in Figure 1, indicate that the conformity of
artifacts with requirements still attracts research interest. Figure 2
illustrates the distribution of peer-reviewed articles published
between 2010 and 2020. Studies on this topic have been published
yearly, with an average of three studies per year.

4 Applications of ensuring conformity
of artifacts with requirements

Based on our findings, there are three applications for
ensuring conformity of artifacts with requirements: maintaining
traceability, software verification and validation, and software
reuse. Of the collected studies, 51% were related to maintaining
traceability. Of the collected studies, 46% (23 papers) were related
to maintaining traceability. Another 42% (21 papers) proposed
software verification and validation. Finally, 12% (6 papers)
proposed software reuse.

Maintaining traceability in software engineering refers to
monitoring job objects during the production process (Vale et al.,
2017). There must be a trace, which is defined as a stated triplet
of elements: a target artifact, a source artifact, and a connection
linking the two artifacts to the specific requirements artifacts to
verify the conformity of the artifacts with the requirements. The
ability to create and use traces is known as traceability (Cleland-
Huang et al., 2012). Traceability is essentially the ability to connect
data in different objects and analyze the relationship between these
data. As a result, providing navigable connections between data

stored within objects is essential for achieving traceability (Cleland-
Huang et al., 2012). Engineers can execute job tasks like effect
analysis, identifying reusable objects, and specifications validation
more reliably if they have access to trace information (Borg et al.,
2014). By defining accurate associations between objects, trace
ties can be created to ensure the conformity of artifacts with
requirements. Traceability is generally achieved by defining rules
connecting input and output artifacts.

Software verification and validation (V&V) determines whether
the software meets its given requirements (Hsueh et al., 2008).
The process includes checking programs, code, design, and
documents. There are several verification methods, including
reviews, walkthroughs, and inspections. Verification can be
addressed by asking, “Are we building the product correctly?”
Validation is the method of determining whether the software
satisfies the specifications and desires of the customer. It entails
testing and validating the commodity. Validation methods include
non-functional testing, white-box testing, and black-box testing.
Validation can be addressed by asking, “Are we building the right
product?” (Sainani et al., 2020). Ensuring the conformity of artifacts
with requirements can be applied to software V&V. The methods
and techniques related to ensuring the conformity of artifacts
with requirements provide a thorough analysis and understanding
of the requirements. They can also provide guidelines and
assistance in software V&V. The resulting artifacts of the methods
and techniques that ensure the conformity of artifacts with
requirements are closely constructed to the requirements of the
software. The artifact is also designed to cater to individuals without
technical expertise, providing them with the necessary tools to
effortlessly generate, disseminate, and oversee fully operational
applications across several client platforms (Pérez-Álvarez and
Mos, 2020).

Software reuse is the method of explicitly specifying a series of
structured procedures for stating, constructing, using, and adapting
previously acquired software components to create new software
(Mili et al., 1998; Irshad et al., 2018). It is a method of creating new
applications from existing software and predefined components to
increase software efficiency. Reusing apps has various advantages,
including (1) increased dependability, (2) increased effectiveness,
(3) accelerated development; (4) improved device interoperability;
(5) the ability to create applications with fewer people; (6) lower
costs of device servicing; (7) building structured applications;
and (8) high-quality software and a significant competitive edge
(Dabhade et al., 2016). The methods and techniques for ensuring
conformity of artifacts with requirements can be applied to
software reuse due to the thorough analysis and understanding of

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

TABLE 4 The distribution of studies by publication venues.

Publication source Type Number

ACM Transactions on Software Engineering and
Methodology (TOSEM)

Journal 1

Arabian Journal for Science and Engineering Journal 1

Computational Intelligence in Data Mining Conference 1

Data & Knowledge Engineering Journal 1

European Conference on Modelling Foundations
and Applications

Conference 2

IEEE Transactions on Software Engineering Journal 1

India Software Engineering Conference Conference 3

Information and Software Technology Journal 1

Intelligent Computing, Communication, and
Devices

Book
Chapter

1

International Conference on Advanced
Informatics for Computing Research

Conference 1

International Conference on Advances in
Computing

Conference 1

International Conference on Computer Research
and Development

Conference 1

International Conference on Computer Science
and Computational Intelligence

Conference 1

International Conference on Computer Science
and Information Technology

Conference 1

International Conference on Fuzzy Systems and
Knowledge Discovery

Conference 1

International Conference on Information Science
and Applications

Conference 1

International Conference on Intelligent Systems:
Theories and Applications (SITA)

Conference 1

International Conference on Modeling Simulation
and Applied Optimization

Conference 1

International Conference on Swarm Intelligence Conference 1

International Conference on System Analysis and
Modeling

Conference 1

International Joint Conference on Computer
Science and Software Engineering

Conference 1

International Journal of Computer Science and
Informatics

Journal 1

International Journal of Database Theory and
Application

Journal 1

International Symposium on Software Testing and
Analysis

Conference 1

International Workshop on Artificial Intelligence
for Requirements Engineering

Conference 1

Journal of King Saud University Computer and
Information Sciences

Journal 1

Journal of Systems and Software Journal 7

Procedia Computer Science Journal 1

Relating Software Requirements and Architectures Book
Chapter

1

Requirements Engineering Journal 1

(Continued)

TABLE 4 (Continued)

Publication source Type Number

Soft Computing Journal 1

Software Quality Journal Journal 1

Software: Practice and Experience Journal 1

World Congress on Nature and Biologically
Inspired Computing

Conference 1

the requirements needed to select existing software components
and modify them to fit the requirements of the software under
development. The artifacts generated through these methods and
techniques can also be reused for future development.

5 Methods, techniques, approaches,
and tools

We found seven types of approaches used in the forty-
three studies, namely information retrieval (IR), natural language
processing (NLP), model transformation (MT), text mining (TM),
graph-based, ontology-based, and optimization algorithms. The
following is a brief explanation of the approaches used. Table 5
shows the input artifact, the method used, and the generated
artifacts for each study where AD is Activity diagram, CD
is Class diagram, ERD is Entity Relationship Diagram, GA is
Genetic Algorithm, IR is Information Retrieval, MT is Model
Transformation, NLP is Natural language Processing, SD is
Sequence diagram, ST is Statechart Diagram, TM is Text Mining,
and UCD is Use case diagram.

5.1 Information retrieval

IR is the process of locating content (usually documents)
of an unstructured nature (usually text) that meets a specific
knowledge requirement from extensive collections (typically stored
on PCs) (Harman et al., 2019). The phrase “unstructured data”
refers to data that does not follow a simple, semantically obvious,
and computer-friendly format. Supporting users in searching or
filtering document sets and further processing a range of collected
documents is included in the IR field (Schütze et al., 2008). Some
common sub-tasks of IR are (1) tokenization, which separates a
piece of text into smaller units called tokens; (2) stemming, which
reduces derived words to their base forms; and (3) identifying
and removing stop words, such as prepositions and pronouns. IR
matched words to the artifact component based on pre-existing
knowledge in the papers we found. Knowledge can be ontology
(Robles et al., 2012) or data from previous projects. IR performance
on papers is tested using precision, recall, and over-specification
(Harmain and Gaizauskas, 2000). Precision indicates whether the
output of the given solution is complete and shows the relevance
of the human analyst with the system being built. Recall shows
the accuracy of the system’s output by displaying the correct
number of outputs. Over-specification assesses the amount of
excess information within the output solution.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

FIGURE 1

Distribution of selected studies by year.

FIGURE 2

Methods based on applications.

5.2 Natural language processing

NLP applies computational techniques to analyze and
synthesize NL and speech (Nadkarni et al., 2011; Pérez-Álvarez and
Mos, 2020; Dinesh et al., 2021). It allows computers to comprehend
both written and spoken human language. Systems interpret

language on several levels. The first level is the morphological
level, which treats morphemes as the constituent parts of a word.
The second level is the linguistic level, which investigates how
morphemes merge to form words and how minor variations
can alter the meaning of the final word. The third level is the
syntactic level, which considers how word order and dependency

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

TABLE 5 The input artifact, the method used, and the output artifacts of

each study.

Study: Input → Output Artifact Method

Bowman et al. (2010): Ill-suited CD→

Optimal CD
GA

Ibrahim and Ahmad (2010): Textual
requirements→ CD

NLP, IR, and MT

Yue et al. (2010): UCD→ AD MT

Sanchez et al. (2010): Aspect-oriented
requirements→ Aspect-oriented soft. arch.

MT

Chen and Li (2010): UCD→ Test case MT

Deeptimahanti and Sanyal (2011): Textual
requirements→ UCD and CD

NLP and TM

Elbendak et al. (2011): UCD→ Class
diagram

NLP, IR, and MT

Yue et al. (2011a): UCD→ ST NLP and IR

Junior and Vijaykumar (2012): Textual
requirements→ ST

MT

Castro et al. (2012): Requirements in i*→
Architectural model

MT

Colombo et al. (2012): Problem frames→
Architectural model

MT

Lv and Xie (2012): Textual requirements→
ERD

Ontology-based and MT

Sarkar et al. (2012): Use case diagram→ CD NLP, IR, and MT

Tripathy and Mitra (2013): AD and SD→

Test case
Graph-based and depth-first
search

Masoud and Jalili (2014): Textual
requirements→ CD

Graph-based and TM
(clustering)

Sagar and Abirami (2014): Textual
requirements→ CD

NLP, IR, and MT

Thakur and Gupta (2014): UCD→ SD NLP, IR, and MT

Abirami et al. (2015): Textual requirements
→ CD

NLP, IR, TM (clustering), and
MT

Jena et al. (2015): Sequence diagram→ Test
case

Graph-based and GA

Sharma et al. (2015): Textual requirements
→ CD

NLP, IR, and MT

Tawosi et al. (2015): Textual requirements→
CD

NLP, IR, graph-based, and ant
colony

Wang et al. (2015): Use case diagram→ Test
case

NLP and IR

Yue et al. (2015): UCD→ AD, CD, and SQ NLP and MT

Ben Abdessalem Karaa et al. (2016): Textual
requirements→ CD

NLP and MT

Khan and Mahmood (2016): Use case maps
→ Test case

MT

Ahmed et al. (2017): Textual requirements
→ CD

NLP, IR, and MT

Jaiwai and Sammapun (2017): Textual
requirements→ CD

NLP, IR, and MT

Kim et al. (2017): Design patterns→ CD and
SD

MT

(Continued)

TABLE 5 (Continued)

Study: Input → Output Artifact Method

Lucassen et al. (2017): User stories→ ERD NLP, IR, and MT

Meiliana et al. (2017): AD and SD→ Test
case

Graph-based and depth-first
search

Azam et al. (2018): Feature diagrams→ Test
case

GA

Elallaoui et al. (2018): User stories→ UCD NLP, IR, and MT

Khari et al. (2018): Control flow graph→

Test case
Graph-based and cuckoo
search

Hamza and Hammad (2019): Textual
requirements→ UCD

NLP, IR, and MT

Omar and Baryannis (2020): Textual
requirements→ ERD

NLP and IR

Sahoo and Ray (2020): Control flow graph→

Test case
Graph-based and particle
swarm

Sankar and Chandra (2020): State transition
diagram→ Test case

Graph-based and ant colony

Pérez-Álvarez and Mos (2020): Textual
requirements→ Application

NLP and MT

Sainani et al. (2020): Contracts→ Textual
Requirement

NLP and IR

Wang et al. (2020): Textual requirements→
Test Case

NLP and MT

Arrieta et al. (2020): Textual requirements→
Test Case

NLP and MT

Yang et al. (2019): UCD, CD, SQD→

Prototype
MT

Haris and Kurniawan (2020): Textual
requirements→ requirement sentence

NLP and MT

affect the interpretation of a sentence. The fourth level is the
semantic level, which reflects how the sense of terms within a
sentence influences the interpretation of the actual words. The
fifth level is the discourse level, which examines how sentence
order and composition influence the interpretation of sentences.
The last level is the practical level, which explores the effect of the
foundation of words or sentences on situational experience and
world understanding.

The goal of NLP is to improve IR. The following are some
examples of NLP sub-tasks: (1) lemmatization (combining inflected
forms of a word so that they can be analyzed as a single object);
(2) dependency parsing (determining whether any of the terms in a
sentence are related); (3) part-of-speech (POS) tagging (identifying
terms in a sentence based on their linguistic properties, such as
noun, pronoun, and adjective); and (4) named entity recognition
(determining the identity of a named object, such as an individual,
movie, organization, or location). NLP is used to process artifacts
printed in NL so that NL can be comprehended and defined, as NL
can be ambiguous and have vague declarations (Sagar and Abirami,
2014). The combination of NLP and IR on artifacts at the design
level, such as class diagrams and ERD, provides high precision and
recall values, respectively 85% and 90%. The precision and recall
values given for artifacts at the requirement level are 72% and 70%.
The number of cases used is 5 to 6 case examples.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

The following studies used NLP and IR. Ibrahim and Ahmad
(2010) and Hamza and Hammad (2019) used NLP and IR to obtain
nouns, proper nouns, noun phrases, verbs, and adjectives from
textual requirements used for MT. Sharma et al. (2015) used NLP
and IR to obtain grammatical knowledge patterns from textual
requirements used for MT. Elbendak et al. (2011) and Sarkar
et al. (2012) used NLP and IR to obtain verbs, nouns, adverbs,
and adjectives using case descriptions used for MT. Thakur and
Gupta (2014) used NLP and IR to obtain proper nouns, noun
phrases, and verbs from the use case specifications used for MT.
A few studies (Sagar and Abirami, 2014; Ahmed et al., 2017;
Jaiwai and Sammapun, 2017) used NLP and IR to obtain nouns,
verbs, adjectives, adverbs, and typed dependencies from textual
requirements used for MT. Abirami et al. (2015) used NLP and
IR to tokenize textual requirements into a list of sentences, which
were then clustered into NFRs and FRs. NLP was then used to
obtain verbs, nouns, adverbs, adjectives, and typed dependencies
from the clustered requirements used for MT. Tawosi et al. (2015)
used NLP and IR to identify subjects, objects, verbs, and behavioral
relations in every sentence. They extracted responsibilities and their
relationships from textual requirements to build a problem domain
semantic network graph, which generated class diagrams using an
optimization technique. Wang et al. (2015) used NLP and IR to
extract behavioral information from use cases to generate test cases.
Lucassen et al. (2017) used NLP and IR to tokenize user stories into
individual terms and identified their POS tags and relationships
with other tokens. Stop words were then removed from the tokens,
and each term was given a weight based on its frequency and was
used for MT in the next phase. Elallaoui et al. (2018) used NLP and
IR to obtain nouns, proper nouns, determiners, and verbs from
user stories used for MT. Omar and Baryannis (2020) used NLP
and IR to obtain noun phrases for candidate entities and typed
dependencies for identifying relationships. WordNet was used to
determine whether the candidate entities were valid. Relationships
among entities were then identified through human intervention to
create entity relationship diagrams.

5.3 Model transformation

MTs are abstractions of a system or its environment that allow
developers and other stakeholders to address concerns about a
system effectively. MTs operate on models and are intended to
have the following applications: (1) producing lower-level models
based on higher-level models; (2) mapping and synchronizing
among models at the same or different levels; (3) creating query-
based views of software; (4) model evolution tasks (e.g., model
refactoring); and (5) reverse-engineering higher-level models based
on lower-level models (Czarnecki and Helsen, 2006). MT is a
technique for producing a novel model from a current method by
applying a series of transformation guidelines. The transformation
guidelines between artifacts can often be applied to other cases, for
example, in Baker et al. (2005) and Pastor and Molina (2007).

Some studies (Ibrahim and Ahmad, 2010; Sharma et al., 2015)
used MT to identify classes, attributes, and relationships from
concepts of a domain ontology to generate class diagrams. Sanchez
et al. (2010) used MT to select an architecture that satisfied the

FRs and NFRs of aspect-oriented scenario models. Chen and Li
(2010) used MT to transform use cases into test cases. Some
other studies (Elbendak et al., 2011; Sarkar et al., 2012; Sagar and
Abirami, 2014; Abirami et al., 2015; Ahmed et al., 2017; Jaiwai
and Sammapun, 2017) used MT to identify classes, attributes,
and relationships from the preprocessed textual requirements to
generate class diagrams. Lv and Xie (2012) used MT to identify
entities and their relationships from domain ontology concepts to
generate entity relationship diagrams. Colombo et al. (2012) altered
the parts of the requirements model into elements of the design
model. Castro et al. (2012) used MT to map i* elements (actors and
dependencies) to detailed elements of an architecture description
language. Thakur and Gupta (2014) used MT to identify actors,
boundaries, controls, messages, and message parameters from the
preprocessed use case specifications to generate sequence diagrams.
Khan and Mahmood (2016) used MT to transform use case maps
into sequences using the components and responsibilities obtained
from the use case maps. Kim et al. (2017) used MT to transform
design patterns into class and sequence diagrams based on the
mapping between the solution of the pattern and problem domains.
The final result was a solution model that incorporated pattern
properties. Lucassen et al. (2017) used MT to identify all user
story patterns and filtered out entities and relationships to generate
entity relationship diagrams. Elallaoui et al. (2018) used MT to
identify actors, use cases, and their associations to generate use case
diagrams. Hamza and Hammad (2019) used MT to identify actors,
use cases, and their associations from preprocessed user stories
to generate use case diagrams. The completeness of the results of
the papers was 85% to 100% from the 5 to 6 cases tested. Wang
et al. (2020) use MT to generate test cases from formal requirement
model. The conclusive examination outcomes indicate that the test
cases produced by this approach can efficiently detect a range of
potential faults in the implementation of requirements. Yang et al.
(2019) combined several artifacts into a prototype. This can also
be a reference that by combining several artifacts, we can build a
simple system.

5.4 Text mining

TM converts unstructured text into a formal format to find
new ideas and concrete trends. TM is a technique for categorizing
texts based on sentiment, subject, and purpose. In software
engineering, this enables developers and stakeholders to make
data-driven decisions. Using the functionality from the previous
process,Masoud and Jalili (2014) used clustering to organize related
responsibilities into the same clusters and different responsibilities
into separate clusters. After clustering, the associations between
the clusters were set to generate a class diagram. Abirami et al.
(2015) used clustering to classify tokenized textual requirements
into NFRs and FRs using a predefined set of classifier rules. The
evaluation in these papers was carried out by measuring the F-score
on three to four cases. F-Score shows a more significant level of
suitability to the experts (Goutte and Gaussier, 2005). The resulting
F-score range is between 87% to 96%.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

5.5 Graph-based

Graphs are mathematical structures used to model
relationships between objects in a collection. In this context,
graphs are composed of nodes or vertices and edges, which link
pairs of vertices. Tripathy and Mitra (2013) integrated sequence
and activity diagrams to produce a system testing graph, which
was later used with the graph optimization technique to obtain test
cases. Masoud and Jalili (2014) first collected the responsibilities
of the system and their dependencies from the requirements. A
responsibilities dependency graph (RDG) was constructed, where
the nodes represent the responsibilities and the edges represent the
dependencies between the responsibilities. This graph was then
used to extract features. A feature is a property of a responsibility
that determines how it is connected to other responsibilities; the
RDG assists in extracting clustered features.

Jena et al. (2015) used sequence diagrams to produce a sequence
flowchart. The sequence flow chart was then transformed into a
message control flow graph (MCFG), used to produce test cases
using an optimization technique. Meiliana et al. (2017) integrated
the sequence diagram and activity diagram to form a system testing
graph traversed using a graph optimization technique to obtain
test cases. Khari et al. (2018) and Sahoo and Ray (2020) used
control flow graphs, which depict data flow or calculations during
the execution of programs or applications. Control flow graphs are
used to obtain test cases using an optimization technique. Sankar
and Chandra (2020) used a state transition diagram or state graph.
The vertices in a state graph represent states, and the graph’s edges
denote transitions. The state graph is used to obtain test cases using
an optimization technique.

5.6 Ontology-based

Ontology-based approaches describe the common words and
principles (meaning) used to characterize and represent a field of
knowledge. An ontology can range in expressivity from a taxonomy
(information in negligible order or a parent-child structure) to a
thesaurus (words and synonyms) to a calculated informationmodel
(with more detailed information) to a coherent hypothesis (with
luxurious, complicated, predictable, and significant information).
An ontology contains a grouping of comments, principles, and
realities. The entire metaphysical content is conveyed in its theories
and realities, which give data about classes, properties, and people
in the cosmology (Lv and Xie, 2012).

5.7 Optimization algorithm

Optimization algorithms find the optimal solution when
presented with possible solutions. The algorithm observes whether
the current state has achieved the optimal solution in each step.
Optimization algorithms are applied in software engineering.
Bowman et al. (2010) used a genetic algorithm (GA) to reallocate
methods and attributes to classes in a class diagram and use class
coupling and cohesion measurement to define fitness functions.
Räihä et al. (2011) used a GA to obtain the software architecture

of the targeted system. The primary input of the GA is a basic
architecture representing the functional decomposition of the
system decomposition, obtained as an enhancement of use cases.
The fitness function is adjusted for chosen efficiency, modifiability,
and simplicity weights. The success rate in industrial practice is
50% to 90%. Tripathy and Mitra (2013) used depth-first search
(DFS) to traverse the system testing graph formed by integrating
sequence and activity diagrams to obtain test cases. DFS maximizes
test coverage while also reducing time and expense. Tawosi et al.
(2015) used ant colony optimization (ACO) to identify classes
and detect relationships among classes from a problem domain
semantic network graph constructed in the previous phase to
generate class diagrams. As a result, an increase in F-score was
exhibited. Jena et al. (2015) used a GA to obtain the optimal
test cases from the message control flow graph constructed in
the previous phase. They were able to reduce the expense and
time of testing. Meiliana et al. (2017) used DFS to traverse the
system testing graph obtained by integrating activity and sequence
diagrams to obtain test cases. Khari et al. (2018) used cuckoo search
to obtain test cases from the control flow graph of the system under
testing. Azam et al. (2018) used a GA to obtain test cases from
feature diagrams based on field IDs and their corresponding values.
Sahoo and Ray (2020) obtained test cases from the control flow
graph of the system under testing. In terms of path coverage, the
optimization produced better results. Sankar and Chandra (2020)
used ACO to obtain test cases from state transition diagrams. ACO
ensures better input testing accuracy. Algorithm optimization can
also be combined with rule-based to adjust applicable rules (Sainani
et al., 2020). Arrieta et al. (2020) used Adaptive Random Testing
(ART) to generate functional requirements in the test case. They
combined with another tool to generate the functional requirement
automatically. Recently, MT can also be used for blockchain
(Górski, 2021; Tran et al., 2022). It guarantees the uninterrupted
deployment of containerized blockchain-distributed applications.
Górski (2021) divides components into two parts, namely delivery
and deployment. The delivery component provides UMLmodeling
assistance for the deployment architectural perspective.

We introduced a hierarchical subdivision form of methods,
techniques, and approaches to represent the entire requirements
domain to design artifacts conformance domain. Figure 2 depicts
the details of the hierarchy.

5.8 Tools

We found ten tools that can be used for ensuring the conformity
of artifacts with requirements, namely ATCGT, Class-Gen, DAT,
AutoSDG, UMTG, aToucan, ABCD, AR2DT, Visual Narrator, and
SACMES. Tools that are introduced for the last ten years are
described as follows.

The Auto Sequence Diagram Generator (AutoSDG) was
developed by Thakur and Gupta (2014). AutoSDG uses NLP and
transformation rules. The input of this tool is a sequence diagram.
The output is a use case specification. Thakur and Gupta (2014)
compared AutoSDG to aToucan (Yue et al., 2015). The results
of the comparison of sequence diagram correctness are 91.2%
(AutoSDG) and 69.5% (aToucan). The results of the comparison

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

of sequence diagram completeness are 100% (AutoSDG) and
97.8% (aToucan).

The Use Case Modelling for System Tests Generation (UMTG)
was developed byWang et al. (2015). UMTG uses NLP and IR. The
input is use case specifications obtained from another tool called
Restricted Use Case Modeling (RUCM), which was developed by
Yue et al. (2013). RUCMdiminishes imprecision and inadequacy in
use cases to gather behavioral information. The output of UMTG
is test cases. Wang et al. (2015) has yet to further evaluate their
proposed method.

The aToucan was developed by Yue et al. (2015). This tool
enhances previous research (Yue et al., 2010, 2011a). The purpose
of a toucan is to convert a use case model into class, sequence, and
activity diagrams. aToucan can generate class diagrams with more
than 90% consistency with class diagrams generated by experts;
generate sequence diagrams with more than 91% consistency
with sequence diagrams generated by experts; 100% complete and
correct control flow information and 85% complete data flow
information in an activity diagram.

The Automatic builder of the class diagram (ABCD) was
developed by Ben Abdessalem Karaa et al. (2016). ABCD uses
NLP and transformation rules to generate the resulting artifact.
The tool takes as input functional requirements and outputs
class diagrams. Compared to similar tools, ABCD can generate
the following class diagram concepts: aggregations, associations,
attributes, classes, compositions, generalizations, methods, and
multiplicity. The resulting precision and recall values are 92.3% and
89%, respectively.

The Automated Requirements 2 Design Transformation Tool
(AR2DT) was developed by Ahmed et al. (2017). AR2DT uses NLP,
IR, and transformation rules. Textual requirements are taken as
the input, and the output artifact is a class diagram. AR2DT was
evaluated in the study by comparing precision and recall values
against Class-Gen (Elbendak et al., 2011). AR2DT exhibited better
performance compared to Class-Gen, in which AR2DT achieved
a precision and recall value of 94.9% and 85.56%, respectively,
whereas Class-Gen obtained a precision and recall value of 82.6%
and 83.3%, respectively.

The Visual Narrator was developed by Lucassen et al. (2017).
A Visual Narrator is an automated tool that identifies entities
and their relationships from user stories and generates entity-
relationship diagrams. This tool is suitable for agile development
methods. It uses NLP and transformation rules. The average
precision and recall values achieved in the evaluation were 95% and
91%, respectively.

SACMES was developed by Omar and Baryannis (2020).
SACMES is a semi-automated tool to identify entities and their
relationships from textual requirements to assist in creating
entity-relationship diagrams. The input is a textual requirement,
and the output is an entity relationship diagram. The basis of
this tool is NLP. The evaluations were based on precision and
recall values in identifying the diagram components by users
with the assistance of SACMES. The precision and recall value
for identifying unrecognized entities by users was 100% and
35%, respectively. The precision and recall value for identifying
unrecognized relationships was 89% and 22%, respectively. The
precision and recall value for the identification of entities was
64% and 40%, respectively. The precision and recall value for

the identification of relationships was 22% and 11%, respectively.
Finally, the precision and recall value for the identification of
cardinalities was 18% and 11%, respectively.

6 Challenges in ensuring conformity
of artifacts with requirements

In the reviewed studies, we identified five challenges related to
the conformity between requirements representations and between
requirements and other artifacts, namely many requirements;
conflicting and ambiguous requirements; changes in requirements;
matching requirements specifications and architectural design; and
lack of domain awareness and expertise of application designers.

6.1 Many requirements

Software is increasing in size and complexity. Given the
growing and various needs of stakeholders and customers,
software is designed and developed to fulfill various purposes.
This also causes the requirements of a given software to
increase. Requirements are additionally scattered across different
documents, each with many pages. Reading through these
requirements documents takes a great deal of time and effort.
Moreover, the human examiner may commit errors while perusing
countless pages. This may lead to an incorrect analysis model,
resulting in artifacts not complying with the requirements
(Kitchenham et al., 2010).

6.2 Conflicting and ambiguous
requirements

Software requirements are written in NL. NL specifications
are simple to comprehend since the requirements interact
with others in the same language. On the other hand, NL
also has various defects (Abirami et al., 2015). Noise, silence,
over-specification, contradiction, forward comparison, wishful
thinking, and uncertainty are the underlying issues (Hamza and
Hammad, 2019). Furthermore, if many stakeholders with different
backgrounds and ways of thinking are involved in the project, the
presence of requirements that contradict each other is inevitable.
Ambiguous and conflicting requirementsmake it hard to create and
design artifacts that conform with requirements.

6.3 Changes in requirements

Analysts work with project partners in the requirements
gathering and analysis stage to collect the project specifications.
Unstated or implied requirements of which customers believe
the analyst is aware of are significant. Issues like this in the
requirements process lead to conflicts between architecture and
business teams. The requirements analysis process is inherently
arbitrary and reliant on personal views (Sagar and Abirami,
2014). The incompetence of stakeholders in decision-making

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

and complete domain knowledge may cause a stakeholder to
request a change in requirements during the development and
implementation phase. Changes to requirements made in the
latter stages of the development will be more costly than those
made during the requirements development process. Failures
and improvements cause changes in demands. They require
additional effort that was not planned upfront and significantly
affect the progress of a project. Changes in requirements cause
difficulties in maintaining the conformity between requirements
and other artifacts.

6.4 Matching requirements specifications
and architectural design

The relationship between requirements specifications and
design has been extensively researched to bridge the distance
between the two (Colombo et al., 2012). Requirements are often
articulated informally inNL, while architecture is represented semi-
formally. NFRs are impossible to define in architecture models
since they are software properties. Some requirements can only be
recognized after the architectural plan has been modeled (Castro
et al., 2012). Characteristics of the system are not listed in user
specifications. Only the characteristics of the user observable
problem domain that are influenced by the machine’s behavior
are expressed in user specifications. The system’s actions must be
described so that its relationship with the environment meets the
requirements of users (Colombo et al., 2012).

Moreover, various architectural elements may address a simple
requirement. A single architectural feature can be connected to
many specifications in non-trivial ways. It is not easy to define and
optimize the architecturally relevant details found in specifications,
such as NFRs, for designing this type of structure (Castro et al.,
2012). This makes it challenging to generate architectural artifacts
that conform with requirements.

6.5 Lack of domain awareness and
expertise among app designers

Converting NL specifications into domain models (DMs)
requires thoroughly examining NL text. Programmers often make
mistakes in this regard (Omar and Baryannis, 2020). Creating
a correct and complete DM depends on the experience of the
developers and may require additional knowledge in specific
problem domains. For example, if the software is to be used
in banks, financial knowledge may be required (Jaiwai and
Sammapun, 2017). The manual, process-centric approach to
designing high-level architecture from specifications is continually
used, with a firm reliance on experts (Sarkar et al., 2012).
The development of a DM can be challenging due to a lack
of domain awareness, expertise, and formal preparation. The
complex relationships between the concepts of DMs can be
difficult for both novice and experienced designers to recognize in
NL text, particularly for novice designers (Omar and Baryannis,
2020).

7 Discussion

We found that ensuring the conformity of artifacts with
requirements has applications in traceability and software V&V.
Both topics are important to software engineering. Traceability
makes it easier to frequently check whether the software is
consistent at every level, while software V&V ensures that the
software conforms to the given specifications. Traceability and
software V&V are at the heart of ensuring software quality. This
indicates the importance of ensuring the conformity of artifacts
with requirements. Another application of ensuring the conformity
of artifacts with requirements is software reuse. Software reuse is
gaining more attention among software developers to decrease the
cost and time of software development, improve software quality,
and control existing efforts by creating and applying multi-use
assets such as patterns, architectures, frameworks, and components.
However, software reuse is no easy feat. Further research on
the conformity of artifacts with requirements can help achieve
software reusability.

There are several approaches and methods for ensuring the
conformity of artifacts with requirements. The most commonly
used is MT. MDE is a software development approach that
emphasizes rendering models as the primary development artifact
and refining them by automated transformations before a working
system is obtained. In doing so, MDE aspires to a higher degree of
abstraction in system creation, resulting in a deeper understanding
of complex systems. MT is a process within MDE that is performed
according to a set of rules. Thus, our findings suggest that MDE is
still one of the most preferred software engineering approaches.

All studies that used textual requirements as the input to
their method used NLP and IR. Since textual requirements are
written in NL, it is mandatory to use NLP and IR to process
these requirements before using them as input to any technique.
NLP and IR are closely related because NLP is needed to support
IR. A graph is used to model relationships among the objects
in a collection. Many artifacts within the software domain are
used to present relationships between objects. Therefore, graphs
can generate artifacts through either manual observation or
an optimization algorithm to identify the ideal arrangement.
Optimization algorithms have been used for various applications
within the computer science realm due to their heuristic nature.
Optimization algorithms can find the optimal solution from a set
of possible solutions using a function determining the algorithm’s
goal. This area can be further researched to propose new tools that
can automatically generate different artifacts at different software
development levels.

We identified that the most commonly generated artifacts
within the proposed methods are the class diagram, followed by
test cases, software architecture, entity relationship diagrams (three
studies), case diagrams, and sequence diagrams. This is consistent
with the findings in Bozyigit et al. (2021), in which they identified
class diagrams as the most generated artifact in a set of studies
focused on transforming requirements into conceptual models.
Their study also stated that identifying attributes, operations,
and classes in the SDLC and their relationships is paramount.
Unsurprisingly, the test case was secondary to the class diagram,
as manually creating a test case can be a time-consuming task in

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

which humans can be fallible. Software architecture, an integral
component of a software or system, was only generated in
four studies. While examining the selected papers, we found
that research on software architecture was mainly focused on
architecture reuse rather than generation. We did not include any
studies that generated code because all possible solutions were
restricted to producing only partial code, as described in the
problem statement (Mehmood and Jawawi, 2013). Our scope was
limited to the generation of completed artifacts.

We recognized five challenges in ensuring conformity
of artifacts with requirements. The challenges include many
requirements, conflicting and ambiguous requirements, changes
in requirements, matching requirements specifications and
architectural design, and lack of knowledge and experience among
software designers. Automation can solve the issue of many
requirements, which can be overwhelming for human analysts. The
methods in the studies sought to process these requirements and
automatically generate artifacts that comply with requirements.
As for conflicting and ambiguous requirements, this challenge is
solved using NLP and IR to process the textual requirements to
create structure and eliminate ambiguity. Regarding the challenge
of changes in requirements, the methods sought to process the
requirements and present them more understandably in the
early phases of the SDLC. As a result, stakeholders can fully
understand the requirements, decreasing the chance of changes
in requirements in the latter stages of the SDLC. The proposed
methods also process the NFRs to specify the architectural
properties of the software for the purpose of solving the challenge
of matching requirements specifications and architectural design.
With the use of NLP and IR in combination with TM, information
on the problem domain can be extracted and used to assist
designers who lack knowledge and experience.

Based on a thorough investigation of the primary studies, we
present some of the research agenda highlights that we envisage
of the software requirements conformity. We divided them into
three periods.

2010–2013: Research emerges automatically from the artifacts
requirement into other artifacts such as activity diagrams and
class diagrams. Commonly used requirements artifacts as the
starting point of the methods are use case diagrams and
textual requirements. The proposed tools are aToucan, ATCGT
(Automated Test Case Generation Tool), RACE (Requirements
Analysis and Class Diagram Extraction), DAT (Design Assistant
Tool), and so on. Graph-based approaches have also been started
with simple algorithms such as DFS. Researchers are still focused
on the life or generation from one artifact to another in
this period.

2014–2020: The next period begins with the emergence
of aToucan, which has been developed from the next period.
Researchers widely use this tool to create metadata that has
artifact requirements. Furthermore, the researchers optimized to
increase the completeness and correctness of the resulting models.
Optimization is carried out in combination with NLP. A semantic
approach can further improve the conformity of artifacts with
requirements. The artifact output in this period is a test case.
Test cases can be used as a tool to measure the fulfillment
of requirements.

2021–2030: Research continues optimizing existing
approaches. Optimizations are carried out by combining
algorithms, such as graph-based Ant Colony and graph-based
Particle Swarm Optimization. Both algorithms are graph-based. In
this period, NLP is still applied using similar tools in the previous
period. The emergence of deep learning will also encourage using
various deep learning architectures, such as BiLSTM, GRU, BERT,
and RNN, to translate and transform software requirements into
different forms or different artifacts. Research on requirements
classification (Kici et al., 2021; Rahimi et al., 2021) has encountered
this trend. We believe that the same trend will also occur in
other issues related to requirements engineering, including the
conformity of artifacts with requirements.

The findings of this study have several implications for both
scholars and practitioners. More observational studies are required
for analysis that focuses on a wider variety of artifacts other than
class diagrams. With the variety of SDLC artifacts, it is difficult to
ensure the conformity of these artifacts with requirements. The use
of advancedmethods and tools makes the process easier. Therefore,
there is a need to broaden the focus and scope of the generated
artifacts. For example, creating tools to automatically generate
software architecture.

Furthermore, current approaches and tools for ensuring
artifacts’ conformity with requirements are applied and tested
to indicate their usefulness and efficiency. With the growth
of software dimensions and complexity, it remains difficult
to determine whether the proposed methods and tools are
applicable and efficient when integrated into the development and
implementation of software in the real world. Therefore, there is
a need to use these methods and tools in a large-scale project to
examine its performance in terms of the accuracy of the resulting
artifacts and the time it takes to generate them.

The bias in study selection and the possibility of imprecision
in data retrieval from variable sources are the underlying
shortcomings of any systematic analysis. When designing our
analytical approach, we took the following steps to eradicate
bias and ensure precision and sample collection consistency.
First, we approached the method of creating search strings as
a learning process involving creativity. Following our research
concerns, we created search terms for a systematic search of
electronic databases. Since search strings in software engineering
are language-dependent, critical studies will likely be missed in
each search. To avoid bias in study selection due to personal
interests or missing information, we used a multi-stage method.
Two scholars assessed the studies for validity based on the
inclusion and exclusion principles (Keele, 2007). We discovered
that the amount of specificity that characterized the analysis
process differed significantly across experiments. Some research,
for example, involved a more thorough assessment of threats to
validity than others. Because of the inconsistencies between reports,
the data extraction procedure likely involved inaccuracies.

We also searched for papers on only four electronic
databases: ACM Digital Library, IEEE Xplore, SpringerLink, and
ScienceDirect. We eliminated papers outside of these databases.
This risks missing papers relevant to the topic that were published
outside of the four electronic databases we searched. In our
selection of studies, we also did not include research that generated

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

partial artifacts. This could lead to ignoring research whose
proposed methods or tools are still relevant to the topic. As current
automatic code generation methods result only in partial code, this
exclusion of generated partial artifacts leads to excluding studies
that generated source code.

8 Conclusion

This paper examines the literature on the conformity of
artifacts with requirements, including procedures and problems.
This study was performed by searching and categorizing all
current and accessible literature on the conformity of artifacts
with requirements using available standards for conducting
comprehensive literature reviews. The study selection strategy
retrieved thirty-two related papers from 370 initial results from
well-reputable electronic research databases.

The applications of ensuring the conformity of artifacts with
requirements, namely traceability, software reuse, and software
V&V, may help organizations in the industry to decrease costs,
time, and effort in software development. We discovered that many
studies focused on UML diagrams, specifically class diagrams. We
addressed the benefits of adopting methods and tools for ensuring
the conformity of artifacts with requirements, which can motivate
practitioners to design and create artifacts. Usingmethods and tools
for ensuring the conformity of artifacts with requirements can help
mitigate the disastrous effects of improper software development
caused by challenges that are frequently encountered in real-
world settings, such as large numbers of requirements, conflicting
and ambiguous requirements, changes in requirements, matching
requirements specifications to architectural design, and lack of
knowledge and experience among software designers. There are
only a few advanced tools for ensuring the conformity of artifacts
with requirements, and the purpose of these tools has only been
identified as generating class diagrams and entity relationship
diagrams. There is a need to focus more heavily on developing
tools for generating various artifacts, testing these tools in real-
world scenarios, and ultimately implementing them in more robust
software development projects.

Author contributions

DS: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Methodology,Writing – review & editing. RF:

Data curation, Investigation, Project administration, Resources,
Software, Supervision, Writing – original draft. AW: Data
curation, Investigation, Software, Validation, Writing – original
draft. DF: Data curation, Investigation, Software, Validation,
Writing – original draft. RP: Data curation, Investigation,
Visualization, Writing – original draft. YD: Data curation,
Validation, Visualization, Writing – original draft. G: Data
curation, Validation, Visualization, Writing – original draft,
Writing – review & editing. RP: Data curation, Validation,
Visualization, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article.
This research was funded by the Ministry of Education,
Culture, Research, and Technology under the Doctoral
Dissertation Research program grant with the number
084/E5/PG.02.00.PT/2022; April 28, 2022.

Acknowledgments

This research is a collaboration amongst Institut Teknologi
Sepuluh Nopember, Politeknik Negeri Banjarmasin, and Institut
Bisnis dan Teknologi Pelita Indonesia.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abbas, M., Rioboo, R., Ben-Yelles, C. B., and Snook, C. F. (2021). Formal modeling
and verification of UML activity diagrams (UAD) with FoCaLiZe. J. Syst. Architec 114,
101911. doi: 10.1016/j.sysarc.2020.101911

Abirami, S., Shankari, G., Akshaya, S., and Sithika, M. (2015). “Conceptual
modeling of non-functional requirements from natural language text,” in
Computational Intelligence in Data Mining-Volume 3 (Springer India), 1–11.
doi: 10.1007/978-81-322-2202-6_1

Ahmed, M. A., Butt, W. H., Ahsan, I., Anwar, M. W., Latif, M., and Azam,
F. (2017). “A novel natural language processing (NLP) approach to automatically
generate conceptual class model from initial software requirements,” in International

Conference on Information Science and Applications (Springer Singapore), 476–484.
doi: 10.1007/978-981-10-4154-9_55

Arrieta, A., Agirre, J. A., and Sagardui, G. (2020). “A tool for the automatic
generation of test cases and oracles for simulation models based on functional
requirements,” in 2020 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW) (IEEE), 1–5. doi: 10.1109/ICSTW50294.2020.
00018

Azam, M., ur Rahman, A., Sultan, K., Dash, S., Khan, S. N., and Khan,
M. A. A. (2018). “Automated testcase generation and prioritization using
GA and FRBS,” in International Conference on Advanced Informatics for

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://doi.org/10.1016/j.sysarc.2020.101911
https://doi.org/10.1007/978-81-322-2202-6_1
https://doi.org/10.1007/978-981-10-4154-9_55
https://doi.org/10.1109/ICSTW50294.2020.00018
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

Computing Research (Springer Singapore), 571–584. doi: 10.1007/978-981-13-3
140-4_52

Baker, P., Loh, S., and Weil, F. (2005). “Model-driven engineering in a large
industrial context-motorola case study,” in International Conference on Model Driven
Engineering Languages and Systems (Springer), 476–491. doi: 10.1007/11557432_36

Ben Abdessalem Karaa, W., Ben Azzouz, Z., Singh, A., Dey, N., S., Ashour, A., et al.
(2016). Automatic builder of class diagram (abcd): an application of uml generation
from functional requirements. Software 46, 1443–1458. doi: 10.1002/spe.2384

Borg, M., Runeson, P., and Ardö, A. (2014). Recovering from a decade: a systematic
mapping of information retrieval approaches to software traceability. Empir. Softw.
Eng. 19, 1565–1616. doi: 10.1007/s10664-013-9255-y

Bowman, M., Briand, L. C., and Labiche, Y. (2010). Solving the class
responsibility assignment problem in object-oriented analysis with multi-objective
genetic algorithms. IEEE Trans. Softw. Eng. 36, 817–837. doi: 10.1109/TSE.2010.70

Bozyiğit, F., Akta s, Ö., and Kilinç, D. (2021). Linking software requirements and
conceptual models: A systematic literature review. Eng. Sci. Technol. Int. J. 24, 71–82.
doi: 10.1016/j.jestch.2020.11.006

Castro, J., Lucena, M., Silva, C., Alencar, F., Santos, E., and Pimentel, J. (2012).
Changing attitudes towards the generation of architectural models. J. Syst. Softw. 85,
463–479. doi: 10.1016/j.jss.2011.05.047

Chen, L., and Li, Q. (2010). “Automated test case generation from use case : a
model based approach,” in 2010 3rd International Conference on Computer Science and
Information Technology (IEEE), 372–377.

Cleland-Huang, J., Gotel, O., and Zisman, A. (2012). Software and Systems
Traceability. London: Springer. doi: 10.1007/978-1-4471-2239-5

Colombo, P., Khendek, F., and Lavazza, L. (2012). Bridging the gap between
requirements and design: an approach based on Problem Frames and SysML. J. Syst.
Softw. 85, 717–745. doi: 10.1016/j.jss.2011.09.046

Czarnecki, K., and Helsen, S. (2006). Feature-based survey of model transformation
approaches. IBM Syst. J. 45, 621–645. doi: 10.1147/sj.453.0621

Dabhade, M., Suryawanshi, S., and Manjula, R. (2016). “A systematic review of
software reuse using domain engineering paradigms,” in 2016 Online International
Conference on Green Engineering and Technologies (IC-GET) (IEEE), 1–6.
doi: 10.1109/GET.2016.7916646

Dalpiaz, F., Gieske, P., and Sturm, A. (2021). On deriving conceptual models
from user requirements: an empirical study. Inf. Softw. Technol. 131, 1–13.
doi: 10.1016/j.infsof.2020.106484

Deeptimahanti, D. K., and Sanyal, R. (2011). “Semi-automatic generation of uml
models from natural language requirements,” in Proceedings of the 4th India Software
Engineering Conference 165–174. doi: 10.1145/1953355.1953378

Dinesh, P., Sujitha, V., Salma, C., and Srijayapriya, B. (2021). “A review on
natural language processing: Back to basics,” in Innovative Data Communication
Technologies and Application (Springer), 655–661. doi: 10.1007/978-981-15-96
51-3_54

Elallaoui, M., Nafil, K., and Touahni, R. (2018). Automatic transformation of user
stories into UML use case diagrams using NLP techniques. Proc. Comput. Sci. 130,
42–49. doi: 10.1016/j.procs.2018.04.010

Elbendak, M., Vickers, P., and Rossiter, N. (2011). Parsed use case descriptions
as a basis for object-oriented class model generation. J. Syst. Softw. 84, 1209–1223.
doi: 10.1016/j.jss.2011.02.025

Fauzan, R., Siahaan, D., Rochimah, S., and Triandini, E. (2018). “Activity diagram
similarity measurement: a different approach,” in 2018 International Seminar on
Research of Information Technology and Intelligent Systems (ISRITI) (IEEE), 601–605.
doi: 10.1109/ISRITI.2018.8864284

Ferrari, A., Spoletini, P., Donati, B., Zowghi, D., and Gnesi, S. (2017). “Interview
review: detecting latent ambiguities to improve the requirements elicitation process,”
in Proceedings - 2017 IEEE 25th International Requirements Engineering Conference
(Lisbon, Portugal: IEEE), 400–405. doi: 10.1109/RE.2017.15

Ghazi, P., and Glinz, M. (2017). Challenges of working with artifacts in
requirements engineering and software engineering. Requir. Eng. 22, 359–385.
doi: 10.1007/s00766-017-0272-z

Górski, T. (2021). Towards continuous deployment for blockchain. Appl. Sci. 11,
11745. doi: 10.3390/app112411745

Goutte, C., and Gaussier, E. (2005). “A probabilistic interpretation of precision,
recall and f-score, with implication for evaluation,” in European Conference on
Information Retrieval (Springer), 345–359. doi: 10.1007/978-3-540-31865-1_25

Haidrar, S., Bencharqui, H., Anwar, A., Bruel, J. M., and Roudies, O. (2017).
“REQDL: a requirements description language to support requirements traces
generation,” in 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW) (IEEE), 26–35. doi: 10.1109/REW.2017.72

Hamza, Z. A., and Hammad, M. (2019). “Generating UML use case models from
software requirements using natural language processing,” in 2019 8th International
Conference on Modeling Simulation and Applied Optimization (ICMSAO) (IEEE), 1–6.
doi: 10.1109/ICMSAO.2019.8880431

Haris, M. S., and Kurniawan, T. A. (2020). “Automated requirement sentences
extraction from software requirement specification document,” in Proceedings of the
5th International Conference on Sustainable Information Engineering and Technology
142–147. doi: 10.1145/3427423.3427450

Harmain, H. M., and Gaizauskas, R. (2000). “Cm-builder: an automated nl-
based case tool,” in Proceedings ASE 2000. Fifteenth IEEE International Conference on
Automated Software Engineering (IEEE), 45–53. doi: 10.1109/ASE.2000.873649

Harman, D. (2019). Information retrieval: the early years. Found. Trends Inf. Retr.
13, 425–577. doi: 10.1561/1500000065

Hsueh, N.-L., Shen, W.-H., Yang, Z.-W., and Yang, D.-L. (2008). Applying uml
and software simulation for process definition, verification, and validation. Inf. Softw.
Technol. 50, 897–911. doi: 10.1016/j.infsof.2007.10.015

Ibrahim, M., and Ahmad, R. (2010). “Class diagram extraction from textual
requirements using natural language processing (NLP) techniques,” in 2010 Second
International Conference on Computer Research and Development (IEEE), 200–204.
doi: 10.1109/ICCRD.2010.71

Irshad, M., Petersen, K., and Poulding, S. (2018). A systematic literature review
of software requirements reuse approaches. Inf. Softw. Technol. 93, 223–245.
doi: 10.1016/j.infsof.2017.09.009

Jaiwai, M., and Sammapun, U. (2017). “Extracting UML class diagrams
from software requirements in Thai using NLP,” in 2017 14th International
Joint Conference on Computer Science and Software Engineering (JCSSE) 1–5.
doi: 10.1109/JCSSE.2017.8025938

Jena, A. K., Swain, S. K., and Mohapatra, D. P. (2015). “Test case
creation from UML sequence diagram: a soft computing approach,” in
Intelligent Computing, Communication and Devices (Springer India), 117–126.
doi: 10.1007/978-81-322-2012-1_13

Junior, V. A., d,. S., and Vijaykumar, N. L. (2012). Generating model-based test cases
from natural language requirements for space application software. Softw. Qual. J. 20,
77–143. doi: 10.1007/s11219-011-9155-6

Keele, S. (2007). “Guidelines for performing systematic literature reviews in
software engineering,” in Technical report, Ver. 2.3 EBSE Technical Report. EBSE,
20–39.

Khan, Y. A., and Mahmood, S. (2016). Generating UML sequence diagrams from
use case maps: a model transformation approach. Arabian J. Sci. Eng. 41, 965–986.
doi: 10.1007/s13369-015-1926-0

Khari, M., Kumar, P., Burgos, D., and Crespo, R. G. (2018). Optimized test
suites for automated testing using different optimization techniques. Soft Comput. 22,
8341–8352. doi: 10.1007/s00500-017-2780-7

Kici, D., Malik, G., Cevik, M., Parikh, D., and Basar, A. (2021). “A BERT-
based transfer learning approach to text classification on software requirements
specifications,” in Proceedings of the Canadian Conference on Artificial Intelligence
(Vancouver. PubPub), 1–13. doi: 10.21428/594757db.a4880a62

Kim, D. K., Lu, L., and Lee, B. (2017). Design pattern-based model transformation
supported by QVT. J. Syst. Softw. 125, 289–308. doi: 10.1016/j.jss.2016.12.019

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M.,
et al. (2010). Systematic literature reviews in software engineering-A tertiary study. Inf.
Softw. Technol. 52, 792–805. doi: 10.1016/j.infsof.2010.03.006

Landhäußer, M., Körner, S. J., and Tichy, W. F. (2014). From requirements to
UML models and back: how automatic processing of text can support requirements
engineering. Softw. Qual. J. 22, 121–149. doi: 10.1007/s11219-013-9210-6

Liskin, O. (2015). “How artifacts support and impede requirements
communication,” in International Working Conference on Requirements
Engineering: Foundation for Software Quality (Cham: Springer), 132–147.
doi: 10.1007/978-3-319-16101-3_9

Lucassen, G., Robeer, M., Dalpiaz, F., Werf, J. M. E. M., and Brinkkemper, S. (2017).
Extracting conceptual models from user stories with Visual Narrator. Requir. Eng. 22,
339–358. doi: 10.1007/s00766-017-0270-1

Lv, Y., and Xie, C. (2012). “An ontology-based approach to build conceptual
data model,” in 2012 9th International Conference on Fuzzy Systems and Knowledge
Discovery (IEEE), 807–810. doi: 10.1109/FSKD.2012.6234141

Masoud, H., and Jalili, S. (2014). A clustering-based model for class responsibility
assignment problem in object-oriented analysis. J. Syst. Softw. 93, 110–131.
doi: 10.1016/j.jss.2014.02.053

Mehmood, A., and Jawawi, D. N. (2013). Aspect-oriented model-driven code
generation: A systematic mapping study. Inf. Softw. Technol. 55, 395–411.
doi: 10.1016/j.infsof.2012.09.003

Meiliana, S. I., Alianto, R. S., Daniel, and Gaol, F. L. (2017). Automated test case
generation from uml activity diagram and sequence diagram using depth first search
algorithm. Proc. Comput. Sci. 116, 629–637. doi: 10.1016/j.procs.2017.10.029

Mili, A., Mili, R., and Mittermeir, R. T. (1998). A survey of software reuse libraries.
Ann. Softw. Eng. 5, 349–414. doi: 10.1023/A:1018964121953

Mu noz-Fernández, J. C., Knauss, A., Casta neda, L., Derakhshanmanesh, M.,
Heinrich, R., Becker, M., et al. (2017). “Capturing ambiguity in artifacts to support

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://doi.org/10.1007/978-981-13-3140-4_52
https://doi.org/10.1007/11557432_36
https://doi.org/10.1002/spe.2384
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1109/TSE.2010.70
https://doi.org/10.1016/j.jestch.2020.11.006
https://doi.org/10.1016/j.jss.2011.05.047
https://doi.org/10.1007/978-1-4471-2239-5
https://doi.org/10.1016/j.jss.2011.09.046
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1109/GET.2016.7916646
https://doi.org/10.1016/j.infsof.2020.106484
https://doi.org/10.1145/1953355.1953378
https://doi.org/10.1007/978-981-15-9651-3_54
https://doi.org/10.1016/j.procs.2018.04.010
https://doi.org/10.1016/j.jss.2011.02.025
https://doi.org/10.1109/ISRITI.2018.8864284
https://doi.org/10.1109/RE.2017.15
https://doi.org/10.1007/s00766-017-0272-z
https://doi.org/10.3390/app112411745
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1109/REW.2017.72
https://doi.org/10.1109/ICMSAO.2019.8880431
https://doi.org/10.1145/3427423.3427450
https://doi.org/10.1109/ASE.2000.873649
https://doi.org/10.1561/1500000065
https://doi.org/10.1016/j.infsof.2007.10.015
https://doi.org/10.1109/ICCRD.2010.71
https://doi.org/10.1016/j.infsof.2017.09.009
https://doi.org/10.1109/JCSSE.2017.8025938
https://doi.org/10.1007/978-81-322-2012-1_13
https://doi.org/10.1007/s11219-011-9155-6
https://doi.org/10.1007/s13369-015-1926-0
https://doi.org/10.1007/s00500-017-2780-7
https://doi.org/10.21428/594757db.a4880a62
https://doi.org/10.1016/j.jss.2016.12.019
https://doi.org/10.1016/j.infsof.2010.03.006
https://doi.org/10.1007/s11219-013-9210-6
https://doi.org/10.1007/978-3-319-16101-3_9
https://doi.org/10.1007/s00766-017-0270-1
https://doi.org/10.1109/FSKD.2012.6234141
https://doi.org/10.1016/j.jss.2014.02.053
https://doi.org/10.1016/j.infsof.2012.09.003
https://doi.org/10.1016/j.procs.2017.10.029
https://doi.org/10.1023/A:1018964121953
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Siahaan et al. 10.3389/fcomp.2023.1306064

requirements engineering for self-adaptive systems,” in CEUR Workshop Proceedings
1–6.

Nadkarni, P. M., Ohno-Machado, L., and Chapman, W. W. (2011). Natural
language processing: an introduction. J. Am. Med. Inf. Assoc. 18, 544–551.
doi: 10.1136/amiajnl-2011-000464

Noll, J., Razzak, M. A., and Beecham, S. (2017). “Motivation and autonomy
in global software development,” in International Workshop on Global Sourcing
of Information Technology and Business Processes (Cham: Springer), 19–38.
doi: 10.1007/978-3-319-70305-3_2

Omar, M., and Baryannis, G. (2020). Semi-automated development of
conceptual models from natural language text. Data Knowl. Eng. 127, 101796.
doi: 10.1016/j.datak.2020.101796

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow,
C. D., et al. (2021). The prisma 2020 statement: an updated guideline for reporting
systematic reviews. BMJ 372, 1–9. doi: 10.1136/bmj.n71

Pastor, O., and Molina, J. C. (2007). Model-Driven Architecture in Practice: A
Software Production Environment Based on Conceptual Modeling. Berlin: Springer
Science Business Media.

Pérez-Álvarez, J. M., and Mos, A. (2020). “From abstract specifications to
application generation,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Society 11–20.
doi: 10.1145/3377815.3381381

Rahimi, N., Eassa, F., and Elrefaei, L. (2021). One- and two-phase software
requirement classification using ensemble deep learning. Entropy 23, 1–30.
doi: 10.3390/e23101264

Räihä, O., Kundi, H., Koskimies, K., Mäkinen, E., and Outi, R. (2011). “Synthesizing
architecture from requirements: a genetic approach,” in Relating Software Requirements
and Architectures (Berlin: Springer), 307–331. doi: 10.1007/978-3-642-21001-3_18

Robles, K., Fraga, A., Morato, J., and Llorens, J. (2012). Towards an
ontology-based retrieval of uml class diagrams. Inf. Softw. Technol. 54, 72–86.
doi: 10.1016/j.infsof.2011.07.003

Sagar, V. B. R. V., and Abirami, S. (2014). Conceptual modeling of natural language
functional requirements. J. Syst. Softw. 88, 25–41. doi: 10.1016/j.jss.2013.08.036

Sahoo, R. R., and Ray, M. (2020). PSO based test case generation for critical
path using improved combined fitness function. Comput. Inf. Sci. 32, 479–490.
doi: 10.1016/j.jksuci.2019.09.010

Sainani, A., Anish, P. R., Joshi, V., and Ghaisas, S. (2020). “Extracting
and classifying requirements from software engineering contracts,” in 2020 IEEE
28th International Requirements Engineering Conference (RE) (IEEE), 147–157.
doi: 10.1109/RE48521.2020.00026

Sanchez, P., Moreira, A., Fuentes, L., Araujo, J., and Magno, J. (2010).
Model-driven development for early aspects. Inf. Softw. Technol. 52, 249–273.
doi: 10.1016/j.infsof.2009.09.001

Sankar, S., and Chandra, V. (2020). “An ant colony optimization algorithm based
automated generation of software test cases,” in International Conference on Swarm
Intelligence (Cham: Springer), 231–239. doi: 10.1007/978-3-030-53956-6_21

Sarkar, S., Sharma, V. S., and Agarwal, R. (2012). “Creating design from
requirements and use cases: Bridging the gap between requirement and detailed
design,” in Proceedings of the 5th India Software Engineering Conference 3–12.
doi: 10.1145/2134254.2134256

Schütze, H., Manning, C. D., and Raghavan, P. (2008). Introduction to Information
Retrieval, volume 39. Cambridge: Cambridge University Press.

Sharma, R., Srivastava, P. K., and Biswas, K. K. (2015). “From natural
language requirements to UML class diagrams,” in 2015 IEEE Second International
Workshop on Artificial Intelligence for Requirements Engineering (AIRE) (IEEE), 1–8.
doi: 10.1109/AIRE.2015.7337625

Sommerville, I. (2015). Software Engineering (10th edition). Noida, India: Pearson.

Souza, E., Moreira, A., and Goulão, M. (2019). Deriving architectural models from
requirements specifications: a systematic mapping study. Inf. Softw. Technol. 109,
26–39. doi: 10.1016/j.infsof.2019.01.004

Sunitha, E. V., and Samuel, P. (2018). Object constraint language for
code generation from activity models. Inf. Softw. Technol. 103, 92–111.
doi: 10.1016/j.infsof.2018.06.010

Tawosi, V., Jalili, S., and Hasheminejad, S. M. H. (2015). Automated software design
using ant colony optimization with semantic network support. J. Syst. Softw. 109, 1–17.
doi: 10.1016/j.jss.2015.06.067

Thakur, J. S., and Gupta, A. (2014). “Automatic generation of sequence diagram
from use case specification,” in Proceedings of the 7th India Software Engineering
Conference 1–6. doi: 10.1145/2590748.2590768

Tran, N. K., Babar, M. A., and Walters, A. (2022). A framework for automating
deployment and evaluation of blockchain networks. J. Netw. Comput. Applic. 206,
103460. doi: 10.1016/j.jnca.2022.103460

Tripathy, A., and Mitra, A. (2013). “Test case generation using activity diagram
and sequence diagram,” in Proceedings of International Conference on Advances in
Computing (Springer India), 121–129. doi: 10.1007/978-81-322-0740-5_16

Tufail, H., Masood, M. F., Zeb, B., Azam, F., and Anwar, M. W. (2017). “A
systematic review of requirement traceability techniques and tools,” in 2017 2nd
International Conference on System Reliability and Safety (ICSRS) (IEEE), 450–454.
doi: 10.1109/ICSRS.2017.8272863

Vale, T., de Almeida, E. S., Alves, V., Kulesza, U., Niu, N., and de Lima, R. (2017).
Software product lines traceability: a systematic mapping study. Inf. Softw. Technol. 84,
1–18. doi: 10.1016/j.infsof.2016.12.004

Wang, C., Pastore, F., Goknil, A., Briand, L., and Iqbal, Z. (2015). “Automatic
generation of system test cases from use case specifications,” in 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015 - Proceedings 385–396.
doi: 10.1145/2771783.2771812

Wang, W., Hu, J., Hu, J., Kang, J., Wang, H., and Gao, Z. (2020). “Automatic test
case generation from formal requirement model for avionics software,” in 2020 6th
International Symposium on System and Software Reliability (ISSSR) (IEEE), 12–20.
doi: 10.1109/ISSSR51244.2020.00011

Wohlin, C. (2014). “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering 1–10.
doi: 10.1145/2601248.2601268

Yang, Y., Li, X., Ke, W., and Liu, Z. (2019). “Automated prototype
generation from formal requirements model. IEEE Trans. Reliabil. 69, 632–656.
doi: 10.1109/TR.2019.2934348

Yue, T., Ali, S., and Briand, L. (2011a). “Automated transition from use cases to uml
state machines to support state-based testing,” in European Conference on Modelling
Foundations and Applications (Springer), 115–131. doi: 10.1007/978-3-642-21470-7_9

Yue, T., Briand, L. C., and Labiche, Y. (2010). “An automated approach to transform
use cases into activity diagrams,” in European Conference onModelling Foundations and
Applications (Springer), 337–353. doi: 10.1007/978-3-642-13595-8_26

Yue, T., Briand, L. C., and Labiche, Y. (2011b). A systematic review of
transformation approaches between user requirements and analysis models. Requir.
Eng. 16, 75–99. doi: 10.1007/s00766-010-0111-y

Yue, T., Briand, L. C., and Labiche, Y. (2013). Facilitating the transition from use
case models to analysis models: approach and experiments. ACM Trans. Softw. Eng.
Methodol. 22, 1–38. doi: 10.1145/2430536.2430539

Yue, T., Briand, L. C., and Labiche, Y. (2015). atoucan: an automated framework to
derive uml analysis models from use case models. ACM Trans. Softw. Eng. Methodol.
24, 1–52. doi: 10.1145/2699697

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1306064
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1007/978-3-319-70305-3_2
https://doi.org/10.1016/j.datak.2020.101796
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1145/3377815.3381381
https://doi.org/10.3390/e23101264
https://doi.org/10.1007/978-3-642-21001-3_18
https://doi.org/10.1016/j.infsof.2011.07.003
https://doi.org/10.1016/j.jss.2013.08.036
https://doi.org/10.1016/j.jksuci.2019.09.010
https://doi.org/10.1109/RE48521.2020.00026
https://doi.org/10.1016/j.infsof.2009.09.001
https://doi.org/10.1007/978-3-030-53956-6_21
https://doi.org/10.1145/2134254.2134256
https://doi.org/10.1109/AIRE.2015.7337625
https://doi.org/10.1016/j.infsof.2019.01.004
https://doi.org/10.1016/j.infsof.2018.06.010
https://doi.org/10.1016/j.jss.2015.06.067
https://doi.org/10.1145/2590748.2590768
https://doi.org/10.1016/j.jnca.2022.103460
https://doi.org/10.1007/978-81-322-0740-5_16
https://doi.org/10.1109/ICSRS.2017.8272863
https://doi.org/10.1016/j.infsof.2016.12.004
https://doi.org/10.1145/2771783.2771812
https://doi.org/10.1109/ISSSR51244.2020.00011
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/TR.2019.2934348
https://doi.org/10.1007/978-3-642-21470-7_9
https://doi.org/10.1007/978-3-642-13595-8_26
https://doi.org/10.1007/s00766-010-0111-y
https://doi.org/10.1145/2430536.2430539
https://doi.org/10.1145/2699697
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	A scoping review of auto-generating transformation between software development artifacts
	1 Introduction
	2 Related works
	3 Overview of selected studies
	4 Applications of ensuring conformity of artifacts with requirements
	5 Methods, techniques, approaches, and tools
	5.1 Information retrieval
	5.2 Natural language processing
	5.3 Model transformation
	5.4 Text mining
	5.5 Graph-based
	5.6 Ontology-based
	5.7 Optimization algorithm
	5.8 Tools

	6 Challenges in ensuring conformity of artifacts with requirements
	6.1 Many requirements
	6.2 Conflicting and ambiguous requirements
	6.3 Changes in requirements
	6.4 Matching requirements specifications and architectural design
	6.5 Lack of domain awareness and expertise among app designers

	7 Discussion
	8 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


