
ORIGINAL RESEARCH
published: 26 May 2020

doi: 10.3389/fcomp.2020.00014

Frontiers in Computer Science | www.frontiersin.org 1 May 2020 | Volume 2 | Article 14

Edited by:

Nicholas Cummins,

University of Augsburg, Germany

Reviewed by:

Jiri Pribil,

Slovak Academy of Sciences, Slovakia

Anna Pribilova,

Slovak Academy of Sciences

(SAS), Slovakia

*Correspondence:

Margaret Lech

margaret.lech@rmit.edu.au

Specialty section:

This article was submitted to

Human-Media Interaction,

a section of the journal

Frontiers in Computer Science

Received: 10 September 2019

Accepted: 16 April 2020

Published: 26 May 2020

Citation:

Lech M, Stolar M, Best C and Bolia R

(2020) Real-Time Speech Emotion

Recognition Using a Pre-trained

Image Classification Network: Effects

of Bandwidth Reduction and

Companding.

Front. Comput. Sci. 2:14.

doi: 10.3389/fcomp.2020.00014

Real-Time Speech Emotion
Recognition Using a Pre-trained
Image Classification Network:
Effects of Bandwidth Reduction and
Companding

Margaret Lech 1*, Melissa Stolar 1, Christopher Best 2 and Robert Bolia 2

1 School of Engineering, RMIT University, Melbourne, VIC, Australia, 2Human Factors, Aerospace Division, Defence Science

Technology Group, Melbourne, VIC, Australia

This paper examines the effects of reduced speech bandwidth and the µ-low

companding procedure used in transmission systems on the accuracy of speech

emotion recognition (SER). A step by step description of a real-time speech emotion

recognition implementation using a pre-trained image classification network AlexNet is

given. The results showed that the baseline approach achieved an average accuracy of

82%when trained on the Berlin Emotional Speech (EMO-DB) data with seven categorical

emotions. Reduction of the sampling frequency from the baseline 16–8 kHz (i.e.,

bandwidth reduction from 8 to 4 kHz, respectively) led to a decrease of SER accuracy

by about 3.3%. The companding procedure on its own reduced the average accuracy

by 3.8%, and the combined effect of companding and band reduction decreased the

accuracy by about 7% compared to the baseline results. The SER was implemented in

real-timewith emotional labels generated every 1.033–1.026 s. Real-time implementation

timelines are presented.

Keywords: speech emotions, real-time speech classification, transfer learning, bandwidth reduction, companding

INTRODUCTION

Speech Emotion Recognition (SER) is the task of recognizing the emotional aspects of speech
irrespective of the semantic contents. While humans can efficiently perform this task as a natural
part of speech communication, the ability to conduct it automatically using programmable devices
is still an ongoing subject of research.

Studies of automatic emotion recognition systems aim to create efficient, real-time methods of
detecting the emotions of mobile phone users, call center operators and customers, car drivers,
pilots, and many other human-machine communication users. Adding emotions to machines has
been recognized as a critical factor in making machines appear and act in a human-like manner
(André et al., 2004).

Robots capable of understanding emotions could provide appropriate emotional
responses and exhibit emotional personalities. In some circumstances, humans could be
replaced by computer-generated characters having the ability to conduct very natural and
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convincing conversations by appealing to human emotions.
Machines need to understand emotions conveyed by speech.
Only with this capability, an entirely meaningful dialogue
based on mutual human-machine trust and understanding can
be achieved.

Traditionally, machine learning (ML) involves the calculation
of feature parameters from the raw data (e.g., speech, images,
video, ECG, EEG). The features are used to train a model that
learns to produce the desired output labels. A common issue
faced by this approach is the choice of features. In general, it is
not known which features can lead to themost efficient clustering
of data into different categories (or classes). Some insights
can be gained by testing a large number of different features,
combining different features into a common feature vector, or
applying various feature selection techniques. The quality of the
resulting hand-crafted features can have a significant effect on
classification performance.

An elegant solution bypassing the problem of an optimal
feature selection has been given by the advent of deep neural
networks (DNN) classifiers. The idea is to use an end-to-end
network that takes raw data as an input and generates a class
label as an output. There is no need to compute hand-crafted
features, nor to determine which parameters are optimal from
the classification perspective. It is all done by the network itself.
Namely, the network parameters (i.e., weights and bias values
assigned to the network nodes) are optimized during the training
procedure to act as features efficiently dividing the data into
the desired categories. This otherwise very convenient solution
comes at the price of much larger requirements for labeled
data-samples compared to conventional classification methods.

In many cases, and this includes SER, only minimal data
is available for training purposes. As shown in this study,
the limited training data problem, to a large extent, can be
overcome by an approach known as transfer learning. It uses an
existing network pre-trained on extensive data to solve a general
classification problem. This network is then further trained (fine-
tuned) using a small number of available data to solve a more
specific task.

Given that at present, the most powerful pre-trained neural
networks were trained for image classification, to apply these
networks to the problem of SER, the speech signal needs to
be transformed into an image format (Stolar et al., 2017). This
study describes steps involved in the speech-to-image transition;
it explains the training and testing procedures, and conditions
that need to be met to achieve a real-time emotion recognition
from a continuously streaming speech. Given that many of
the programmable speech communication platforms use speech
companding and speech bandwidth reduced to a narrow range
of 4 kHz, effects of speech companding and bandwidth reduction
on the real-time SER are investigated.

RELATED WORKS

Conventional SER
Early SER studies searched for links between emotions and
speech acoustics. Various low-level acoustic speech parameters,
or groups of parameters, were systematically analyzed to

determine correlation with the speaker’s emotions. The analysis
applied standard classifiers such as the Support Vector Machine
(SVM), Gaussian Mixture Model (GMM), and shallow Neural
Networks (NNs). Comprehensive reviews of SER methods are
given in Schröder (2001), Krothapalli and Koolagudi (2013), and
Cowie et al. (2001). An extensive benchmark comparison can be
found in Schuller et al. (2009b).

Majority of low-level prosodic and spectral acoustic
parameters such as fundamental frequency, formant frequencies,
jitter, shimmer, spectral energy of speech, and speech rate
were found correlated with emotional intensity and emotional
processes (Scherer, 1986, 2003; Bachorovski and Owren,
1995; Tao and Kang, 2005). Good SER results were given by
more complex parameters such as the Mel-frequency cepstral
coefficients (MFCCs), spectral roll-off, Teager Energy Operator
(TEO) features (Ververidis and Kotropoulos, 2006; He et al.,
2008; Sun et al., 2009), spectrograms (Pribil and Pribilova, 2010),
and glottal waveform features (Schuller et al., 2009b; He et al.,
2010; Ooi et al., 2012).

The low-level features were later enriched by the addition of
higher-level derivatives and statistical functionals of the low-level
parameters. The Munich Versatile and Fast Open-Source Audio
Feature Extractor (openSMILE) offers a computational platform
allowing the calculation of many low- and high-level acoustic
descriptors of speech (Eyben et al., 2018).

Identification of the “best” or the most characteristic acoustic
features that characterize different emotions has been one of
the most important but also the most elusive challenges of SER
Despite extensive research progress was slow showing some
inconsistencies between studies. For these reasons, the research
focus moved toward methods that eliminate or reduce the
need to have prior knowledge of “best features” and replace
it with automatic feature generation procedures offered by
neural networks.

SER Using Convolutional Neural Networks
The turning point in SER was the application of deep learning
(DL) techniques (Hinton et al., 2006). Supervised DL neural
network models have been shown to outperform classical
approaches in a wide range of classification problems, among
which the classification of images has been particularly successful
(LeCun et al., 2015).

Given the success of DNN architectures design to classify 2-
dimensional arrays, classification of speech emotions followed
the trend, and several studies investigated the possibility of using
spectral magnitude arrays known as speech spectrograms to
classify emotions. Spectrograms provide 2-dimensional image-
like time-frequency representations of 1-dimensional speech
waveforms. Although the calculation of spectrograms does not
fully adhere to the concept of the end-to-end network, as it allows
for an additional pre-processing step (speech-to-spectrogram)
before the DNN model, the processing is minimal and most
importantly, it preserves the signal’s entirety.

Several studies investigated the application of convolutional
neural networks (CNNs) to classify either entire speech
spectrogram arrays or specific bands of spectrograms to
recognize speech emotions (Han et al., 2014; Huang et al., 2014;
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Mao et al., 2014; Fayek et al., 2015, 2017; Lim et al., 2016;
Badshah et al., 2017; Stolar et al., 2018). In Fayek et al. (2015),
SER from short frames of speech spectrograms using a DNN
was investigated. An average accuracy of 60.53% (six emotions
eNTERFACE database) and 59.7% (seven emotions—SAVEE
database) was achieved. A similar but improved approach led to
64.78% of average accuracy (IEMOCAP data with five classes)
(Fayek et al., 2017). Various concatenated structures combining
CNNs and Recurrent Neural Networks (RNNs) were trained
on the EMO-DB data using speech spectrograms (Lim et al.,
2016). For the best structure, an average precision of 88.01% and
a recall of 86.86% were obtained for seven emotions. In Han
et al. (2014), CNN was applied to learn affect-salient features,
which were then applied to the Bidirectional Recurrent Neural
Network to classify four emotions from the IEMOCAP data. It
was shown that this approach leads to 64.08% weighted accuracy
and 56.41% unweighted accuracy. Although these methodologies
are compelling, there is still room for improvement. One of
the reasons causing a relatively low accuracy is that speech
databases commonly used in the SER studies are too small to
ensure adequate training of deep network structures. Besides, in
many of the existing databases, emotional classes, and gender
representation are imbalanced.

Publicly available resources for DL techniques include large
pre-trained neural networks trained on over one billion of
images from the ImageNet dataset (Russakovsky et al., 2015)
representing at least 1,000 of different classes. The great
advantage of using pre-trained networks is that many complex
multi-class image classification tasks can be accomplished very
efficiently by initializing the network training procedures with
a pre-trained network’s parameters (Bui et al., 2017). This way,
the training process can be reduced to a short-time fine-tuning
using a relatively small training data set. Alternatively, pre-
trained network parameters can be applied as features to train
conventional classifiers that require lower numbers of training
data. These two approaches are known as transfer learning.

Pre-trained networks have been particularly successful in the
categorization of images. A large selection of very efficient, freely
available image classification networks has been created. Recent
studies have shown that the speech classification task can be re-
formulated as an image classification problem and solved using a
pre-trained image classification network (Stolar et al., 2017; Lech
et al., 2018). The speech to image transformation was achieved by
calculating amplitude spectrograms of speech and transforming
them into RGB images. This approach is commonly used to
visualize spectrograms; however, in these cases, the aim was to
create a set of images to perform the fine-tuning of a pre-trained
deep convolutional neural network.

Real-Time SER
Real-time processing of speech needs a continually streaming
input signal, rapid processing, and steady output of data within
a constrained time, which differs by milliseconds from the time
when the analyzed data samples were generated.

For a given SER method, the feasibility of real-time
implementation is subject to the length of time needed to
calculate the feature parameters. While the system training

procedure can be time-consuming, it is a one-off task usually
performed off-line to generate a set of class models. These
models can be stored and applied at any time to perform
the classification procedure for incoming sequences of speech
samples. The classification process involves the calculation of
feature parameters and model-based inference of emotional class
labels. Since the inference is usually very fast (in the order
of milliseconds), therefore if the feature calculation can be
performed in a similarly short time, the classification process can
be achieved in real-time.

Recent advancements in DL technologies for speech and
image processing have provided particularly attractive solutions
to SER, since both, feature extraction and the inference
procedures can be performed in real-time. Fine-tuned CNNs
have been shown to ensure both high SER accuracy and short
inference time suitable for a real-time implementation (Stolar
et al., 2017). This contrasts not only with classicalML approaches,
but also with CNN methods that require the time-consuming
calculation of spectrogram statistics (Lim et al., 2016), or salient
discriminative feature analysis (Mao et al., 2014).

Implementation Factors Affecting SER
Past studies of SER have been restricted to laboratory conditions
providing noise-free, uncompressed, and full-bandwidth audio
recordings. It is not yet clear to what extent SER can handle
speech recorded or streamed in different natural-environment
terms. Several practical implementation factors that can have
a significant effect on the accuracy of SER have been reported
in recent studies. As indicated in Albahri and Lech (2016),
Albahri et al. (2016), and Albahri (2016), speech compression,
filtering, band reduction, and the addition of noise reduce
the accuracy of SER. It was shown that the SER performance
depends on the type of emotional expressions used to generate
the SER training database (Stolar et al., 2017). A higher SER
performance was achieved in the case of the EMO-DB database
with emotions acted by professional actors, compared to the
eNTERFACE database with emotions induced by reading an
emotionally rich text. Only small differences between gender-
dependent and gender-independent SER tested on the EMO-DB
data were reported in Stolar et al. (2017).

METHODS

Overview
Given that the available computational resources were limited,
and only a small database of emotionally labeled speech samples
was available, the aim was to determine a computationally
efficient approach that could work with a small training data set.
These limitations are quite common and can be dealt with by the
application of pre-trained networks and transfer learning. Since
the majority of existing pre-trained networks have been created
for image classification, to apply these networks to speech, the
SER problem had to be re-defined an image classification task.
To achieve this, labeled speech samples were buffered into short-
time blocks (Figure 1). For each block, a spectral amplitude
spectrogram array was calculated, converted into an RGB image
format, and passed as an input to the pre-trained CNN. After
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FIGURE 1 | An overview of the real-time SER method.

a relatively short training (fine-tuning), the trained CNN was
ready to infer emotional labels (i.e., recognize emotions) from an
unlabeled (streaming) speech using the same process of speech-
to-image conversion. In the presented here experiments, the SER
performance was tested using two different sampling frequencies
(16 and 8 kHz) and the µ-low companding procedure. The
SER system was implemented using Matlab 2019a programming
software and an HP Z440 Workstation with an Intel Xeon CPU,
2.1 GHz, 128 GB RAM.

Pre-processing
Sampling Frequency
In traditional narrow-band data transmission systems,
the bandwidth of speech signal was limited to reduce the
transmission bit rates. In telephony, for example, the frequency
range of speech used to be limited to the range from 300Hz
to 3.4 kHz. It was enough to ensure a basic level of speech
intelligibility but at the cost of high voice quality. It was likely
that such severe bandwidth reduction resulted in a substantial
reduction in the emotional information conveyed by speakers.

To test this possibility, the SER system was trained
with two different sampling frequencies, the original 16 kHz
corresponding to the broad speech bandwidth of 8 kHz, and
the reduced sampling frequency of 8 kHz corresponding to the
narrow-bandwidth of 4 kHz.

The procedure used to reduce the sampling frequency from
16 to 8 kHz consisted of two steps (Weinstein, 1979). Firstly, an
8th order lowpass Chebyshev Type I infinite impulse response
filer was applied to remove frequencies beyond the Nyquist
frequency of 8 kHz to prevent aliasing. Secondly, the speech was
downsampled by a factor of 2 by removing every second sample.

Speech Companding
Applications of SER on various types of speech platforms present
questions about potential effects of bandwidth limitations, speech
compression, and speech companding techniques used by speech
communication systems on the accuracy of SER. Studies of SER

with compressed or band-limited speech using techniques such
as included AMR, AMR-WB, AMR-WB+, andmp3 can be found
in Albahri (2016), Albahri and Lech (2016), Albahri et al. (2016).

This study investigated the effects of the speech companding
method known as the µ-law algorithm on SER. Variants of the
µ-law companding are used in Pulse Code Modulation (PCM)
transmission systems across the USA, Japan, and Europe. At the
transmitter-end, the algorithm applies a logarithmic amplitude
compression that gives higher compression to high-amplitude
speech components and lower compression to low-amplitude
components. The compressed speech is then transmitted through
the communication channel, and during the transmission
process, it acquires noise. The receiver-end expands the speech
signal back to its original amplitude levels while maintaining
the same signal-to-noise ratio (SNR) for both high and low
amplitude components. A transmission conducted without the
companding system would result in high SNR values for high
amplitude signal components and low values for low-amplitude
components (Cisco, 2006). The process of compression followed
by the expansion is known as the companding procedure
(Figure 2).

Given the original speech samples x, the compressed speech
samples F (x) were calculated as Cisco (2006),

F (x) =
ln (1+ µ |x|)

log (1+ µ)sgn(x)
(1)

Whereas, the reconstructed speech samples x̃ were calculated as
Cisco (2006),

x̃ = F−1
(

F(x)
)

= sgn
(

F(x)
)

(

(1+ µ)|F(x)| − 1
)

µ
(2)

The compression parameter value µ was set to 255 [standard in
the USA and Japan Cisco, 2006].
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FIGURE 2 | The µ-law compression/expansion (companding) system.

Buffering Speech Waveforms into Blocks
The streaming or recorded speech was buffered into 1-s blocks
to conduct block-by-block processing (Figure 1). A short, 10-
ms stride was applied between subsequent blocks. The amplitude
levels were normalized to the range −1 to 1. No pre-emphasis
filter was used. Since the speech recordings were labeled
sentence-by-sentence, it was assumed that the emotional label for
a given 1-s block of speech was the same as the label of the speech
sentence to which the block (or most samples within the block)
belonged. The 1-s block-duration was determined empirically as
an optimal time allowing to observe fast transitional changes
between emotional states of speakers (Cabanac, 2002; Daniel,
2011). It was also shown to maximize SER accuracy. A detailed
analysis of the block duration for SER can be found in Fayek
et al. (2015, 2017). By having a very short 10-ms stride between
subsequent blocks, a relatively large number of images were
generated (see Table 2), which in turn improved the training
process and the network accuracy.

Generation of Spectrogram Arrays
Spectral Magnitude Calculation
The procedure used to generate spectrogram arrays is illustrated
in Figure 3. A short-time Fourier transform was performed
for each 1-s blocks of speech waveforms using 16ms frames
made by applying a time-shifting Hamming window function.
The time-shift between subsequent frames was 4ms giving 75%
overlap between frames. The real and imaginary outputs from
the short-time Fourier transform were converted to spectral

magnitude values and concatenated across all subsequent frames
that belonged to a given block to form a time-frequency spectral
magnitude array of size 257 × 259. Where, 257 was the number
of frequency values (rows), and 259 was the number of time
values (columns) in the image arrays. The computations were
performed using the Matlab Voicebox spgrambw procedure with
the frequency step 1f given as Voicebox (2018),

1f =
fmax − fmin

257
[Hz] (3)

Where, fmax was equal to 0Hz and fmin was equal to fs/2. Where,
fs denotes the sampling frequency. The time step t was given as
Voicebox (2018),

1t =
w

4
[seconds] (4)

Where, for a given window length w in seconds, the
corresponding Hamming window bandwidth BW defined as the
bandwidth that gives 6 dB reduction of the maximum gain was
given as Voicebox (2018),

BW =
1.81

w
[Hz] (5)

Thus, for a 16-ms window, the bandwidth was approximately
equal to 113 Hz.

The 118Hz bandwidth of the Hamming window was chosen
experimentally using a visual assessment of spectrogram images.
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FIGURE 3 | Generation of spectrogram magnitude arrays.

FIGURE 4 | Examples showing how the time-frequency resolution trade-off affects spectrogram features visualization when changing bandwidth (BW) and time length

(w) of the Hamming window: (a) BW = 25Hz, w = 72ms, 1t = 6ms; (b) BW = 118Hz, w = 16ms, 1t = 4ms; (c) BW = 1,000Hz, w = 1.8ms, 1t = 5ms.

It can be observed in Figure 4, that there is a trade-off between
time- and frequency-resolution; an improvement of time-
resolution leads to a deterioration of the frequency-resolution
and vice versa. The chosen parameters provided a compromise
between objective time- and frequency-domain parameters that
gave a good subjective resolution of speech spectral components.

Frequency Scaling
While the time scale of the magnitude spectrograms was always
linear spanning the time range of 0 to 1 s, four alternative
frequency scales of spectrograms: linear, melodic (Mel) (Stevens
and Volkman, 1940), equivalent rectangular bandwidth (ERB)
(Moore and Glasberg, 1983), and logarithmic (log) (Traunmüller
and Eriksson, 1995) were applied along the frequency axis
(spanning from 0Hz to fs/2 Hz). Different frequency scales were
tested for comparison. Given the linear scale frequency values
f [Hz], the corresponding logarithmic scale values flog were
calculated as

flog = 10log10
(

f
)

[dB] (6)

The mel scale values fmel were estimated as O’Shaghnessy (1987),

fmel = 2595log10

(

1+
f

700

)

[dB] (7)

Whereas, the ERB scale frequencies fERB were calculated as
Glasberg and Moore (1990),

fERB =
1000ln(10)

(24.7)(4.37)
log10

(

1+ 0.00437f
)

[dB] (8)

Figure 5 shows the effect of frequency scaling on the visual
appearance of speech spectral components depicted by
spectrogram images. Examples of spectrograms for the same
sentence pronounced with anger, sadness, and neutral emotion
are plotted on four different frequency scales: linear, Mel, ERB,
and log. It can be seen, that this order of scales corresponds to the
process of gradually “zooming into” the lower frequency range
features (about 0–2 kHz), and at the same time, “zooming out”
of the higher frequency range features (about 2–8 kHz) features.
Therefore, the application of different frequency scales effectively
provided the network either more or less-detailed information
about the lower or upper range of the frequency spectrum.

Conversion into RGB Images
Dynamic Range Normalization
The dynamic range of the original spectral magnitude arrays
was normalized from Min [dB] to Max [dB] based on the
average maximum and minimum values estimated over the
entire training dataset. For the original uncompressed speech,
the dynamic range of the database was −156 dB to −27 dB,
and for the compounded speech, the range was −123 dB to
−20 dB. These ranges were chosen to maximize the visibility
of contours outlining time-frequency evolution of fundamental
frequency (F0) speech formants, and harmonic components
of F0. The amplitude-range normalization step was critical in
achieving good visualization of spectral components. Figure 5
shows how different values of Min [dB] and Max [dB] can affect
the visualization outcomes. As shown in Figure 6a, the dynamic
range used to generate images of spectrograms gives very good
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FIGURE 5 | Examples showing the effect of different frequency scales on RGB images of spectrograms. The examples show spectrograms for the same utterance

pronounced by the same person with sadness, anger, and neutral speech. The time length of 1 s is displayed in all examples disregarding the actual length of the

sentence. The spectrograms are depicted on four different frequency scales linear, mel, ERB, and log. For all sub-pictures, the frequency range is 0 – fs/2 [Hz], and the

time range is 0–1 s.

visibility of spectral components of speech. When choosing other
values of the dynamic range like for example, in Figure 6b, only
low-amplitude components are visible, or in Figure 6c, only the
highest-amplitude speech components are observable.

Usually, the SER applies the magnitude arrays into the
training process without transforming them into the image
format (Huang et al., 2014; Fayek et al., 2017). There were two
important advantages of using the R, G, and B components
instead of the spectral amplitude arrays. Firstly the three arrays
provided a different kind of information to each of the three
input channels of CNN. The R-components had a higher
intensity of the red color for high spectral amplitude levels
of speech and thus emphasizing details of the high-amplitude

speech components. The B-components had a higher intensity
of the blue color for lower amplitudes; therefore, emphasizing
details of the low-amplitude spectral components. Similarly, the
G-components emphasized details of the mid-range spectral
amplitude components. Secondly, speech representation in the
form of images allowed us to use an existing pre-trained image
classification network and replace the lengthly and data greedy
model training process with a relatively short-time and low-data
fine-tuning procedure.

Conversion into R, G, and B Arrays
Spectral magnitude arrays of 257 × 259 real-valued numbers
were converted into a color RGB image format represented by
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FIGURE 6 | Examples showing the effect of different normalization of the dynamic range of spectral magnitudes on the visualization of spectrogram details; (a) Min =

−156 dB, Max = −27 dB—good visibility of spectral components of speech, (b) Min = −126 dB, Max = −100 dB—an arbitrary range showing poor visibility, (c) Min

= −50 dB, Max = −27 dB—another arbitrary range showing poor visibility. For all sub-pictures, the frequency range is 0–8 kHz, and the time range is 0–1 s.

FIGURE 7 | Conversion of spectral amplitude arrays into R, G, and B image-arrays.

FIGURE 8 | Structure of AlexNet.

three color-component arrays (Figure 7). As shown in Lech et al.
(2018) the RGB images show slightly higher SER performance
compared to the gray-scale images. The transformation into

the RGB format was based on the Matlab “jet” colormap
(MathWorks, 2018). The 64 colors of the “jet” colormap provided
weights allowing to split each pixel value of the original spectral
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magnitude array into three values corresponding to R, G, and B
components. Thus, each of the original 257 × 259 magnitude
arrays was converted into three arrays, each of size 257 × 259
pixels. Informal visual tests based on other colormaps offered by
Matlab (MathWorks, 2018); such as “parula,” “hsv,” “hot,” “cool,”
“spring,” “summer,” “autumn,” “winter,” and “gray” revealed that
the “jet” colormap provided the best visual representation of
speech spectrograms.

Classification Network
AlexNet
Given a very limited size of labeled emotional speech data, as well
as relatively small computational resources, a transfer learning
approach was adapted to fine-tune an existing pre-trained
image classification network known as AlexNet. AlexNet is a
convolutional neural network (CNN) introduced by Krizhevsky
et al. (2012). It has been pre-trained on over 1.2 million
images from the Stanford University ImageNet dataset to
differentiate between 1,000 object categories. It consists of a
3-channel input layer allowing to input three 2-dimensional
arrays, each of size 256 × 256 pixels. The input layer is followed
by five convolutional layers (Conv1-Conv5), each with max-
pooling and normalization layers (Figure 8). The 2-dimensional
output features from the last convolutional layer Conv5 are
converted into 1-dimensional vectors and fed into the three
fully connected layers (fc6-fc8). While the convolutional layers
extract characteristic features from the input data, the fully
connected layers learn the data classification model parameters.
The exponential SoftMax function maps the fc8 output values
into a normalized vector of real values that fall into the range
[0,1] and add up to 1. These values are given at the output
layer and represent the probabilities of each class. The final
classification label is given by the class that achieved the highest
probability score.

Adapting AlexNet to SER
Since the required input size for Alexnet was 256 × 256 pixels,
the original image arrays of 257 × 259 pixels were re-sized by
a very small amount using the Matlab imresize command. The
re-sizing did not cause any significant distortion. Each color
component of the RGB spectrogram image was passed as an input
to a separate channel of AlexNet. The original last fully connected
layer fc8, the Softmax layer, and the output layer were modified to
have seven outputs needed to learn differentiation between seven
emotional classes.

Fine-Tuning of AlexNet
After adaptation to classify seven emotions, the AlexNet was
trained (fine-tuned) on the labeled emotional speech data. Since
the network was already-pre-trained, the process of fine-tuning
was much faster and achievable with much smaller training data
compared to what would be required when training the same
network structure from scratch. However, it is possible that if
the needed resources were available, training from scratch could
lead to better results. Although in recent years, AlexNet has
been rivaled by significantly more complex network structures
(Szegedy et al., 2015), it is still of great value, as it provides
a good compromise between data requirements, time, network

simplicity and performance. Tests on more complex networks,
such as ResNet, VGG, and GoogleLeNet (using the same training
data), have shown that for a given outcome, the training time
needed by larger networks was significantly longer than for
AlexNet without a significant increase in performance (Sandoval-
Rodriguez et al., 2019). More complex network structures likely
need much larger training datasets to achieve significantly
better results.

In transfer learning, the process of fine-tuning aims to create
the highest learning impact on the final, fully-connected (data-
dependent) layers of the network while leaving the earlier (data-

independent) layers almost intact. To achieve faster learning

in the new modified layers and slower in the old transferred
layers, the initial learning rate was set to a small value, and the

“weight learning rate” and the “bias learning rate” values were
increased only for the fully connected layers. The fine-tuning
was performed using Matlab (version 2019a). The network was
optimized using stochastic gradient descent with momentum
(SGDM) and L2 regularization factor applied to minimize the
cross-entropy loss function. Table 1 provides the values of the
network tuning parameters.

EXPERIMENTS

Speech Database
The SER method was implemented using the Berlin Emotional
Speech Database (EMO-DB) (Burkhardt et al., 2005). The

TABLE 1 | Fine-tuning parameters for AlexNet (using Matlab version 2019a).

Parameter Value

Optimization Algorithm SGDM

Minibatch size 128

Maximum number of epochs 5

Weight decay 0.0001

Initial learning rate 0.0001

Weight learning rate 20

Bias learning rate 20

TABLE 2 | Speech data characteristics—the number of utterances, total duration,

and the number of spectrogram images generated for each emotion of the

EMO-DB database.

Emotion No. of speech

samples (utterances)

The total duration of

emotional speech

[sec]

No. of generated

spectrogram

images

Anger 129 335 27,220

Boredom 79 220 18,125

Disgust 38 127 11,010

Fear 55 123 5,463

Joy 58 152 12,400

Neutral 78 184 14,590

Sadness 53 210 18,455

TOTAL 390 1,207 1,11,425
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original sampling frequency of the EMO-DB data was 16 kHz,
corresponding to 8 kHz speech bandwidth. The database
contained speech samples representing 7 categorical emotions
(anger, happiness, sadness, fear, disgust, boredom, and neutral
speech) spoken by 10 professional actors (5 female and 5 male)
in fluent German. Each speaker acted 7 emotions for 10 different
utterances (5 short and 5 long) with emotionally neutral linguistic
contents. In some recordings, the speakers provided more than
one version of the same utterance. After validation based on
listening tests conducted by 10 assessors, only speech samples
that scored subjective recognition rates>80% were included in
the database. In total, the database contained 43,371 speech
samples, each of the time duration 2–3 s. Table 2 summarizes the
EMO-DB contents in terms of the number of recorded speech
samples (utterances), the total duration of emotional speech for
each emotion, and the number of generated spectrogram (RGB)
images for each emotion.

Despite more recent developments of emotional speech
datasets, the EMO-DB database remains one of the best and
most widely used standards for testing and evaluating SER
systems. Moreover, many significant developments in the field
have been tested on this dataset. The strength of the EMO-
DB is that it offers a good representation of gender and
emotional classes, while the main disadvantage is that the
emotions are acted in a strong way, which in some cases may be
considered unnatural.

Experimental Schedule
All experiments adapted a 5-fold cross-validation technique
was with 80% of the data distribution for the training
(fine-tuning) of AlexNet, and 20% for the testing. The
testing data samples were never used during the network
training procedure. The experiments were speaker-
independent and gender-independent. The following SER tasks
experiments performed:

• Experiment 1—The aim was to provide a baseline SER: In
this experiment, baseline SER results were generated using the
original sampling frequency of 16 kHz corresponding to the
speech bandwidth of 8 kHz.

• Experiment 2—The aim was to observe the effect of
the reduced bandwidth on SER: In this experiment,
SER was given using a lower sampling frequency of
8 kHz, which corresponded to the reduced bandwidth
of 4 kHz.

• Experiment 3—The aim was to observe the effect of the
companding on SER: In this experiment, the speech signal was
companded before performing the SER task. This experiment
was conducted using the sampling frequency of 16 kHz (i.e.,
8 kHz bandwidth).

• Experiment 4—The aim was to observe the combined effect
of the reduced bandwidth and the companding on SER: In
this experiment, the speech signal was companded before
performing the SER task, and the sampling frequency was
equal to 8 kHz (i.e., 4 kHz bandwidth).

• Experiment 5—The aim was to determine the efficiency of the
real-time implementation of SER.

Each classification experiment was repeated by investigating four
alternative frequency scales (linear, ERB, MEL, and log).

Performance Measures
To maintain consistency with previous studies, the classification
results were reported using measures given in Schuller et al.
(2009a). It included the accuracy Aci , precision pci , recall rci , and
the F-score Fci calculated for each class ci (i = 1, . . . ,N) using
(9)–(12), respectively.

Aci =
tpi + tni

tpi + tni + fpi + fni
(9)

pci =
tpi

tpi + fpi
(10)

rci =
tpi

tpi + fni
(11)

Fci = 2
pci × rci
pci + rci

(12)

Where, N denotes the number of emotional classes, tpi
and tni are the numbers of true-positive and true-negative
classification outcomes, respectively. Similarly, fpi and fni denote
the numbers of false-positive and false-negative classification
outcomes, respectively.

The precision, recall, and F-score parameters were averaged
over all classes (N = 7) and for all test repetitions (5-folds). To
reflect the fact that the emotional classes were unbalanced, the
weighted average (WAQ) precision, recall, F-score and accuracy
were estimated as,

WAQ =
Qc1 |c1| + . . . + QcN |cN |

|c1| + |c2| + . . . + |cN |
(13)

Where, Qci denotes either precision, recall, F-score, or accuracy
for the ith class (i = 1, 2, . . . ,N) given as (9)–(12), respectively.
The values of |ci| denote class sizes.

RESULTS

Experiment 1—Baseline SER
The results presented in Table 3 show the baseline precision,
recall, F-score, and accuracy calculated as weighted average
values across all seven emotions, as given in (13). The results
indicate that the frequency scaling has a significant effect on
SER outcomes. The log, Mel, and ERB scale outperformed the
linear scale across all metrics. The best overall performance
was given by the Mel scale; however, the logarithmic (log)
scale followed very closely. This outcome could be attributed
to the fact that both logarithmic and Mel scales show
a significantly larger number of low-frequency details of
the speech spectrum. In particular, the trajectories of the
fundamental frequency (F0) and the first three formants of
the vocal tract are shown with much higher resolution than
on the linear scale (see Figure 5). A demo of the real-time
implementation illustrating the baseline Experiment 1 can be
found on Videos 1.
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TABLE 3 | Results of Experiment 1—Baseline SER, the sampling frequency of

16 kHz (bandwidth = 8 kHz), 7 emotions (anger, happiness, sadness, fear,

disgust, boredom, and neutral speech), EMO-DB database.

Frequency

scale

Weighted

precision (%)

Weighted

recall (%)

Weighted

F-score (%)

Weighted

accuracy (%)

Linear 77.6 79.1 76.9 77.9

ERB 79.7 80.5 79.0 79.7

Mel 80.3 80.8 79.6 80.5

Log 79.9 81.1 79.4 80.2

TABLE 4 | Results of Experiment 2—Effect of the reduced bandwidth, the

sampling frequency of 8 kHz (bandwidth = 4 kHz), 7 emotions (anger, happiness,

sadness, fear, disgust, boredom, and neutral speech), EMO-DB database.

Frequency

scale

Weighted

precision (%)

Weighted

recall (%)

Weighted

F-score (%)

Weighted

accuracy

Linear 74.5 76.9 73.6 74.5

ERB 76.3 78.3 75.3 76.3

Mel 76.8 78.0 76.1 76.8

Log 77.6 79.3 77.2 77.6

TABLE 5 | Results of Experiment 3—Effect of the µ-low companding on SER,

fs = 16 kHz.

Frequency

scale

Weighted

precision (%)

Weighted

recall (%)

Weighted

F-score (%)

Weighted

accuracy (%)

Linear 74.3 75.3 73.8 74.3

ERB 76.3 77.6 75.6 76.3

Mel 75.8 77.1 75.3 75.8

Log 76.2 77.2 75.4 76.6

TABLE 6 | Results of Experiment 4—Combined effect of the reduced bandwidth

and the µ-low companding, fs = 8 kHz.

Frequency

scale

Weighted

precision (%)

Weighted

recall (%)

Weighted

F-score (%)

Weighted

accuracy (%)

Linear 73.1 75.1 72.5 73.1

ERB 74.9 76.3 74.4 74.9

Mel 73.7 75.4 73.1 73.7

Log 75.1 76.1 74.4 75.1

Experiment 2—Effect of the Reduced
Bandwidth
In comparison with the baseline (Table 3), the effect of down-
sampling from 16 to 8 kHz (i.e., bandwidth reduction from 8
to 4 kHz) shown in Table 4 is evident in the reduction of the
classification scores by 2.6–3.7% across all measures depending
on the frequency scale. The smallest reduction of the average
accuracy was given by the log scale (2.6%), and the Mel scale
was affected the most (3.7%). Although the reduction was not
very large, it indicated that high-frequency details (4–8 kHz) of
the speech spectrum contain cues that can improve the SER
scores. By reducing the speech bandwidth from 8 to 4 kHz,

high-frequency details of the unvoiced consonants, as well as
the higher harmonics of voiced consonants and vowels, can
be removed. Consistent with the baseline, the logarithmic, and
the Mel frequency scales provided the best results. It was most
likely due to the fact that the downsampling preserved the low-
frequency details (0–4 kHz) of speech.

Experiment 3—Effect of the Companding
The effect of companding on the SER results is shown in Table 5.
In comparison with the baseline results of Table 3, the speech
companding procedure reduced the classification scores across
all measures. For the classification accuracy, the reduction is
by 3.4–4.7% depending on the frequency scale. For the log,
the ERB, and the linear scales, the reduction was very similar
(3.4–.6%). However, the Mel scale showed a slightly higher
reduction (by 4.7%). Quantitatively, the effect of the companding
procedure on SER results was very similar to the effect of the
bandwidth reduction.

Experiment 4—Combined Effect of the
Reduced Bandwidth and the Companding
The combined effect of the reduced bandwidth and the
companding illustrated in Table 6 shows a further reduction
of SER results across all measures compared to the baseline.
However, the deterioration does not have an additive character,
so the combined factors lead to a smaller reduction than
that achieved by adding the reduction scores given by each
factor independently. The highest reduction of the average
accuracy was again observed for the Mel scale (6.8%) whereas,
the log, the linear, and the ERB scales showed smaller
deterioration (4.8–5.1%).

Experiment 5—Efficiency of the Real-Time
Implementation of SER
The real-time application of the SERwas achieved through block-
by-block processing. A classification label indicating one of the
seven emotional class categories was generated for each block.
A demo of the real-time implementation illustrating the baseline
experiment (Experiment 1) can be viewed on Videos 1. Table 7
shows the average computational time (estimated over three
runs) that was needed to process a 1-s block of speech samples in
Experiments 1–4. Apart from the total processing time, Table 7
gives the times needed to execute individual processing stages.
The implementation used an HP Z440Workstation with an Intel
Xeon CPU and 128 Gb RAM, and the computational time was
determined using MATLAB 2019a function timeit.

Depending on the experimental condition, the label
for a given 1-s block was generated within 26.7–30.3ms.
The time needed for the inference process was about
18.5ms, and it was longer than the total time required
to generate the features (about 8–11ms). The longest
processing time (∼5–8ms) during the feature generation
stage was needed to calculate the magnitude spectrogram
arrays, whereas the time required to convert these arrays
to RGB images was only 3.6ms. Reduction of the sampling
frequency from 16 to 8 kHz reduced the overall processing
time by about 3.4ms, and most of the reduction was
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TABLE 7 | Real-time SER—Average computation times in milliseconds (ms).

Experiment Inference

time [ms]

Feature generation Inference + feature

generation time [ms]

Calculation of

short-time spectral

magnitude arrays [ms]

Conversion into

RGB images [ms]

Total feature generation

time [ms]

Experiment 1; Baseline: fs = 16 kHz 18.7 8.0 3.6 11.6 30.3

Experiment 2; fs = 8 kHz 18.6 4.7 3.6 8.3 26.9

Experiment 3; µ-law, fs = 16 kHz 18.4 7.5 3.6 11.1 29.5

Experiment 4; µ-law, fs = 8 kHz 18.5 4.6 3.6 8.2 26.7

FIGURE 9 | Summary of results—% Average accuracy for Experiments 1–4 using thee different frequency scales of spectrograms (linear, ERB, mel, and logarithmic).

due to a shorter time needed to calculate magnitude
spectrogram arrays. The addition of the companding
procedure had practically no effect on the average
computational time.

CONCLUSION

In conclusion, both factors, reduction of the speech bandwidth,
and the implementation of the speech companding µ-low
procedure were shown to have a detrimental effect on the SER
outcomes. Figure 9 shows the average accuracy for Experiments
1–4 using thee different frequency scales of spectrograms.
By reducing the sampling frequency from 16 to 8 kHz (i.e.,
reducing the bandwidth from 8 to 4 kHz), a small reduction
of the average SER accuracy by was observed (about 3.3%).
The companding procedure reduced the result by a similar
amount (about 3.8%), and the combined effect of both factors
lead to about 7% reduction compared to the baseline results.
The ERB frequency scale of spectrograms led to both, relatively
high baseline results (79.7% average weighted accuracy) and
high robustness against detrimental effects of both reduced

bandwidth and application of the µ-low companding procedure.
In all experimental cases, the SER was executed in real-time
with emotional labels generated every 1.033–1.026 s. Future
works will investigate ways of implementing the spectrogram
classification approach to SER on mobile phones, call centers,
and online communication facilities.
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