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Recent years have witnessed the rapid deployment of robotic systems in

public places such as roads, pavements, workplaces and care homes. Robot

navigation in environments with static objects is largely solved, but navigating

around humans in dynamic environments remains an active research question

for autonomous vehicles (AVs). To navigate in human social spaces, self-driving

cars and other robots must also show social intelligence. This involves

predicting and planning around pedestrians, understanding their personal

space, and establishing trust with them. Most current AVs, for legal and

safety reasons, consider pedestrians to be obstacles, so these AVs always

stop for or replan to drive around them. But this highly safe nature may lead

pedestrians to take advantage over them and slow their progress, even to a

complete halt. We provide a review of our recent research on predicting and

controlling human–AV interactions, which combines game theory, proxemics

and trust, and unifies these fields via quantitative, probabilistic models and

robot controllers, to solve this “freezing robot” problem.
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1. Introduction

Autonomous vehicles (AVs)—known as intelligent/automated vehicles, autonomous

driving systems (ADS), or self-driving cars—are appearing on the roads (Wade, 2018),

thanks to huge improvements in localization, mapping, planning and navigation

algorithms (Thrun et al., 2005; Cadena et al., 2016) together with large price falls making

sensors and compute power widely available (Kato et al., 2015) and also thanks to

large public and private investments. For instance, in 2015, the UK government alone

invested £100 million in research and development for the deployment of Connected

Autonomous Vehicles (CAV) technologies (House of Lords, 2017) and the global market

is estimated to be worth £907 billion in 2035 (Catapult, 2017). Self-driving cars can

plan routes and control steering, acceleration and braking to follow them, and are

promoted as having potential to improve safety and efficiency and reduce pollution and

travel time (Wadud et al., 2016; Kim, 2018; Millard-Ball, 2018). But at the same time

some researchers question the benefits of AVs, and argue that AV makers may profit

from “self-driving data generation,” the attention economy and increase the overall car

dependency which may go against the claims for increased road safety (Norton, 2021).
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Autonomous vehicles also include smaller delivery vehicles,

typically intended to transport goods from shops or transport

hubs over the “last mile” to customers’ homes, or for use inside

and outside factories, warehouses, hospitals, care homes and

other private and public organizations’ facilities (Murphy et al.,

2020).

The Society of Automation Engineers (SAE) has created

standard definitions for levels of automation in AVs (SAE

International, 2019), as shown in Figure 1A, based on howmuch

human driver input is relied upon. For cars, the human driver

may be present inside the vehicle or operating it remotely,

while for smaller delivery vehicles they must be remote.

Many automotive companies currently claim having developed

level 3 automated vehicles, the race is now toward the full

automation (Rasouli and Tsotsos, 2018). But after decades of

development and despite the global enthusiasm around AVs

and the big investments, some major challenges still remain

(Kirkpatrick, 2022). A full AV revolution would require AVs

to share space with, and be challenged by, human pedestrians

and drivers. Such humans are much harder to predict and

plan for than purely passive environments. Navigating around

humans in dynamic environments requires the understanding of

human social behavior and remains an active research question

(Thomaz et al., 2016).

Pedestrians are complex humans having goals, utilities,

and decision making systems. Interactions with them must

take these factors into account in order for AVs to plan and

control their interactions with them. This is especially important

in settings where there is no clear legal priority for space,

including unmarked road intersections and crossings, and off-

road environments for delivery vehicles such as pavements,

corridors and pedestrianized areas (Portouli et al., 2014).

Human drivers are trained and able to read the intention and

objectives of other road users and to plan interactions with them

accordingly (Rasouli and Tsotsos, 2018; Rasouli et al., 2018).

We here define “road users” to refer to all agents who are in

active control of the position of physical objects which may

enter a road. This includes human drivers, autonomous vehicles,

cyclists and pedestrians; and excludes passengers of all vehicles.

Brooks identifies the need for these higher levels of interaction

as “the big problem with self-driving cars” (Brooks, 2017).

Currently AVs are designed to be as safe as possible, always

yielding to other road users in competition with them. Typically

this includes the use of a low-level safety system which stops the

vehicle if a lidar sensor shows any obstruction within a short

safety distance. However, recent studies investigating human

interactions with AVs via a questionnaire (Deb et al., 2017),

video analysis (Madigan et al., 2019) and modeling (Millard-

Ball, 2018), have all shown that pedestrians may take advantage

of this behavior once they understand it, potentially eventually

pushing in front of them for every interaction. AVs will therefore

make zero progress in busy areas if all pedestrians behave

optimally in this way. This scenario has been named as the

“freezing robot problem” (Trautman and Krause, 2010). AVs

thus need better prediction and decision-making models, and

must find a good balance between stopping for pedestrians when

required and encouraging pedestrians to get out of their way

so that they can drive to reach their destination as quickly as

possible for their passengers on board.

Like human drivers, AVs may therefore need to maintain

a credible threat of actually hitting or otherwise causing some

smaller negative utility to pedestrians in their planned path, so

that they may at least in some cases encourage the pedestrians

to get out of their way in order to make progress. Creating

and implementing such threats requires understanding of the

social behaviors of the human pedestrians and how they can

be modified by the vehicle’s own actions. In road-crossing

scenarios, a pedestrian and the AV compete against one another

for the limited resource of the road space (Šucha, 2014; Parkin

et al., 2016; Owens et al., 2018). Such competitions can be

modeled with Game Theory (Osborne and Rubinstein, 1994).

Game theoretic approaches have been used for decades to

model interactions between rational decision-makers, but have

not been previously applied to autonomous vehicles or to

Psychology research on human proxemics and trust. Results

from Game Theory and Psychology studies have yet to be

operationalised for autonomous vehicles, our work thus aims

to bridge the gap between these separate fields and we propose

methods and solutions to bring them to an operational level for

fully automated vehicles’ interactions with pedestrians.

This review hence provides a concise overview of our and

others’ recent work in this area. Themain topics are as follows:

• a summary of key findings from our larger study of the

literature of pedestrian models required for autonomous

driving, linking low-level models of machine vision

detection and tracking with high-level models of human

behavior, and an updated review of more recent game

theoretic approaches;

• a game-theoretic Sequential Chicken model of pedestrian-

AV negotiation, and methods for inference of its

parameters from physical and virtual reality experiments;

• methods and findings on pedestrian–vehicle interaction

sequences analysis;

• a novel Bayesian method to infer and explain quantitative

pedestrian proxemic utility functions;

• the concept of physical trust requirement (PTR) for game

theoretic AV interactions, and its recent generalization to

human-human and human-robot interactions;

• OpenPodcar, an open source hardware (OSH) AV

developed for real-world AV game theoretic research

experiments with pedestrians;

• a discussion on the legal and ethical implications of this

work as well as possible future directions.
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FIGURE 1

(A) SAE levels of driving automation (source: sae.org). (B) Proposed mapping from SAE level abilities to required computational algorithms.

2. Related work

We recently performed a two-part comprehensive review

of existing pedestrian models for AVs, which organized them

into a taxonomy from lower-level models of sensing, detection

and tracking (Camara et al., 2020a) to higher-level models

of pedestrian goals, behavior and interaction (Camara et al.,

2020b). This work brought together research from many

fields including Transport, Robotics, Machine Vision, Data

Science, Game Theory and Psychology with levels of required

algorithms mapped to SAE level abilities as summarized in

Figure 1B. It further suggested how models from multiple

levels could be linked to form a single robotics system using

Bayesian probability theory, if the more Social Science based

methods could be further quantified to operate using this

probabilistic language.

At the lower levels of the technology stack, as shown

at the top of Figure 2, pedestrian modeling was found to

include mature methods from Machine Vision and Robotics for

detection and tracking of pedestrians, and for prediction of their

short term movements.

Neural network (“deep learning”) based pedestrian detection

and recognition has largely replaced classical feature-based

methods, due to price falls in GPUs and new GPU-based

heuristics enabling standard neural network algorithms to

run at large scales. Open-source implementations of standard

neural networks methods includes YOLO (Redmon et al., 2016;

Redmon and Farhadi, 2017, 2018), R-CNN (Girshick et al.,

2014), Faster R-CNN (Ren et al., 2017) and Mask R-CNN (He

et al., 2017). Most methods operate on visual video frames,

though lidar or millimeter radar are increasingly used with 3D

versions of CNN neural networks (Qi et al., 2017).

Tracking remains challenging however for multiple

pedestrians when some of themmay be occluded by one another

or by environmental obstacles. Open-source implementations

of tracking are available including the Bayes Tracking library

(Bellotto et al., 2015), SORT tracker (Bewley et al., 2016) and

DetTa (Breuers et al., 2018) pipeline. Recurrent and graph

neural networks have recently been applied to tracking, again

benefiting from the recent availability of GPU computing,

outperforming probabilistic methods in many cases (Ravindran

et al., 2020; Weng et al., 2020; Wang et al., 2021).

Recognizing pedestrian skeleton pose and head direction is

now possible in many cases, again mostly using neural network

methods. Open-source systems include Openpose (Wei et al.,

2016; Cao et al., 2017, 2019; Simon et al., 2017) for skeleton
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FIGURE 2

Proposed taxonomy of low-level (Camara et al., 2020a) and high-level models (Camara et al., 2020b) of pedestrian behavior.

estimates, OpenFace (Amos et al., 2016) for head pose and gaze

direction recognition, and OpenTrack1 for head pose tracking.

Recognizing sequences of pedestrian actions as high-level

events remains a research area. This includes explicit signaling

gestures such as waving, implicit signaling such as body

language, and motions suggesting the emotional state or utility

function of pedestrians.

At the higher levels shown at the bottom of Figure 2, AVs

do not generally attempt to replicate the social intelligence

of human drivers as they attempt to model, predict, interact

with and communicate with the other human road users that

they encounter. This can include understanding factors such

as demographics, emotion, and environmental settings which

affect probable goals and behaviors.

Our review located existing models of these processes in

the Psychology, Transport Studies, and Social Science literature,

but found they were not yet quantified and operationalized to

the level of detail needed to integrate them into AV controllers.

Where multiple pedestrians and occlusions are present, these

higher-level understandings may be needed to form priors to fill

in the missing parts of the scene, in addition to making more

accurate predictions of future behavior.

Higher-level models of pedestrian trajectories go beyond

simple short-term linear constant models (Fajen and Warren,

2003; Puydupin-Jamin et al., 2012), and consider the origin and

likely destination of the pedestrian (Arechavaleta et al., 2008;

Papadopoulos et al., 2013). They may use robotics kinematics

models to suggest likely optimal curved paths between the

current and goal position. Goal location may be simply based

on population statistics, for example most pedestrians stepping

into a road are likely to be aiming to cross to the point

1 https://github.com/opentrack/opentrack

immediately opposite (Kruse et al., 1997; Tamura et al., 2012;

Dias et al., 2019). Or more detailed models may condition on

pedestrian class membership or even individual identity based

on historical behaviors. Class memberships may include visible

static features of pedestrians—such as those in suits more likely

to be walking to an office building entrance—as well as visible

dynamic features such as running pedestrians more likely to be

heading for a station to catch a train (Holland and Hill, 2007;

Kooij et al., 2014; Rasouli and Tsotsos, 2020). Where multiple

destinations remain probable, trajectory prediction may need to

consider all of them until further information is available (Kitani

et al., 2012; Karasev et al., 2016; Koschi et al., 2018; Rehder et al.,

2018; Wu et al., 2018; Deo and Trivedi, 2020).

Game Theory is widely used to model decision-making

between rational agents, in economics (Morgenstern and

Von Neumann, 1953) and in transport network flow simulation

(Figliozzi et al., 2008; Kim and Langari, 2014; Na and Cole, 2014;

Talebpour et al., 2015; Flad et al., 2017; Tian et al., 2019). It has

also been used in multi agent robotics for coordination tasks

(Mavrogiannis and Knepper, 2019; Mavrogiannis et al., 2022).

There are fundamental differences between these styles, with

economics/transport typically taking an offline, data-driven,

explanatory approach while robots require an online, single-

shot, real-time decision making approach. Fusion of these two

research streams appears to be a promising research avenue

to understand and control AV-pedestrian interactions, and this

idea forms the basis for our own experiments.

2.1. Recent game theory approaches

Recently more game theoretic models and methods have

been developed for autonomous vehicle decision-making
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with pedestrians, beyond those previously reviewed. Several

game theoretic approaches have been used for vehicle–vehicle

interactions at intersections such as Schwarting et al. (2019),

Tian et al. (2020), and Cleac’h et al. (2021) but we here focus

on AV–pedestrian interactions. For example, a game theory

model for pedestrian motion and walking behaviors has been

developed in Rahmati et al. (2020). This interactive framework

for simultaneous decision-making in vehicle–pedestrian or

vehicle–vehicle interactions is calibrated with ground truth

pedestrian trajectories and its performance is evaluated on

predicting the decisions of human agents interacting with other

road users. This model was recently extended into a framework

for pedestrian–vehicle and pedestrian–pedestrian interactions

(Rahmati and Talebpour, 2018). A level-k game theorymodel for

autonomous vehicle controllers has also been recently proposed

for unsignalised intersections, based on a discrete time, set of

actions and a reward function (Li et al., 2018).

A game theoretic method based on virtual bargaining

for road negotiations for priority was proposed in Misyak

et al. (2014) and Chater et al. (2018). The authors argue that

autonomous vehicles will need cognitive science knowledge

before becoming a reality. Škugor et al. (2020) used the game

theory-based model from Chen et al. (2016) for pedestrian-

vehicle interactions and extended it with a stochastic component

to account for different behaviors and environmental influence.

The model only considers single vehicle and pedestrian

interactions and is validated via large-scale simulations. Michieli

and Badia (2018) proposed a game theoretic model to evaluate

traffic participants’ safety with the introduction of autonomous

vehicles using scenarios involving cyclist-vehicle and pedestrian-

vehicle interactions at unmarked intersections. Road users are

modeled with sequential actions and environmental factors such

as the vehicle speed is taken into account for payoffs and the

model was tested in simulation.

Jafary et al. (2018) surveyed autonomous vehicles’

interactions with other traffic participants, including pedestrians

and concluded that more research is needed for advanced

methodologies and algorithms for a more robust AV decision-

making. Zhang et al. (2022) developed a Bayesian game-based

decision model for road user interactions including a method

to evaluate the opponent’s aggressiveness, and a Turing test is

performed to evaluate the human-likeness of the approach.

These game theory approaches provide analytic solutions

for higher order models of behavior but most of them

are currently only evaluated in simulations. Also, game

theory models can be computationally expensive and would

require tractable solutions for their real-time applications in

autonomous driving.

As a first step toward real-time testing, the game theory

model used in our own work is called the Sequential Chicken and

is based upon the well-known “game of chicken”. Themodel and

its extensions are detailed in the following sections.

3. Sequential Chicken game theory
model

Game Theory’s core concept is (Nash) equilibrium, defined

as a set of optimal actions for the agents when they do not

possess information about the other’s choices. Basic game theory

assumes two players each select a single action from a finite,

and discrete set, at the same time, then each receive a utility

as a function of the pair of selected actions. Both players know

this utility function in advance of the game. In sequential game

theory, several basic games are played in a series, with the choice

of game at each step determined by the result of the previous

one, and the utilities for the sequence awarded to the players at

the end of the final game.

We have created a game theoretic model (Fox et al.,

2018) of a pedestrian and an AV negotiating for shared

space as a pedestrian considers whether to cross in front

of the AV’s path as in Figure 3. This is modeled as a

discrete sequential game theory model. Two utility parameters

(Utime, Ucrash) are used, which refer to the value of time

and the utility of avoiding a collision. The pedestrian X

and autonomous vehicle Y approach each other. Space

is quantized into squares, and time into discrete turns.

At each turn, both agents may select discrete speeds,

simultaneously, to be either “slow”—1 square per turn-or

FIGURE 3

Sequential Chicken model scenario: The pedestrian wants to

cross the road, in the path of an oncoming AV. Space is

quantised into squares, with each agent’s location measured as

an integer distance from the collision square. In this example,

the pedestrian’s X = 3 and the AV’s Y = 4. At each discrete time

turn, both agents choose whether to move forwards at their full

speed of two squares, or attempting to yield to the other by

slowing to a single square.
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FIGURE 4

(A) Value function for player Y over agent joint distance (x, y) states up to 20 meters of each agent from the collision point. All values are negative

as they include components from cost of time needed to reach the destination and the risk of collision occurring. The collision state x = y = 0 is

shown in the top left and has the worst value. Player Y arriving at their destination occurs along the rest of y = 0 and has the best value. (B)

Player Y’s strategy over agent joint distance (x, y) states up to 20 meters of each agent from the collision point. For each state, Y ’s best strategy is

to yield to Player X (i.e., slow down) with the probability shown. The interesting cases are along the diagonal where a negotiation must occur,

and it can be seen that the yield probability ramps up as distance to collision decreases.

“fast”—2 squares per turn. The discretisations are used to

make the model easier to solve, however by choosing suitably

small squares and short time steps, the model can approximate

arbitrarily close to the continuum of possible positions and the

continuum of speeds ranging between the quantised slow and

fast speeds.

Both agents would like to pass the collision point as

quickly as possible as each turn of time has value, Utime,

which is lost if they slow down. However if neither yield

to the other then a collision occurs and they both suffer

a much larger negative utility, Ucrash. At each turn, the

available actions for the players are the slow and fast speeds,

aY , aX ∈ {1, 2}. The model is designed to be simple and

solvable, so excludes, for example, the possibilities of steering

laterally to avoid the other player, or communicating with

them in any way other than by the observable choices

of speeds.

The optimal strategies are derivable from sequential game

theory together with a novel meta-strategy convergence solution

concept, via recursion. Sequential Chicken can be viewed as a

sequence of one-shot sub-games, whose payoffs are the expected

values of new games resulting from the actions, and are solvable

by standard game theory.

More formally, the discrete locations of the players can

be represented by (y, x, t) at discrete turns t and their actions

represented by aY , aX ∈ {1, 2} for speed selection. The new

state at turn t + 1 is given by (y + aY , x + aX , t + 1). Define

vy,x,t = (vYy,x,t , v
X
y,x,t) as the value (expected utility, assuming

all players play optimally) of the game for state (y, x, t). As in

standard game theory, the value of each 2× 2 payoff matrix can

then be written as,

vy,x,t = v(

[

v(y− 1, x− 1, t + 1) v(y− 1, x− 2, t + 1)

v(y− 2, x− 1, t + 1) v(y− 2, x− 2, t + 1)

]

). (1)

This is a recursive equation, in which the value vy,x,t at time t

is defined in terms of values at later times, such as v(y − 1, x −

1, t+1). The recursion is guaranteed to terminate as long as both

agents are always moving forwards at either of their slow or fast

speeds, because thismeans that theymust eventually either reach

their destinations or crash, with either result defining the value

at that time directly as a numerical utility. The equation can

be solved using dynamic programming assuming meta-strategy

convergence equilibrium selection. Under some approximations

based on the temporal gauge invariance described in Fox et al.

(2018), we removed the dependencies on the time t so that

only the locations (y, x) are required in computation of vy,x and

optimal strategy selection.

Sample results from simulations of optimal agent behavior

from this model are shown in the figures: Figure 4A shows

the value function for one agent and its optimal strategy

in Figure 4B. Figure 5A shows the resulting probability of a

collision occurring, when the two agents are identical and start

in a symmetric position. The figures show these values as shades,

with the (x, y) position of a square in the figure corresponding to

a state of the world in which the two agents are x and y steps away

from the collision point, respectively. So the state of a collision is

the top left square, and the diagonal contains all the symmetric

states, i.e., where the two agents are equal distances from the

collision point.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.969194
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Camara and Fox 10.3389/fcomp.2022.969194

FIGURE 5

(A) State probability under optimal strategies, starting from x = y = 10. (B) E�ect of relative strength of agents on which one yields in optimal

strategies.

These and similar results provide a solution to the freezing

robot problem. If the vehicle is programmed to be perfectly

safe and always yield to pedestrians, it will freeze and never

make any progress in a series of pedestrian interactions.

However, if the vehicle is programmed to play the game

optimally, then it will sometimes choose to not yield, with

a small probability. In an even smaller probability of cases,

this leads to an actual collision. The small probability of a

collision occurring provides a credible threat to the pedestrian,

encouraging them to consider yielding, and sufficient for the

vast majority of interactions to proceed without collision, but

with some of the pedestrians yielding to allow the vehicle to

make progress.

In the above results, the utility function is symmetric,

assigning equal time and crash costs to both agents. For

pedestrians interacting with vehicles, this is typically not the

case, as the cost to a pedestrian of being hit is higher than

the cost to most vehicles. When the utility functions are made

asymmetric to include this effect, the optimal strategies shift so

that the weaker agent yields with higher probabilities. Figure 5B

shows the effect of varying the ratio, r, of the crash utilities

of the two agents, on the probability of who must yield to

whom. This suggests for example that purchasing and driving

expensive, heavy vehicles such as SUVs can be rational for

owners whose value of time is high, as they reduce the owner’s

perceived risk on the road (Thomas and Walton, 2007), which

can reduce their driving time by encouraging other road users

to yield in interactions. Unless of course other road users also

switch to larger vehicles, creating a higher-order, arms-race style

game. This effect appears to occur in some populations, and

game theory suggests applying taxation or other penalties as a

Mechanism Design to reduce it.

4. Learning parameters from human
experiments

The Sequential Chicken model is not a complete predictive

theory of interaction because it contains free parameters

describing pedestrian preferences. To make it into a predictive

model, experiments are needed to infer values of these

parameters. To set the parameters for the Sequential Chicken

model, Fox et al. (2018), we performed several experiments

with human participants, and inferred the utilities of time and

collisions from their behavioral data.

In a first empirical study (Camara et al., 2018d), we

measured participants’ behavior whilst playing the Sequential

Chicken model as a board game. We inferred the model

parameters using Gaussian Process regression (Rasmussen and

Williams, 2005) and the resulting posterior showed a preference

for saving time,Utime, rather than avoiding a collision,Ucrash, in

the average subject. This study provided a first understanding of

how to perform this type of inference.

In a second type of study (Camara et al., 2018a, 2020c), we

developed a novel experimental protocol which tracked human

subjects using lidar. Pairs of human subjects were instructed

to walk toward and pass one another, negotiating for space

as in the AV-pedestrian scenario, as shown in Figure 6. We

quantised their positions in space and time (first by having them

walk in discrete steps and turns; second by allowing them to
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walk naturally and performing the quantisation purely as data

processing) in order to consider them as observations from

the Sequential Chicken model. The Gaussian process method

developed from the board game study was then applied to again

infer utility parameters from the new, more realistic data.

These studies showed that participants were mostly playing

rationally in accordance with the model under the best-fitting

parameters, with only 11% of their actions deviating from

optimal behavior. They also showed participants’ preference for

time saving over prevention of collision. This latter finding was

FIGURE 6

Lidar tracked human subject pair playing continuous Sequential

Chicken.

unexpected, but was explained by conditions of the experiment.

Being watched in a high safety lab, participants were behaving as

if they were in a competition and so their preferences for saving

time was rather unrealistic and discarding the high negative

utility associated with a real-world collision, which would be

more serious outside the lab, whether with another pedestrian,

or worse with a vehicle.

As a consequence, we next moved to virtual reality (VR) to

further investigate human interaction preferences in two virtual

environments, as shown in Figure 7. This was to enable to study

of actual realistic collisions between human subjects and vehicles

to proceed in a safe way. We developed a virtual game theoretic

autonomous vehicle that interacted with human participants

(Camara et al., 2019a, 2020d, 2021). These results showed

a much more realistic crossing behavior from participants,

preferring avoiding collisions with the virtual AV rather than

saving time. When presented with different AV behaviors via

a gradient descent approach, participants preferred an AV that

makes its decisions quickly. Finally, we found similar crossing

behaviors in both virtual environments, as previously shown in

Nuñez Velasco et al. (2019).

Gaussian Process results are shown in the figures. Figure 8A

is from the lidar tracked human pairs, and Figure 8B from the

VR simulation. These plots show contours of posterior belief

distribution over the joint 2D space of possible utilities of time

and collision. These contours start out flat, uniforming covering

the space, and transform into the curved posteriors as evidence

FIGURE 7

Virtual reality experiment (Camara et al., 2021).
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FIGURE 8

(A) Gaussian Process posterior belief over values of time and collision inferred from the physical human pair game experiment (Camara et al.,

2018d). The contour lines show heights of the belief function over the 2D space of possible joint values for (Ucrash,Utime). The posterior appears

approximately circumferentially symmetric, with its maxima along a ray from the origin to around (−10, 50). (B) Gaussian Process posterior belief

over values of time and collision inferred from the VR experiment (Camara et al., 2021). Circumferential symmetry is again approximately

present, with the maxima now found around the horizontal ray from the origin to (–350, 0). This suggests that subjects become more

concerned about collisions in VR than in the game.

FIGURE 9

Intersection for the interactions’ observation near the University

of Leeds (Camara et al., 2018b,c).

from the experiments are Bayes-fused together. In Figure 8A the

maxima occur along the ray which equates the negative utility of

a crash with around 3 s of time, while in Figure 8B the maxima

are close to the ray where the crash utility is worth near infinite

time. This shows that the VR simulation is much more like real

life than the lab game.

5. Learning interaction sequence
patterns from data

The Sequential Chicken model so far assumes that

pedestrians are all the same, by inferring single values

of parameters to model all pedestrians together. However,

pedestrians are not all the same, they have different motivations

and risk preferences, which might both affect their game

theoretic behavior and appear as externally visible features. If

such features can be identified, they could be used to refine the

parameter values for the Sequential Chicken model when used

to predict and interact with particular individuals.

To learn social behavioral patterns from current

pedestrian–vehicle interactions, we recorded a large-scale

dataset of real-world human road crossings at the road

intersection shown in Figure 9. The obtained pedestrian-vehicle

interactions were human annotated as sequences of discrete

events, such as looking, stepping and signaling, as listed in

Table 1.

Logistic regression, decision tree regression, and motif

analysis were then used to learn the most common sub-

sequences of actions deployed by human drivers and pedestrians

during the interactions. Table 1 shows these 62 temporal and 12

environmental descriptor features, which are predictive about

the content and result of the interaction and which could be

useful to condition the Sequential Chicken model by informing

beliefs about the pedestrian’s utility functions (Camara et al.,

2018c). Figure 10 then shows the main findings from the
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TABLE 1 List of the 74 features selected for the sequence patterns analysis, of which, 62 are temporal events and 12 are environmental descriptor

events (Camara et al., 2018b,c).

Features Features

0: Approaching Phase: Driver/Vehicle Stopped due to traffic 1: Approaching Phase: Vehicle Used signals Turn Indicator

2: Approaching Phase:Driver/Vehicle approached From left 3: Approaching Phase: Pedestrian Movements Slowed down

4: Approaching Phase: Driver/Vehicle Accelerated 5: Approaching Phase: Driver/Vehicle Turned right

6: Approaching Phase: Pedestrian Head Movements Turned left 7: Approaching Phase: Pedestrian Looked at approaching vehicle

8: Approaching Phase: Pedestrian Stepped on road and stopped 9: Approaching Phase: Driver/Vehicle Passed the pedestrian

10: Crossing Phase: Pedestrian Initiated crossing movement 11: Approaching Phase: Driver/Vehicle Decelerated due to traffic

12: Approaching Phase: Driver/Vehicle Kept pace 13: Approaching Phase: Pedestrian Stopped at the edge of the pavement

14: Crossing Phase: Pedestrian Head Movements Turned right 15: Crossing Phase: Pedestrian Looking at Looked at vehicle

16: Crossing Phase: Pedestrian Movements Other (elaborate in notes) 17: Approaching Phase: Pedestrian Movements Kept pace

18: Approaching Phase: Pedestrian Head Movements Turned right 19: Approaching Phase: Driver/Vehicle Interacting vehicle Van

20: Approaching Phase: Driver/Vehicle Turned left 21: Crossing Phase: Pedestrian Stepped back on pavement

22: Crossing Phase: Pedestrian Head Movements Turned left 23: Approaching Phase: Driver/Vehicle Head Turned in the direction of pedestrian

24: Approaching Phase: Pedestrian Movements Did not Stop 25: Crossing Phase: Pedestrian Slowed down/stopped

26: Approaching Phase: Driver/Vehicle Decelerated for observed pedestrian 27: Crossing Phase: Pedestrian Speeded up

28: Approaching Phase: Driver/Vehicle Interacting vehicle Other (elaborate

in Notes)

29: Crossing Phase: Pedestrian Looking at other RUs (elaborate in comments)

30: Approaching Phase: Driver/Vehicle Interacting vehicle Bus/Truck 31: Approaching Phase: Driver/Vehicle Stopped due to other pedestrian

32: Approaching Phase: Driver/Vehicle approached fromMultiple 33: Approaching Phase: Driver/Vehicle Used signals Flashed Lights

34: Crossing Phase: Pedestrian Raised hand sidewards 35: Approaching Phase: Driver/Vehicle Decelerated due to other pedestrians

36: Approaching Phase: Pedestrian Looking at other RUs Others (elaborate

in notes)

37: Approaching Phase: Pedestrian Looking at other pedestrians entering the road

38: Crossing Phase: Driver/Vehicle Passed the pedestrian’ 39: Crossing Phase: Pedestrian Looked at driver

40: Crossing Phase: Driver/Vehicle Stopped for observed pedestrian 41: Crossing Phase: Driver/Vehicle Head Turned in the direction of pedestrian

42: Crossing Phase: Driver/Vehicle Raised hand in front 43: Crossing Phase: Pedestrian Raised hand in front

44: Crossing Phase: Driver/Vehicle Turned right 45: Approaching Phase: Vehicle Stopped for observed pedestrian

46: Crossing Phase: Driver/Vehicle Accelerated 47: Approaching Phase: Pedestrian Speeded up

48: Crossing Phase: Driver/Vehicle Decelerated for observed pedestrian 49: Crossing Phase: Vehicle Waved hand

50: Crossing Phase: Driver/Vehicle Movement Other (elaborate in notes) 51: Crossing Phase: Driver/Vehicle Turned left

52: Approaching Phase: Pedestrian Hand Movements Other (elaborate in

notes)

53: Approaching Phase: Driver Head Turned right

54: Approaching Phase: Driver/Vehicle Movement Other (elaborate in

notes)

55: Approaching Phase: Driver/Vehicle Head Movements Other (elaborate in notes)

56: Approaching Phase: Driver/Vehicle Head Turned left 57: Crossing Phase: Pedestrian Waved Hand

58: Crossing Phase: Pedestrian Hand Movements Other (elaborate in notes) 59: Approaching Phase: Driver/Vehicle Waved hand

60: Crossing Phase: Driver/Vehicle Used signals Turn Indicator 61: Crossing Phase: Pedestrian Looking at other pedestrians entering the road

Driver/Vehicle Interacting Vehicle is Single Driver/Vehicle Interacting Vehicle Coming From right

Weather: Overcast Weather: Sunny

Weather: Rainy Group of Pedestrians

Pedestrian: teenager (13-18y) Pedestrian: young adult (18-30y)

Pedestrian: mid-age adult (30-60y) Pedestrian: older person (60+ years)

Pedestrian’s Distraction Pedestrian: Gender

sequence analysis and some suggestions for the design and

development of AVs.

We then used the dataset to study the filtrations (temporal

orderings) in which the annotated features can be revealed

to an autonomous vehicle and their amount of information

provided about the interaction result at each time step during

the interaction (Camara et al., 2018b). This analysis showed that

an AV should continue driving as normal, while it observes

around 7–10 features out of the 74 shown in Table 1 from

a potentially interacting pedestrian, in order to best inform
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FIGURE 10

Main findings and suggestions for AV designers from the sequence patterns analysis (Camara et al., 2018c).

its beliefs about their behavior before beginning to make its

own game-theoretic actions to interact with them. Using the

public Daimler pedestrian dataset (Kooij et al., 2014) we also

developed simple heuristic features which can be fused to

predict road crossing intent to some extent (Camara et al.,

2019b). These predictions could be integrated into Sequential

Chicken based AV controllers as priors to improve their

predictions and interactions. It should be noted that the

detection and recognition of most of the features shown in

Table 1, e.g., pedestrian hand gestures, head movements, age,

level of distraction, still pose several challenges due to their

variabilities and remain active research areas (Camara et al.,

2020a,b).

6. Unifying and quantifying
proxemics and trust

The Sequential Chicken model showed that if the vehicle’s

only way to inflict negative utility onto pedestrians is to

actually hit them, then it must be programmed to deliberately

provoke a crash occasionally in order to make progress. This

is clearly an undesirable and unethical solution to the real-

world freezing robot problem, and at first appears to be

a limitation of the model. However, the equations of the

model still work if other, less violent, forms of negative

utility are made available for the vehicle to inflict upon

members of the public, with higher frequency traded for

lower damage.

Possible solutions that are currently under debate might

include spraying jets of water at anti-social pedestrians

intentionally blocking the AV’s path, or humiliating

them in public using horns as is often done by human

drivers to penalize other road users’ anti-social behavior

(UK Law Commission, 2019).

An intriguing additional option which we have chosen to

explore is to make over-assertive pedestrians feel uncomfortable

by invading their proxemic space. The theory of proxemics was

introduced by Hall (1966) to describe humans’ psychological

sense of comfort or discomfort during physical interactions. Hall

proposed four distinct zones: the intimate zone ranges up to

0.45 m, the personal zone from 0.45 to 1.2 m, the social zone

from 1.2 to 3.6 m, and the public zone from 3.6 m to infinity

(Lambert, 2004). Social robotics experiments have shown that

these proxemic zones change in size when humans interact with

robots of different heights, appearances, speeds, voices, and also

for different HRI activities (Rios-Martinez et al., 2015).

But in order to include proxemics in the Sequential Chicken

model, the proxemic utility needs to be given in the form of

continuous functions corresponding to the continuous motion

of people. A review of the literature showed that there is no

available method to infer the continuous proxemic functions.

We thus proposed and developed a novel Bayesian method that

can infer pedestrian utility functions from observed pedestrian-

vehicle interactions’ trajectory data.

This method fitted a variety of parametric models,Mi, to the

data, optimizing to find the best-fitting parameters for each. The

data are the distances between the two agents, X, their speeds,

v and vped, and the results of the interactions, which are binary:

either the pedestrian crosses or they yield. Bayesian Information

Criteria (BIC) is then used to identify the best fitting model,

automatically accounting for the Occam factors due to some

models having more parameters than others.

Following that, we recently developed the first mathematical

model of proxemics and trust concepts for self-driving cars

and pedestrians interactions (Camara and Fox, 2020). It defined

the trust zone as the area of the proxemics zones where trust

is required i.e., one agent has to rely on the other during

the interaction. Based on Lee and See (2004)’s qualitative

definition of trust as an attitude in “a situation characterized by

uncertainty and vulnerability”, we more quantitatively defined

a Physical Trust Requirement (PTR) as a Boolean property

of the physical state of the world (not of the psychology

of the agents) with respect to Agent1 during an interaction,

true if and only if Agent1’s future utility is affected by an

immediate decision made by Agent2. For example, in the

case of a car approaching a pedestrian, PTR exists in those

states in which the car is driving toward the pedestrian at
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FIGURE 11

Autonomous vehicle entering pedestrian’s social zone, which can also be viewed and quantified as a trust region (Camara and Fox, 2020, 2022).

speeds such that the car driver is able to brake and avoid a

collision, but the pedestrian is unable to get out of the car’s

path using their own slower walking or running speeds. The

driver but not the pedestrian can determine the outcome of the

interaction. Trust itself is then a psychological property of the

pedestrian, with regard to the car, whose presence means that

the pedestrian is willing to enter a PTR state with the car, as the

pedestrian assumes that the car will then act in the pedestrian’s

own interest.

Applying our PTR concept quantivately to the case of a

car and pedestrian approaching each other at a right angle, as

in the Sequential Chicken scenario, using physical assumptions

for realistic braking distances and pedestrian motion, results in

three discrete zones appearing around the pedestrian are shown

in Figure 11.

Crash zone is the region close to Agent1, {d : 0 < d <

dcrash},

dcrash = v2t2 +
v22

2µ2g
, (2)

in which a crash is guaranteed and neither party can prevent

it (Lyubenov, 2011), v2 is Agent2’s speed. The first term

depends on Agent2’s thinking reaction time, t2, and the second

term represents the physical braking distance if Agent2 is

a wheeled agent, µ2 is the coefficient of friction between

Agent2’s tires and tarmac, and g is gravity. If Agent2 is

a walking agent, we will here assume this second term

is omitted as walkers are always in static equilibrium and

can stop instantly once a decision is made. Running agents

(Kwon and Hodgins, 2010) or finer detailed models of

walkers (Patnaik and Umanand, 2015) could use different

braking models.

Escape zone is the area where Agent1 is able to choose their

own action to avoid collision, without needing to trust Agent2 to

behave in any particular way. If w2 is the width of Agent2, which

FIGURE 12

Distances (dcrash and descape) and zones predicted by the PTR

model for di�erent car speeds v at lower speeds. If the vehicle is

set to drive at the same speed v = 1.1 = vped m/s as a

pedestrian, then the PTR zones closely match Hall proxemic

zones, as shown by the vertical red line (Camara and Fox, 2020).

Agent1 must cross at speed v1 to pass first, the escape zone is

then the set {d : descape < d} with

descape = v2t1 + w2
v2

v1
. (3)

Trust zone is the region {d : dcrash < d < descape} where

the PTR is true. Agent2 can here choose to slow down to prevent

collision, but Agent1 is incapable of making any action to affect

this outcome themselves. This occurs when Agent1 cannot get

out of Agent2’s way in time to avoid collision, but Agent2 is able

to slow to prevent the collision if it chooses to yield.

Note that these zones are not symmetric between Agent1

and Agent2. They describe when Agent1 must trust Agent2.

Their roles must be swapped and the zones recomputed to
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see when Agent2 must trust Agent1. The crash, escape, and

trust zones were mapped to Hall’s personal, public, and social

zones respectively, for Agent1 (Camara and Fox, 2020). The

trust/social zone is the region in which physical trust is required.

This may be a prerequisite for some types of interactions,

with physical trust being useful to enable the content of the

interaction. The evidence for this mapping came from the

observation that if an autonomous vehicle Agent2 is set to drive

at the same speed as a pedestrian Agent1, the model generates

Hall’s proxemic social zone to within 4% quantitative accuracy

of Hall’s original empirical sizes, as shown in Figure 12. This

unexpected result, found by studying how an AV should interact

with pedestrians, may now explain a larger question about

how humans interact with each other and with other types of

robots. Hall’s zone sizes have previously been only empirical

observations but the PTRmodel now explains them generatively

and to 4% accuracy for the first time. We then extended this

model for more general human-human interactions and HRI by

taking different interaction headings into account and found an

error down to 1% (Camara and Fox, 2022).

7. OpenPodcar: Open source
hardware for social AV research

Laboratory and VR experiments on pedestrians are limited

in realism, so to scale models toward the real world, a real

autonomous vehicle is needed. Commercial AVs are very

expensive, beyond reach of our and most other labs who may

wish to replicate and extend our work. Full size, multi-passenger,

open source hardware (OSH) cars have also been designed and

in some cases built, including the PixBot2 and Evo Tabby3.

These are very large projects which require tens of thousands

of dollars of components and months of build time, which

are again outside the budget of most labs. Several small, RC-

scale, cars have been completed and built as OSH including

F1Tenth4, AutoRally (Goldfain et al., 2019), BARC (Gonzales,

2018), MIT Racecar5, MuSHR6, (Nakamoto and Kobayashi,

2019), and (Vincke et al., 2021). However, their small sizes mean

that the utilities for collisions with pedestrians would be smaller

than for other vehicles, so they are not a good experimental

substitute for them.

So we have developed a new low-cost, autonomous vehicle

research platform, targeted at pedestrian-AV research and used

to host new versions of the Sequential Chicken model based

on proxemic small negative utilities rather than collisions.

OpenPodcar, shown in Figure 13, is based on an off-the-shelf,

2 https://gitlab.com/pixmoving/pixbot

3 https://www.openmotors.co/evplatform/

4 https://f1tenth.org/

5 https://mit-racecar.github.io/

6 https://mushr.io/

FIGURE 13

OpenPodcar: Open source hardware AV (See preprint Camara

et al., 2022).

hard-canopy, mobility scooter donor vehicle. We have released

OpenPodcar as open source hardware (OSH, Bonvoisin et al.,

2020) together with a full automation open source software

(OSS) stack, based on ROS, gmapping and movebase. This

will enable other groups to replicate our complete system and

experiments, and to use their own research to extend and

contribute to a single shared system, which can evolve over time

toward real-world use.

The open hardware release includes step-by-step visual build

instructions which enable a typical graduate engineer to build an

identical copy of our own build, to within specified tolerances.

Open source Arduino (Banzi and Shiloh, 2022), ROS (Cousins

et al., 2010), and Gazebo (Koenig and Howard, 2004) software

files are included which provide standard interfaces and physical

simulation for the vehicle. Open source higher level ROS

libraries and configurations are provided to perform pedestrian

detection and tracking, SLAM, path planning and control.

The platform is large enough to transport one person at

speeds up to 15 km/h, it is designed to be large and fast enough

to be useful for both real-world delivery tasks and research into

human interaction with the general class of such real-world

vehicles, including last-mile people and goods transporters. The

build cost is around 7,000 USD from new, or 2,000 USD from

used, components.

8. Legal and ethical implications

The Sequential Chicken model has recently been considered

in the UK Law Commission’s study on Autonomous Vehicles

(UK Law Commission, 2019), used to update UK legislation in

the area. A key question in this study involving the Sequential

Chicken model is “what is the legal status of inflicting negative

utilities onto members of the public in public places?”. To

avoid the freezing robot problem, the model shows that AVs

must sometimes inflict negative utilities onto pedestrians. This

is an unusual situation for a civilian engineered system, as a
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fundamental professional responsibility of engineers is to make

systems safe for the public and to improve their lives. There

is almost no precedent for engineering systems to deliberately

cause harm to members of the public—even if doing so helps a

larger number of other members of the public as a result.

Actually colliding with pedestrians is obviously undesirable,

as for large AVs it may result in injury or death. Such

actions might be regarded as pre-meditation on the part

of their programmers if they occur due to deliberate

programming decisions rather than by programmer error

or accident. Causing death by pre-meditated means is generally

considered to be the most serious crime—murder—rather than

accidental manslaugher.

The Sequential Chicken model shows how frequency and

severity of inflicted negative utilities can be traded off by their

designers: for example the AV can either deliberately create

actual collisions in a tiny set of cases, or it could instead create

smaller negative utilities such as proxemic space invasion in a

much larger number of cases.

The legal status of inflicting even smaller negative utilities

onto members of the public remains unclear. The closest case

is perhaps the 2014 controversy of social network Facebook

deliberately making some of its users sad by showing them

negative news stories, without their consent, as part of a data

science experiment. Facebook was widely criticized for this

action and it is generally considered to have been unethical if

not illegal (Verma, 2014).

Another option for inflicting small negative utilities could

be to display images on video billboards, or otherwise draw

attention to, pedestrians who are behaving anti-socially toward

the vehicle. China’s Shenzhen city has recently been reported to

use similar methods7, while its Hubei province is reported to

have deployed spraying water8, both to penalize jaywalking.

Issues of personal data and personal customizationmay arise

in future versions of the Sequential Chicken model. The current

model assumes that all pedestrians are the same, having the same

likely destinations and utility functions. But in reality these may

differ, and may be predictable given either the person’s unique

identity or some weaker class membership, such as their age,

gender, or type of clothing. If unique pedestrians can be re-

identified then per-pedestrians models can be built; otherwise

weaker models can be built from their class membership.

Per-pedestrian models will encounter GDPR legislation which

requires consent for processing data on individuals; while

making predictions based on class membership is a form of

bias or prejudice which may encounter equality legislation.

7 https://www.independent.co.uk/tech/china-police-facial-

recognition-technology-ai-jaywalkers-fines-text-wechat-weibo-

cctv-a8279531.html

8 https://abcnews.go.com/International/china-province-spraying-

publicly-shaming-jaywalkers-deter/story?id=54607782

Shenzhen’s jaywalking systems (ibid.) have also been reported

as trialing personal identification via face recognition to send

cash fines to pedestrians, which is themost pure form of negative

utility usually considered in Economics.

The deep learning models reviewed—which are needed for

low-level understanding of pedestrians and used as input to

the higher level interaction—-may be legally and practically

problematic in the event of accidents and their subsequent

investigations, as their black-box nature usually precludes

human understanding and explanation of how their decisions

are made (Castelvecchi, 2016). Explainable AI (XAI) (Gunning,

2017) remains a current research area which seeks methods

to extract this type of information from neural networks, and

would be useful to resolve this issue in future.

9. Discussion and conclusions

The Sequential Chicken model can be used to model and

probabilistically predict the behavior of human pedestrians, and

to plan interactions with them in order to solve the freezing

robot problem. The model shows that if an AV’s only available

actions are to yield to pedestrians or drive forward, then it

must be programmed with a small probability of collision, so

as to produce a credible threat which solves the freezing robot

problem. However, the samemodel also shows that the rare large

negative utility of a crash can be replaced by more frequent but

smaller penalties using human proxemic preferences.

Our proxemics study has provided a generative explanation

for the numerical sizes of Hall’s empirical zones for the first time,

and can now be used to control and adapt the AV’s behavior

more safely as a small negative utility in the model. Parameters

for the model can be inferred empirically from human studies

including VR experiments.

There are several limitations with the Sequential Chicken

model. For example, it appears to work well when the pedestrian

and AV approach at right angles, as when a pedestrian crosses

the road in front of an AV, but more complex paths of approach

are possible. There is currently no consideration of lanes of

a road. In particular, the model does not distinguish between

the case of the pedestrian starting from the same side of the

road as the car is driving on, vs. starting from the opposite

side (c.f. Figure 3). In the latter case, the pedestrian may be

making a substantial commitment to crossing by crossing over

the other lane and arriving in the center of the road before

dealing with the AV. Consideration would need to be given

to vehicles approaching from both directions in both lanes in

busy roads in order to predict the pedestrian’s behavior, which

may include vehicles having to predict each others’ behavior as

well as the pedestrian’s. Small AVs such as OpenPodcar do not

drive on roads at all, but rather share pedestrianized space with

pedestrians. We have so far modeled their interactions assuming

orthogonal approaches to fit the model, but the trajectories of
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both agents can be here be more complex, including lateral

motion such as curving one’s path as in Hoogendoorn and Bovy

(2004) to let the other pass.

The model currently assumes that all pedestrians have the

same parameters, which is unlikely to be true. Rather, different

pedestrians have different goals and risk preferences. Advanced

driver training for human drivers is largely based around

understanding and predicting behavior of other road users as

individuals, based on their observable features. We have seen

evidence that sequence patterns of higher level events (Camara

et al., 2018b,c), if they become similarly detectable with machine

vision, can be informative about particular pedestrians’ utility

functions within themodel, which suggests future systems fusing

this per-person information with the priors obtained from the

VR studies to create more accurate per-person predictions and

interactions. Big data nowmakes it feasible even to learn models

of individual other road users encountered multiple times in a

local area, potentially creating higher accuracies but also raising

ethical questions (Fox et al., 2018). These more detailed models

will also introduce uncertainty over parameters which would

need to be handled appropriately.

While the above limitations are important for applications to

different types of road and pavement cases, the idea of proxemics

and trust as a framework for negotiating interactions may be

more general than autonomous vehicles, and extend to many

other forms of HRI, as proposed in Camara and Fox (2022).

For example, for a human working alongside a robot arm, fixed

to the ground rather than mobile, the same proxemic trust

zones could be defined based on the robot’s capabilities, and

used to plan interactions. As with the above variations in road

scenarios, these extended HRI environments would share the

same trust and proxemic concepts, then derive different zone

geometries from the specifics of the robots and environments

involved.

The OpenPodcar platform will enable other researchers

to run this interaction model and extend it with more

refined pedestrian models to create more human-like, unfrozen

interactions. To operate in real time on OpenPodCar, the

Sequential Chicken model requires as input the positions of

pedestrians which we have seen can be obtained using mature

machine vision and tracking methods.

Future work should thus consider running larger human

experiments using the OpenPodcar platform in order to refine

the Sequential Chicken model parameters with real-world

interaction settings. We may include more visual features,

demographics and environmental data into the model similar to
the approach used by Ma et al. (2017) and Rasouli et al. (2019).

This work has mainly focused on pedestrian–AV interactions

for road-crossing scenarios, but this could be extended to more

general dual agent interactions. The legal, societal and ethical

implications of this work should also be investigated further.
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