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Introduction: Calls via video apps, mobile phones and similar digital channels

are a rapidly growing form of speech communication. Such calls are not only—

and perhaps less and less— about exchanging content, but about creating,

maintaining, and expanding social and business networks. In the phonetic code

of speech, these social and emotional signals are considerably shaped by (or

encoded in) prosody. However, according to previous studies, it is precisely this

prosody that is significantly distorted by modern compression codecs. As a result,

the identification of emotions becomes blurred and can even be lost to the extent

that opposing emotions like joy and anger or disgust and sadness are no longer

di�erentiated on the recipients’ side. The present study searches for the acoustic

origins of these perceptual findings.

Method: A set of 108 sentences from the Berlin Database of Emotional

Speech served as speech material in our study. The sentences were realized

by professional actors (2m, 2f) with seven di�erent emotions (neutral, fear,

disgust, joy, boredom, anger, sadness) and acoustically analyzed in the original

uncompressed (WAV) version and as well as in strongly compressed versions

based on the four popular codecs AMR-WB, MP3, OPUS, and SPEEX. The analysis

included 6 tonal (i.e. f0-related) and 7 non-tonal prosodic parameters (e.g.,

formants as well as acoustic-energy and spectral-slope estimates).

Results: Results show significant, codec-specific distortion e�ects on all 13

prosodic parameter measurements compared to the WAV reference condition.

Means values of automatic measurement can, across sentences, deviate by up to

20% from the values of the WAV reference condition. Moreover, the e�ects go in

opposite directions for tonal and non-tonal parameters. While tonal parameters

are distorted by speech compression such that the acoustic di�erences between

emotions are increased, compressing non-tonal parameters make the acoustic-

prosodic profiles of emotions more similar to each other, particularly under MP3

and SPEEX compression.

Discussion: The term “flat a�ect” comes from the medical field and describes a

person’s inability to express or display emotions. So, does strong compression of

emotional speech create a “digital flat a�ect”? The answer to this question is a

conditional “yes”. We provided clear evidence for a “digital flat a�ect”. However,

it seems less strongly pronounced in the present acoustic measurements than

in previous perception data, and it manifests itself more strongly in non-tonal

than in tonal parameters. We discuss the practical implications of our findings for

the everyday use of digital communication devices and critically reflect on the

generalizability of our findings, also with respect to their origins in the codecs’

inner mechanics.
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1. Introduction

1.1. What is flat a�ect?

The term “flat affect” comes from the medical field and

describes a person’s inability to express or display emotions in the

same way as other people do, especially with regard to the intensity

of the individual emotions, but also in terms of their differentiation.

It already manifests itself at the level of the cognitive processes

underlying emotional expressions. In principle, this makes the “flat

affect” a condition in its own right, but in practice it often co-occurs

with other conditions, such as autism or schizophrenia (Evensen

et al., 2012).

A flat-affect condition concerns both verbal and nonverbal

aspects of emotional communication. However, prosody is

particularly impaired. For example, Gottheil et al. (1970) conducted

an experiment in which participants rated either audio stimuli

or only their transcribed texts from a flat-affect patient group

and a control group. In the audio condition, both groups could

be clearly differentiated by participants (with the control group

stimulating significantly higher ratings of emotional intensity).

By contrast, in the transcribed-text condition, i.e., without the

phonetics and, in particular, the speech prosody, the participants

were no longer able to differentiate between the two groups. In

accord with that, Alpert et al. (2000) concluded from their study

that it is not so much the use of emotional words (both positive

and negative) that distinguishes flat-affect patients from a control

group, but the (in)ability to express emotions nonverbally. Flat-

affect patients, for example, cannot in the same way as a healthy

control group convey emotions and their intensity levels by means

of Fundamental Frequency (f0) inflection. In an earlier study,

Alpert and Anderson (1977) have shown already that flat-affect

patients also suffer from a reduced level and variability of voice

intensity in their emotional statements.

The aim of the present study is to examine by means

of a prosodic analysis whether popular speech compression

codecs also make those acoustic patterns disappear partially or

completely that allow listeners to perceive the emotional intensity of

utterances (e.g., such that they become to some degree acoustically

indistinguishable from neutral matter-of-fact utterances) and/or

the emotional categories of utterances (e.g., such that the acoustic

profiles of different emotions merge to some degree). We call this

a “digital flat affect”; digital because the flat affect does not come

from the speaker him/herself, but is caused by the codec as an

artifact in the digital communication channel. The background to

this question is explained below.

1.2. What is charisma?

Phonetic research on speaker impact or perceived speaker

charisma began with the seminal papers of Touati (1993), Strangert

and Gustafson (2008), and Rosenberg and Hirschberg (2009). The

latter have defined charisma as “the ability to attract and retain

followers without the benefit of formal authority” (p.640). We do

not dispute the truth in this definition, but we agree with Antonakis

et al. (2016) that charisma should not be defined in terms of its

outcome, i.e., its effects. Such definitions easily become circular.

They also ignore a key insight of charisma research over the past

few decades, namely that charisma is not something a person has,

but something a person does. It is a learnable signaling system, see

also Antonakis et al. (2011) on teaching charisma. Antonakis et al.

(2016) therefore, define charisma as “values-based, emotion-laden

leader signaling” (p. 304).

We follow this definition. It focuses on our research subject:

signals; and it leaves room for the same signals to be rated

sometimes more and sometimes less charismatic (e.g., by different

listeners or in different contexts) because it does not define

charisma from an effects’ perspective. The addition of “values-

based” in the definition of Antonakis et al. expresses that, for

charisma to unfold its intended effects, the same (e.g., moral)

values must be shared by speaker and audience or, in more general

terms, by sender and recipient (cf. Kelman, 1961). In telemarketing

contexts like those investigated by Chebat et al. (2007), for instance,

such shared values are often established by the call-center agent,

who starts the dialogue with a rhetorical question like “Don’t we

all want to save taxes?”. Finally, and this is the crucial point here,

the definition of Antonakis et al. (2016) links charisma to the

expression of emotions (see Section 1.4).

In addition to the obvious verbal strategies such as three-part

lists and metaphors (cf. the “Charismatic Leadership Tactics” of

Antonakis et al., 2011), the complex bundle of charismatic signals

also includes facial expressions and gestures (Keating, 2011), speech

prosody (Rosenberg and Hirschberg, 2009), choice of words (Tur

et al., 2021), clothing (Furnham et al., 2013; Karabell, 2016) as

well as gender, age, and height (Grabo et al., 2017; Jokisch et al.,

2018; Maran et al., 2021). The present study deals with the phonetic

aspects of charisma, more precisely with the effects of charismatic

prosody. Section 1.3 provides a research overview on this area.

1.3. Previous research on prosodic
charisma and speech compression

Siegert and Niebuhr (2021a) carried out a perception

experiment in which listeners rated short stimulus utterances that

were presented both as uncompressed originals and as variants

heavily reduced by four popular speech-compression codecs: AMR-

WB, MP3, OPUS, and SPEEX. The rating was performed against

the background of perceived speaker charisma, i.e., by using 10

scales that are associated with charisma according to a meta-

analysis of previous studies. The results of Siegert and Niebuhr

showed that, compared to the uncompressed baseline, speech

compression had a significantly negative impact on the speakers’

ratings along the charisma traits— and that, moreover, this negative

effect was significantly more pronounced for female speakers than

for male speakers. More pronounced means that the negative effect

involved more codecs (including OPUS, which even improved the

charisma ratings of male speakers) as well as more rating scales, and

it additionally lowered the female speakers’ ratings more strongly

on many scales. For example, under speech compression, women

lost more of their perceived trustworthiness, persuasiveness, and

likability than men.
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Later, Siegert and Niebuhr (2021b) showed in a supplementary

investigation of the compressed and original stimulus material of

Siegert and Niebuhr (2021a) that an automatic prosodic analysis

yields significantly different results for the compressed and original

stimuli. These differences concerned f0, intensity, and exponents

of voice quality, but not durational measures. Crucially, if the

different automatic measurement results were interpreted in view

of known correlations between prosody and perceived speaker

charisma, then the codecs’ acoustic differences matched well with

the codecs’ perceptual effects in Siegert and Niebuhr (2021a). In

other words, the codec-induced reduction of perceived speaker

charisma in Siegert and Niebuhr (2021a) is consistent with the

codec-induced acoustic-prosodic measurement changes in Siegert

and Niebuhr (2021b).

This finding has practical everyday implications beyond a

mere scientific relevance, because acoustic charisma can influence

the opinions and behavior of recipients and, thereby, a speaker’s

professional success. For example, Antonakis et al. (2016) report

that the enhanced charisma signals of charismatically trained

speakers can lead to 17% more output among workers and increase

people’s contributions to the common good by up to 19%. Fischer

et al. (2019) showed further that such effects can be transferred

to machines, solely based on enhancing their prosodic cues to

charisma: If one transfers the tone-of-voice patterns of Steve

Jobs, Apple’s former exceptionally charismatic CEO, to a robot,

leaving all other features of the speech synthesis constant, then

this robot becomes significantly more successful in making human

interaction partners fill out longer questionnaires, eat healthier

food, and take detours in traffic (Niebuhr andMichalsky, 2019); and

when such a robot is used as a moderator in creativity workshops,

then these workshops end with significantly more and better

ideas, and give participants a more positive mindset in this idea-

generation process (Fischer et al., 2022). Gregory and Gallagher

(2002) were able to correlate all outcomes of the presidential

elections in the USA between 1960 and 2000 with a single prosodic

measure derived from f0 and the lower spectral harmonics of

the candidates’ voices. Niebuhr (2021) found correlations between

a prosody-based charisma score and the oral exam grades of

Danish university students. Pentland (2008) was able to predict

with 87% accuracy only from nonverbal signals who would win a

business-plan competition; a finding that stimulated the newspaper

headline “no charisma—no funding” in a silicon-valley magazine.

Similarly, but only by means of five tonal and five non-tonal

prosodic parameters, Niehof and Niebuhr (2022) were recently able

to determine 70–80% correctly which investor pitches win or lose

in major German pitching contests.

So, the prosody of the sender (be it a human or a robot) is

one of the key components in creating charismatic effects. Further

supporting evidence for this statement comes from the field of

speech technology. It has been repeatedly shown that machine-

learning models benefit most from prosody (rather than from

video or text information) when trying to replicate charisma-

related human behavior; see the studies by Chen et al. (2014),

Wörtwein et al. (2015), and Kimani et al. (2020) on modeling

ratings of public-speaking performances, or the study by Amari

et al. (2021) on modeling the success of persuasion strategies in

consultant-client dialogues.

1.4. Charisma and the expression of
emotions

It was House (1977) who, in the first psychological theory on

charismatic leadership, made the expression of emotions a core

element of charismatic impact. Also, according to Bass (1990),

charismatic speakers are, amongst other things, “determined, self-

confident, and emotionally expressive” (p.220), see Antonakis et al.

(2016) for a historical summary. Emotions are important because

they create the motivational basis for the transfer of goals, ideas,

or instructions from the charismatic sender to his/her recipients

via the emotional-contagion effect, see Bono and Ilies (2006). In

the words of Sy et al. (2018), a charismatic impact relies heavily on

“eliciting and channeling follower emotions” (p. 58).

In fact, there are many studies showing the positive influence

of emotions on the perception of a person as charismatic—as well

as the importance of displaying emotions for business success,

see the overview in Humphrey et al. (2008). Kisfalvi and Pitcher

(2003) provide case studies to demonstrate the connection between

the emotional nature of a CEO and the economic success of

his/her company and team. Similarly, significant correlations can

be established between crowdfunding success on the one hand and

the emotional intensity of the speech and non-speech content in

the corresponding crowdfunding videos on the other (Kim et al.,

2016; Liu et al., 2018); see also the related study of Zhao et al. (2022)

who showed that it is the linguistic rather than the visual emotional

content that determines the success of a campaign. Davis et al.

(2017) also identified the emotional passion (of entrepreneurs) as

a key factor for campaign success and, in this, particularly stressed

the role of non-verbal features.

Passion as an element of perceived speaker charisma is often

intuitively associated with positive emotions (Damen et al., 2008).

There is, however, accumulating evidence that this intuitive idea

is too simplistic. D’Errico and Poggi (2022) recently showed for

a sample of Italian politicians that the expression of negative

emotions can be interpreted as a sign of power and strength which,

in challenging times, can create a charismatic effect as well (cf.

also Gooty et al. 2010). D’Errico et al. (2019) already emphasized

for a perception experiment with a set of well-known politicians

that “activating emotions, joy and anger, increased the positive

evaluation of the politician, whom participants perceived as more

[...] charismatic” (p. 671). Zhao et al. (2022) pointed out in their

research overview that funding (e.g., donation) campaigns can be

successful based on negative emotions. Also, the results of Allison

et al. (2022) suggest that it is primarily the high arousal of an

emotion that makes speakers more charismatic, not the emotion’s

specific valence.

As with charisma, prosody plays an important role in

expressing emotions. Different emotions have different prosodic

patterns, see the detailed studies by Mozziconacci (2001), Gobl

and Chasaide (2003), and Bänziger and Scherer (2005)— and

the prosodic parameters within each pattern are unidirectionally

related to the intensity of the emotion (e.g., Audibert et al. 2010

and see Rosenberg and Hirschberg 2009 for charisma). How central

prosody is for the expression of emotions can be seen from two sets

of robust findings. Firstly, based on prosodic factors alone, speech-

recognition systems are able to identify the emotional category in a
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speech utterance with sometimes more than 90% accuracy (Luengo

et al., 2005; Kao and Lee, 2006; Wang et al., 2008), see also the

overview in Koolagudi and Rao (2012). Secondly, studies show

that listeners are still able to reliably identify emotion categories in

foreign-language stimuli, i.e., in the absence of any lexical cues (and

visual cues), albeit worse than for their own native language and

worse for the valence than for the arousal dimension of emotions,

see Feraru et al. (2015) for a recent overview.

1.5. Connecting the threads: Toward the
assumption of a digital flat a�ect

Prosodic patterns are an important source of perceived speaker

charisma; and the compression of speech signals by codecs can

weaken these prosodic patterns, both on the perceptual side and

on the acoustic side—the latter in a way that matches with the

former perceptual effects. The expression of charisma is closely

related to the expression of emotions; and the perception of

emotional categories and their intensity is also based in large part

on prosodic patterns. It would therefore be reasonable to assume

that emotional prosodic patterns are also negatively affected by

codecs and that this results in what was referred to in 1.1 as a digital

flat affect (note that studies on the connection between speech

compression and emotion recognition are numerous, but so far

only related to automatic emotion recognition and/or, if conducted

with human listeners, then aimed at testing compression devices,

such as for hearing aids, see Goy et al. 2016; Reddy and Vijayarajan

2020).

Taking up this flat-affect assumption, Niebuhr and Siegert

(2022) extended their investigations from charisma to emotions.

As before (see Section 1.3), the first step was a perception

experiment. The experiment used the same charisma scales

as in Siegert and Niebuhr (2021a), but now with a set of

enacted emotional speech stimuli from the Berlin Database of

Emotional Speech (EMODB) (Burkhardt et al., 2005). The stimuli

represented the seven categories fear, disgust, boredom, neutral,

anger, joy, and sadness. As in Siegert and Niebuhr (2021a),

all emotional stimuli were compressed to various degrees by

the codecs AMR-WB, MP3, OPUS, and SPEEX and then rated

by listeners.

On this basis, Niebuhr and Siegert (2022) tested the ability

of listeners to differentiate emotions in codec-compressed speech

stimuli. Furthermore, Niebuhr and Siegert tested whether positive

emotions generally trigger higher and negative emotions lower

charisma rating levels or whether, in line with the above findings,

the rating levels related to charisma tend to be independent of

emotional valence. The study comes to three main conclusions:

First, the applied charisma-related rating scales are generally able

to significantly differentiate the seven emotion categories tested.

Second, in line with the findings summarized above, valence was

not the sole determining factor for rating levels. Negative emotional

stimuli were thus also able to evoke high rating levels along the

charisma-associated scales. Moreover, it was not the emotion with

the lowest arousal, boredom, that triggered the lowest charisma

ratings. Rather, the most uncharismatic emotion was disgust,

not least because it evoked low charisma ratings regardless of

speaker sex, while, e.g., fear made men sound more charismatic

than women, and sadness made women sound more charismatic

than men.

Third, both the type of audio codec and the strength of

signal compression significantly impaired emotion differentiation

along the rating scales. The worse the audio quality, the more

the emotional impressions merged along the scales, even for

popular codecs like MP3. For example, when being strongly

compressed, high-arousal emotions such as joy became, in terms

of the listener ratings, indistinguishable from low-arousal emotions

such as boredom and sadness. Niebuhr and Siegert (2022) have thus

provided the first perceptual evidence of a codec-induced digital flat

affect. Analogous to the study by Siegert and Niebuhr (2021b), the

present study is intended to shed light on the acoustic-prosodic side

of this perceptual evidence.

1.6. Codecs and their influence on prosody

Speech compression is heavily used in modern mobile systems.

It reduces the transmission bandwidth while maintaining speech

intelligibility (Albahri et al., 2016). This allows engineers to reduce

transmission delay as well as memory and storage capacities.

Two different compression approaches have been developed.

Psychoacoustic modeling is mainly used for transparent music

compression, aiming to simultaneously reduce the file size and

preserve all audible acoustic information. Prominent codecs

are MP3, Ogg Vorbis, or Advanced Audio Coding (AAC).

For real-time speech conversation applications, the Analysis-by-

Synthesis approach predominates, designed to obtain an acceptable

intelligibility at limited bandwidths, under real-time conditions

and, if required, even at very low bit-rates. Important codecs using

Analysis-by-Synthesis are SPEEX, AMR-(NB/WB/WB+), GSM-FR,

or EVS. Furthermore, some codecs can switch between speech and

audio compression modes based on signal content. Several codecs

have been developed coordinating both approaches and offering

various computational and intelligibility improvements (Vary and

Martin, 2006). The Opus codec offers a hybrid mode in order to

further improve speech intelligibility at low bit-rates.

Table 1 depicts an overview of parameters for selected audio

codecs. Most Analysis-by-Synthesis codecs strive for perceptually

optimizing the decoded (synthesis) signal in a closed loop. In

order to achieve real-time processing, the algorithms involve three

processing steps. This method is known as CELP: First, line

spectral pairs (LSPs) are computed and quantized. The remaining

properties of the speech signal are then estimated by using a

codebook of fixed (i.e., hard-coded) quantization vectors, with a

typical size of 16 bits. SPEEX uses CELP and AMR-WB as well,

albeit an optimized version (i.e., an optimized codebook) referred

to as ACELP for which frame rates are fixed at 20ms. The codebook

can contain more than 50 bits of entries. Another variant of this

approach is SILK, used in the Opus codec. It also uses Analysis-

by-Synthesis approaches but with variable frame sizes (10, 20, 40

and 60 ms), and it encodes up to 8 kHz. For full-bandwidth audio

signals, Opus implements CELT, a high-quality, low-delay audio

codec. CELT is based on the MDCT and supports frame sizes of

2.5, 5, 10, and 20 ms as well as wideband (8 kHz), super-wideband
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TABLE 1 Overview of important parameters of selected audio codes.

Frame Frame size [ms] Speech coding Data size Look-ahead [ms]

SPEEX Fixed 30/34 (8/16 kHz) CELP 16 bits 5

AMR-WB Fixed, 20 ACELP up to 50 bits 5

OPUS SILK Variable 10, 20, 40 and 60 SILK Unknown 5

OPUS CELT Variable 2.5, 5, 10 and 20 CELT Unknown 2.5

MP3 Fixed 24 MDCT 576 coefficients 528 samples

(192 for transients)

(12 kHz) and full-band (20 kHz) audio processing. Furthermore,

the hybrid mode offered by OPUS uses SILK for frequencies up to

8 kHz and CELT to encode the frequencies above 8 kHz, but only

based on frame sizes of 10 and 20 ms.

By contrast, the psychoacoustic modeling employed in MP3

compression strives to discard exactly those parts of the original

sound signal that are considered beyond human auditory

resolution. To that end, data frames of 24 ms are quantified using a

polyphase filter bank with 32 equal frequency bands (less precisely

perceptible frequency ranges with lower assumed resolution).

Using equally wide frequency bands simplifies the filters but

does not reflect human hearing, for which the resolution is non-

linearly associated with frequencies. Afterwards, MDCT is applied,

resulting either in 576 spectral coefficients (long blocks, 32 taps x

18 sub-bands) or three times 192 spectral coefficients (short blocks,

32 taps x 6 sub-bands). The 192-coefficient approach is applied—if

there is a transient1—to limit the temporal spread of quantization

noise accompanying this transient. Then, a quantization is used in

which adjacent frequency bands are combined into groups of 4 to

18 bins and share a scaling factor determining the accuracy of the

(in this case non-linear) coding for these frequency bands. Finally,

the scale factors and the quantized amplitudes of the individual

frequencies are Huffman-coded using fixed code tables (Lutzky

et al., 2004). The relatively small block window decreases the

coding efficiency, and the short time resolution can be too low for

highly transient signals. That is, it can cause smearing of percussive

sounds. Furthermore, the tree structure of the filter bank increases

pre-echo problems and the combination of two adjunct filter banks

creates aliasing problems, that are only partially compensated for at

a later stage of the encoder.

Although a number of studies investigated the general impact of

codec compression on spectral quality and acoustic features (Byrne

and Foulkes, 2004; Guillemin and Watson, 2009; Siegert et al.,

2016), the effects on the preservation of emotions, nonverbally

conveyed ones in particular, have rarely been addressed (Albahri

et al., 2016; Jokisch et al., 2016). Especially, the preservation

of nonverbal emotional cues under low bandwidths is under-

researched. In the following, some related findings for the codecs

used in the current investigation are summarized.

Pollak and Behunek (2011) studied the masking and

attenuation of frequency components under MP3 compression

and found that this can lead to the suppression of a sound segment,

1 A transient is a high amplitude, short-duration sound at the beginning of

a waveform.

and sometimes to inter-word pause shortening, which can reduce

the perceived fluency of speech utterances. Furthermore, the

masking and attenuation of frequency components can worsen the

estimation error of power spectra in the output of the filter bank.

This is especially crucial for MFCC and PLP features (Pollak and

Behunek, 2011). The authors performed their experiments with

quite high MP3 bit-rates (160 kbit/s). Thus, it can be assumed

that the negative effects they reported would manifest themselves

still more clearly at very low bit-rates. In Bollepalli (2013), a

range of MP3 bit-rates from 8 to 160 kbit/s is investigated. The

aim was to investigate the influence of compression on acoustic-

prosodic features important for speech synthesis, such as f0,

harmonics-to-noise ratio (HNR), line spectral frequencies (LSF)

of voice source and vocal tract, harmonic amplitude difference

(H1-H2), and normalized amplitude quotient (NAQ). For each

compression rate, the relative error was determined between

the parameter value computed from the uncompressed and

compressed sound. Bollepalli (2013) observed that, for f0, the

error was negligible at high bit-rates (64 kbit/s or more) and less

than 5% on average at low bit-rates. However, it is noteworthy

that lower bit rates not only made the magnitude of the error

increase, but also its range. That is, in connection with other

(spectral) signal properties, f0 errors are pushed in specific

directions. For HNR, the error was considerably larger, particularly

in high frequency bands, thus suggesting a better preservation

of the harmonic structure in low-frequency bands. For LSF,

an inverse observation was made. Both voice source and vocal

tract measures showed the strongest increases in errors at low

frequencies. Regarding how H1-H2 and NAQ differ as a function

of original and compressed signals, Bollepalli et al. showed that

the goodness of correlation between original and compression

signal declined gradually with decreasing bit-rates. Especially

H1-H2 suffers greatly from high compression, while NAQ remains

relatively stable.

Another study of van Son (2005) analyzed the influence of

codec compression on pitch, formant levels, and the spectral

center of gravity (CoG). It was concluded that compression

added a Root-Mean-Square (RMS) error of less than 1 semitone

to vowel mid-point pitch, formant, and CoG measurements in

general. Only for the lowest tested bit-rate (40 kbit/s), rather

large CoG errors emerged in sonorous consonants and fricatives

(> 2 semitones).

In summary, we see that codec compression has an effect

on (automatic) prosodic measurements. The effect includes both

f0 and spectral properties. However, f0 properties seem to be
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less affected than spectral properties, and among the latter,

high-frequency spectral information seems to suffer more from

compression than low-frequency spectral information, albeit both

are affected. Furthermore, measures that integrate several signal

features such as CoG aremore strongly affected, particularly if these

features are narrowly defined local characteristics as in the case of

H1-H2. It is reasonable to assume that, when H1-H2 is particularly

affected, that the same also applies to f0 range measures, which also

represent a difference value between two local characteristics. For

f0 measures, especially those related to levels, we can additionally

expect an interaction with spectral characteristics, i.e., with the

voice quality and, thus, with the type of emotion. That is, depending

on the type of emotion, it is possible that the f0measures get pushed

in difference directions by compression. Thus, the question is not

if codec compression affects the prosodic profiles of emotions, but

only to what degree for the individual codecs. Based on the starting

point for the present study outlined in Section 1.5, we therefore

pursue three research questions, which we present in Section 1.7—

and which we address according to Section 1.5 and Section 1.6 with

reference to both tonal (f0) and non-tonal parameters.

1.7. Questions

The present exploratory study aims to see behind the curtain

of the perception results of Niebuhr and Siegert (2022) by means

of a multi-parametric acoustic-prosodic analysis. This lays the

foundation for three fields of knowledge, which are represented by

the following three questions:

• How does speech signal compression, which is ubiquitous in

the rapidly growing use of digital communication, affect the

acoustics of different emotions?

• How is emotion acoustics related to listener ratings of

perceived speaker charisma and related traits?

• Following up on question (2), how is the merging of emotions

along the charisma scales reflected in prosodic parameters?

Note that all three questions have a gender-specific dimension

that is taken into account here. Note further that the many

emotions studied, and their compressed manifestations, provide an

acoustic range that will also help us in subsequent studies to better

understand which acoustic parameters and parameter classes are

related to perceived charisma and how.

2. Study design

2.1. Stimuli

For the stimulus material, we relied on the Berlin Database

of Emotional Speech, EMODB (Burkhardt et al., 2005). EMODB

is a benchmark dataset of high-quality recordings of expressive

emotions, similar to those used for analyzes of, e.g., speech

synthesis (Steidl et al., 2012), spectral and temporal changes in

emotional speech (Kienast and Sendlmeier, 2000), influences of

different room acoustics (Höbel-Müller et al., 2019), or automatic

emotion recognition (Schuller et al., 2009). EMODB is for German

and has the advantage that it is established in the area of

speech technology (Ververidis and Kotropoulos, 2006), with the

largely unanimous identification of the emotional categories in

the stimuli being repeatedly proven (Schuller et al., 2011; Weiss

et al., 2013; Bhangale and Mohanaprasad, 2021). The emotions

are: anger (Ärger), fear (Angst), joy (Freude), sadness (Trauer),

disgust (Ekel), boredom (Langeweile), and neutral, a reference

condition.

Studies on emotional expressions have in the past also relied

on natural, real-life emotions, e.g., Tarasov and Delany (2011).

Enacted emotions as in the EMODB are sometimes criticized

as being exaggerated or prototypical and, thus, less ecologically

valid. We agree that there are nowadays smart and indirect

methods to elicit a range of emotions from native speakers

(e.g., Pfitzinger and Kaernbach, 2008; Pfitzinger et al., 2011;

Niebuhr et al., 2015). Yet, we would counter that, firstly, the

underlying assumption that authentic everyday emotions always

convey the speaker’s actual feelings is unverifiable and cannot

be taken for granted. In the case of negative emotions that are

strongly regulated by society, this is actually rather unlikely. In

this respect, authentic emotions are also not unproblematic in

terms of their ecological validity. They probably mostly show a

positivity bias in both their level of expressivity as well as in the

frequency of occurrence of the displayed emotional categories.

Secondly, a comparative study by Scherer (2013) shows that, at

least for two basic types of emotions like happy and sad, the

prosodic profiles of authentically stimulated and professionally

enacted emotions came out largely congruent. Thirdly, it is

essential for the present study that the emotions are realized on

similar, if not identical, verbal statements. Such a high degree

of experimental control is unattainable with naturally occurring,

authentic emotions.

The crucial point, however, is that this authenticity was

not necessarily desirable for the purposes of the present study.

Rather, for our question of whether speech-compression codecs

alienate or reduce the acoustic fingerprints of emotional speaker

expressions, it makes sense to start from clearly pronounced,

perhaps even exaggeratedly produced, emotional prototypes—and

to include strongly contrastive emotions like joy, sadness, and

disgust, the latter two of which are hard to find in authentic

field data. On this basis, the chance to detect codec effects

increases; and if there are already serious limitations in the acoustic

discrimination of emotions for such clear speech material, then

these discrimination limitations should be all the more problematic

for blurrily separated, authentic emotions uttered outside of studio

recording conditions (at least on an acoustic level, i.e., detached

from the string of words and the conversational context). Based on

EMODB, we can examine codec effects independently of effects of

recording equipment and gain, speaker, and acoustic conditions.

Each utterance was contextualized for the speaker in the

recording session, e.g., happiness after winning a large amount

of money in the lottery or sadness caused by losing a very good

friend or relative. The speakers were asked to put themselves

in the given situation and then project that emotion onto the

respective utterance. Afterwards, by conducting a perception test

with 20 listeners, the final 494 single-sentence utterances have

achieved naturalness ratings higher than 60%, and an emotion

recognizability over 80% (Burkhardt et al., 2005).
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For our study, we selected the same subset of 2 male and 2

female speakers (#11, #15 and #13, #14 in the corpus respectively)

as in our previous studies (Siegert and Niebuhr, 2021a,b; Niebuhr

and Siegert, 2022), but this time we utilized the neutral versions as

well as the emotional version of the uttered sentence. This resulted

in a total of 5 (codecs) *26 (samples) = 130 samples. For each

emotion, we have 1 sample per speaker per emotion. Besides the

obvious advantages of using the same set of speakers and utterances

as in previous studies (the latter were focused on the emotionally

neutral utterance renditions, though), four speakers sufficed for the

purposes of the present study.

The small sample size may raise skepticism as to the

generalizability of our findings. However, note that our study

was not a classic speech production study in which, for example,

meaningful patterns were to be derived from a speech acoustics that

varies according to inter-individual anatomies and physiologies as

well as due to trade-offs of redundant acoustics cues in the speech

code. Such studies need large speaker samples to be able to separate

the meaningful patterns from the performance “noise” in which

they are embedded. In contrast, in our study, we apply a constant

processing procedure in the form of each speech-compression

codec to speech signals. This application always leads to the same

result for the same speech signal, whereas, for example, a repetition

of the same utterance, even by the same speaker, never leads to the

same result. In this sense, the EMODB utterances are in our study

design only demonstration objects for the acoustic consequences

of applied codecs. In principle, the emotional utterances of a

single speaker would have sufficed for this purpose. However, we

wanted to take the factor speaker sex into account and, in addition,

included two speakers per sex for a sufficient number of items in

the statistical analysis (apart from the fact that we also wanted to

use the same speakers and utterances as in Siegert and Niebuhr

2021a,b; Niebuhr and Siegert 2022). Of course, with a sample of 2x2

speakers, we cannot represent the full range of inter-individual and

between-sex variations in the expression of emotional utterances;

and although this is a very relevant follow-up question, it is not

the aim of the present study to analyze the effects of speech-

compression codecs on such phonetic variations within individual

emotional categories. In this first step, our basic goal is to analyze

the effects of speech-compression codecs on the acoustic differences

between the emotional categories themselves. Not least because of

this, it was important that we started from clear, prototypically

produced emotions and included strongly contrastive emotions like

fear, sadness, disgust, and joy.

2.2. Utilized audio codecs

The main purpose of applying speech compression for mobile

communication is to reduce the bandwidth for transmission,

the transmission delay as well as the required system memory

and storage (Maruschke et al., 2016; Siegert et al., 2016).

Several codecs have been developed to meet various applications

with different quality requirements, aiming to retain the speech

intelligibility (ITU-T, 1996, 2014; Maruschke et al., 2016). To be

in line with the previous investigations by the Siegert and Niebuhr

(2021a,b), and Niebuhr and Siegert (2022), the same four codecs

were utilized here.

Adaptive Multi-Rate Wideband (AMR-WB) is a high-

quality audio compression format mainly used in mobile

communications (ITU-T, 2003). Due to the processing of a

wider speech bandwidth (50–6,400/7,000 Hz), this codec is also

known as “HD Voice” and Voice over LTE (VoLTE) as AMR-WB

extended the previously usual telephone quality of 3.4 kHz. We

chose a bit-rate of 12.65 kbit/s, which is intended for pure speech

signals (ITU-T, 2003). For this bit-rate, all signals above 6,400 Hz

are neglected and replaced by sounds of the lower frequency data

(75–6,400 Hz) along with random noise (in order to simulate the

high frequency band).

MPEG-1/MPEG-2 Audio Layer III (MP3) is a popular lossy

full band audio codec (Brandenburg, 1999). It uses perceptual

coding for audio compression: certain parts of the original signal,

considered to be beyond auditory resolution, are discarded. Besides

its usage for music storage, lower bit-rates (16 kbit/s) are used to

encode audio dramas (Ahern, 2020).

OPUS is an open-source lossy audio codec usable for both

speech and music (Valin et al., 2012). It is nowadays used in

many communication tools, as Zoom for video conferencing

or WhatsApp for voice messages (Hazra and Mateti, 2017).

OPUS further offers a hybrid mode to improve the speech

intelligibility at low bit-rates by enriching the synthesized signal

with characteristics represented by a psychoacoustic model (Valin

et al., 2013). The application of the hybrid mode can be controlled

by the bit-rate, which was 34 kbit/s in our case.

SPEEX is an open-source full band speech codec for Internet

applications requiring particularly low bit-rates (Xiph.Org

Foundation, 2014). It is also used as a speech codec in common

voice assistant platforms (Caviglione, 2015). The encoding is

controlled by a quality parameter that ranges from 0 (worst) to 10

(best). In our study, we used 0 (i.e., 3.95 kbit/s).

FIGURE 1

Mobile network coverage (5G) for the Vodafone Carrier Network as

of June 2022. Map taken from Bundesnetzagentur (2022).
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Another reason for the limitation to low bandwidths is the

fact that sufficient data transmission bandwidth cannot be expected

everywhere and in every situation, or service providers limit the

bandwidth. To illustrate the first case, Figure 1 shows the “Map

of mobile service availability” from the German Federal Network

Agency. It illustrates very well the network coverage in German

metropolitan areas and the lack of coverage in the rural regions.

Figure 2 also shows the map of cellular dead zones. Here, it is

noticeable that such cellular dead zones occur in major cities as

well as in rural areas. In the large cities, the cause is usually

infrastructure congestion due to too many users logged on at the

same time, while in rural areas it is more likely to be due to a lack of

suitable infrastructure. This justifies the usage of low bitrates for the

current investigation and to analyze how well the selected codecs

perform under these (imperfect) circumstances.

All 26 uncompressed stimuli have been compressed employing

each of the four presented codecs at the specified bit-rate (AMR-

WB: 12.65 kbit/s, MP3: 16 kbit/s, OPUS: 34 kbit/s, SPEEX:

3.95 kbit/s). This resulted in 104 compressed stimuli. The total

number of stimuli in our experiment was hence 26 + 104 =

130 stimuli.

2.3. Procedure

The uncompressed WAV originals and the audio files derived

from them through compression codecs were subjected to

an acoustic-prosodic analysis. In phonetic research, prosody

represents “an umbrella term used to cover a variety of

interconnected and interacting phenomena, namely stress, rhythm,

phrasing, and intonation.” This definition by Arvaniti (2020) is

functionally oriented, and although it excludes paralinguistic forms

and functions like emotions and attitudes, it already suggests

that prosody is far more than the fundamental frequency (i.e.

f0) alone. It is true that f0, as the main acoustic correlate of

FIGURE 2

Map of cellular dead zones for Vodafone Carrier Network. Reported

between Apr and Jun 2022. Map taken from Bundesnetzagentur

(2022).

perceived pitch, is perhaps most frequently examined in prosody

research, not least because it is supposedly easy to measure (cf.

Niebuhr et al. 2020). Nevertheless, prosody includes three further

phenomenological dimensions. In phrasing, for example, duration

plays a major role (with regard to intonation movements or phrase-

final segmental units such as the syllable, e.g., Chavarría et al. 2004);

and prominence as the basic building block of stress and rhythm

is also encoded via changes in intensity and voice quality (Terken

and Hermes 2000; Ludusan et al. 2021). Campbell and Mokhtari

(2003) argue on empirical grounds “that voice-quality should be

considered as the 4th prosodic parameter, along with pitch, power,

and duration” (p.2417). In our study, we follow this phonetic

(and hence pre-phonological and pre-functional) understanding

of prosody of Campbell and Mokhtari. That is, by prosody we

mean a bundle of phenomena constituted of four dimensions,

namely f0, duration, intensity (or power) and voice quality—or

their primary perceptual correlates pitch, length, loudness,

and timbre.

Our acoustic analysis covers all of these prosodic dimensions

through multiple measurement parameters, with the exception

of duration. This is because the previous study by Siegert and

Niebuhr (2021b), which was concerned with the neutral statements

of EMODB, could not find any compression effects on durational

features of the signal. This makes sense, given that it is essential

for every codec (e.g., in video call conditions) to leave the time

axis of the voice signal untouched. Accordingly, in the present

acoustic analysis we have also omitted all parameters that reflect

a change in prosodic dimensions over time—not because we

are not convinced of the functional relevance of timing and

slopes. On the contrary, the first author intensively studied the

functional relevance of variation in slope (Barnes et al., 2012) or

contour shape in general (Landgraf, 2014). However, there are

neither empirical nor conceptual indicators that would motivate

measuring these parameters in our study. On the other hand, there

is compelling evidence showing that, based on holistic measures

of descriptive statistics, such as means, ranges, and standard

deviations, emotional profiles can be properly characterized and

distinguished—to the extent that statistical models like the Linear

Discriminant Analyzes (LDAs) perform at eye level with human

listeners in terms of the classification accuracy of emotions. Lausen

and Hammerschmidt (2020) provide a recent summary of the

relevant works.

The f0-related tonal dimension of prosody was represented in

the acoustic analysis by six parameters: (i) mean f0, (ii) absolute,

full f0 range (span), (iii) narrow f0 range that disregards the upper

and lower 10% of the measurements (p90 range), (iv) f0 variability

(standard deviation, f0 std), (v) minimum f0, and (vi) maximum f0.

For the non-tonal dimensions of prosody, the acoustic analysis

took seven parameters into account: (i) mean intensity (RMS.

dB), (ii) speaking rate (syll/s) as well as (iii) mean H1-H2 and

(iv) mean H1-A3 (both f0-corrected), and (v-vii) the mean levels

of the first three formants (F1, F2, F3). Note that speaking rate

may at first glance appear as a duration parameter, and to some

degree it is of course one. But, the rate is estimated in terms of

the rising-falling intensity peaks that are assumed to underlie each

syllable, and it is the variability and separability of these intensity

peaks that we are interested in here. The two amplitude-difference
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measures H1-H2 and H1-A3 are typical voice-quality parameters.

H1-H2 is the difference between the first and the second harmonic

amplitude of the spectrum. H1-A3 is the amplitude difference of

the first harmonic and the harmonic closest to the third formant

frequency. Both measures intend to estimate the speaker’s spectral

tilt. Menezes and Maekawa (2006) argue that H1-H2 reflects the

open-quotient of the vocal-fold vibration cycle, whereas H1-A3

is associated with the abruptness of glottal closure. Therefore,

H1-A3 may be more sensitive in capturing loudness- or effort-

induced changes in voice quality, whereas H1-H2 performs well at

representing differences between modal and breathy voices. Both

measures have been found to be relevant for characterizing the

acoustic profiles of emotions (Banse and Scherer, 1996; Liu and Xu,

2014).

Furthermore, mean F1, F2, and F3 seem to be unrelated

to prosody. In fact, when measuring local formant-frequency

targets or formant ranges, then the formant frequencies refer to

segmental rather than prosodic characteristics, see, for example,

the explanations in Ménard et al. (2007). However, when being

measured in a literally suprasegmental way as mean resonance-

frequency levels across entire utterances, the formant frequencies

F1-F3 (and F4 too, see Rendall et al. 2005) become measures of

voice quality. More specifically, they represent characteristics of

vocal-tract length (or perceived speaker size), of the hollowness or

brilliance of the voice, and of the speaker’s articulatory setting, i.e.,

“vocal tract configurations that the articulators—including the jaw,

larynx, pharynx, tongue, and lips—tend to be deployed from (and

return to) in speech production” (Pratt, 2020:331). Such settings

give all consonants and vowels of a speaker a certain constant

coloring, and they play an important role in sociophonetics (Pratt,

2020). However, they also vary with the activity and potency

features of emotions (Waaramaa et al., 2010) and are, additionally,

very susceptible to effects of signal compression (Rozborski, 2007).

For these reasons, we included mean F1-F3.

Given that we measured six tonal and seven non-tonal

parameters, the acoustic analysis was based on 13 prosodic

parameters in total. All parameters were measured per sentence.

There were no pauses within the individual sentences. So, each

sentence corresponds to a major prosodic phrase or an inter-pausal

unit (IPU). Consequently, no pauses had to be taken into account

or excluded, e.g., when measuring the speaking rate.

In our within-subjects study design, a normalization of

measurements was basically not required. Individual speakers and

speaker gender were perfectly balanced. That is, each condition

included the same number of male and female tokens from the

same speakers. Yet, while the measurements of parameters like

speaking rate, intensity and F1, F2, and F3 differ between male

and female speakers on average by about 10% or less (Pausewang

Gelfer and Young, 1997; Iseli et al., 2007; Simpson, 2009), f0

measurements differ by almost factor two between male and female

speakers, i.e., about 10 semitones on average (Traunmüller and

Eriksson, 1995; Iseli et al., 2007; Simpson, 2009; Andreeva et al.,

2014; Pépiot, 2014). Therefore, to reduce the statistical noise in our

data, we gender-normalized the measurements of all f0 parameters

by downscaling the women’s values per speaker and IPU to the

men’s level based on the recent reference values in Pépiot (2014).

That is, all female f0 values were recalculated by subtracting 10.5

semitones from each measurement, thereby bringing the female

values in line with those of male speakers (the mean gender-specific

f0 difference in Pépiot, 2014, which corresponds well to the

difference determined by Andreeva et al., 2014).

This normalization represents a proportional rescaling of the

measurements that leaves all other differences and aspects of

the data intact. It was to be expected that at least part of the

compression effects of the codecs on emotion acoustics would

manifest itself in these other differences, such as distortions and

blurring of measured parameter values (in a way that is perceptually

relevant, see Siegert and Niebuhr, 2021b). For this reason we

also refrained from, for example, a z-score transformation of

measurements for all codec conditions of each sentence. Such a

normalization could mask compression effects of the codecs on the

emotion acoustics.

2.4. Statistics

The statistical analysis of the data was performed separately for

the six tonal and seven non-tonal parameters and based on two

types of tests. One of themwas amultivariate analysis of covariance,

MANCOVA. Two MANCOVAs tested separately for the sets of

tonal and non-tonal parameters the effects of codec compression

on the individual emotions, taking the individual four speakers into

account. That is, Emotion (7 levels) and Codec (6 levels) were the

two fixed factors (independent variables). The tonal and non-tonal

measurement sets were the dependent variables. Sentence (in terms

of its word count) was included as a covariate in the respective

statistical model.

However, the key type of test in our analysis was a series

of LDAs. We wanted to know whether the acoustic-prosodic

parameters would lead to a significant discrimination of the seven

emotion categories (including neutral) and whether and howmuch

this discrimination performance deteriorates in combination with

which compression codec. Therefore, the results of the LDAs

are reported first in the Results section below. Note that, unlike

analyzes of variance with equal sample sizes per condition, LDAs

are not considered to be robust to data distortions, as we assume

them to be more or less strongly created by the compression

codecs. What is a problem in other studies—because the goal is

usually to achieve the best possible discrimination, irrespective of

data properties—is desirable in our study. We want a procedure,

which provides us with sensitive insights into how the codecs

worsen acoustic emotion discrimination. The LDA gives us these

insights. Apart from that, the LDA is “currently the most used

method for emotion classification in vocal stimuli” (Lausen and

Hammerschmidt, 2020:3) and, thus, makes our results comparable

to those of previous studies, not all of which used normalized

or z-transformed data either (e.g., Hammerschmidt and Jürgens,

2007).

3. Results

Given our primary, emotion-oriented research questions,

the key statistical analyzes were a series of LDAs. We wanted

to know whether the acoustic-prosodic parameters would

Frontiers inCommunication 09 frontiersin.org

https://doi.org/10.3389/fcomm.2023.972182
https://www.frontiersin.org/journals/communication
https://www.frontiersin.org


Niebuhr and Siegert 10.3389/fcomm.2023.972182

lead to a significant discrimination of the seven emotion

categories (including neutral) and whether and how much this

discrimination performance deteriorates in combination with

which compression codec.

Figure 3 shows the key result of this series of predictive

models: Relative to the WAV reference files, there are clear codec-

specific effects on the discrimination performances of the LDAs.

However, these effects differ fundamentally for the tonal and non-

tonal parameters. For the tonal parameters, the discrimination

performance does not deteriorate by signal compression. Rather,

the opposite is true: it gets better. The WAV files achieve an

overall performance of 50.0% for the seven emotion categories

(chance level being 1/7 or 14.3%, because we have included 7

emotional categories and all are represented by the same number

of sentences. Thus, 50%, although it often refers to a chance level

performance, actually means a correct performance rate three times

better than chance level in our study). When using the MP3

and SPEEX codecs, this overall performance increases to 76.9%

and 69.2% respectively. An exactly opposite pattern emerged for

the non-tonal parameters. At 88.5%, the overall discrimination

performance of the seven emotion categories was highest for

the uncompressed WAV files. This reference performance then

gradually drops across the codecs, is only 80.8% for MP3 and

reaches the low point of 73.1% for SPEEX. Note, however, that all

of these performances are generally higher than for the six tonal

parameters.

In addition, Table 2 shows that the tonal and non-tonal

LDAs also differ with respect to the emotions they could only

discriminate poorly. For the tonal parameters, joy and sadness

as well as the neutral rendering of the sentences were confused

particularly often with other emotional categories. In the non-

tonal LDAs, high confusion rates also occurred for joy and sadness,

but additionally concerned anger, fear, and disgust. The neutral

sentences were hardly confused with other, emotionally produced

sentence. Furthermore, Table 2 shows that the top-three predictors

the overall discrimination performance relied on were remarkably

constant within each of the LDA series, the tonal and the non-tonal

one. In the tonal LDA series, the f0-range parameters hardly played

a role; what was primarily important were mean f0 level and the

frequency scaling of the local minimum and maximum f0 values.

In the non-tonal LDA series, the speaking rate did not play a major

role. Instead, prediction or discrimination performances mainly

FIGURE 3

Overall emotion-discrimination performances (in %) of LDA series conducted per codec for the sets of tonal (Left) and non-tonal (Right) parameters.

N = 26 per percentage.

TABLE 2 Summary of key results of the LDAs conducted per codec for the sets of tonal (top) and non-tonal (bottom) parameters; J, joy; B, boredom; S,

sadness; N, neutral; F, fear; D, disgust; A, anger.

Condition Wilks-λ Test statistics Top three predictors Least predictable emo.

WAV 0.069 χ2[36] = 51.223, p = 0.05 Mean f0, Min f0, f0 Std J, B, S

AMR-WB 0.062 χ2[36] = 58.670, p = 0.03 Mean f0, Min f0, f0 Max N, J, S

OPUS 0.047 χ2[36] = 50.100, p = 0.04 Mean f0, Min f0, f0 Std J, F, S

MP3 0.034 χ2[36] = 62.703, p = 0.004 f0 Min, f0 Max, Span N, J, B

SPEEX 0.033 χ2[36] = 63.235, p = 0.003 f0 Min, p90 Range, f0 Std N, D, S

WAV 0.017 χ2[42] = 73.461, p = 0.002 Mean F3, Mean int, H1-A3 J, A, S

AMR-WB 0.009 χ2[42] = 83.871, p < 0.001 Mean F3, Mean int, H1-H2 N, D, S

OPUS 0.011 χ2[42] = 81.384, p < 0.001 Mean F3, Mean int, Mean F1 F, J, A

MP3 0.013 χ2[42] = 78.722, p < 0.001 Mean F3, Mean int, H1-A3 N, J, S

SPEEX 0.024 χ2[42] = 67.424, p = 0.008 Mean F3, Mean F1, H1-A3 F, D, A

Blue highlighted table cells mark the tonal, red the non-tonal parameter results.
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TABLE 3 Summary of the two MANCOVAs.

Main e�ect non-tonal df1|df2 F p η2p Tonal df1|df2 F p η2p

Emotion H1-H2 6|112 15.113 <0.001 0.447 f0 min 6|112 24.897 <0.001 0.572

H1-A3 6|112 33.105 <0.001 0.639 f0 max 6|112 21.630 <0.001 0.537

Rate 6|112 20.251 <0.001 0.520 key 6|112 41.119 <0.001 0.688

Intensity 6|112 23.067 <0.001 0.553 span 6|112 7.710 <0.001 0.292

meanF1 6|112 4.295 0.001 0.187 std 6|112 20.721 <0.001 0.526

meanF2 6|112 4.550 <0.001 0.196 Range10-90 6|112 7.422 <0.001 0.284

meanF3 6|112 36.345 <0.001 0.661

Codec H1-H2 5|112 7.803 <0.001 0.258 f0 min 5|112 0.128 0.986 0.006

H1-A3 5|112 5.960 <0.001 0.210 f0 max 5|112 0.137 0.983 0.006

Rate 5|112 1.076 0.378 0.046 key 5|112 0.107 0.991 0.005

Intensity 5|112 11.254 <0.001 0.334 span 5|112 0.544 0.743 0.024

meanF1 5|112 1.231 0.299 0.052 f0 std 5|112 0.849 0.518 0.037

meanF2 5|112 2.708 0.024 0.108 Range10-90 5|112 3.363 0.007 0.131

meanF3 5|112 12.993 <0.001 0.367

Main e�ect non-tonal df1|df2 F p η2p Tonal df1|df2 F p η2p

Emotion H1-H2 6|112 15.113 <0.001 0.447 f0 min 6|112 24.897 <0.001 0.572

H1-A3 6|112 33.105 <0.001 0.639 f0 max 6|112 21.630 <0.001 0.537

Rate 6|112 20.251 <0.001 0.520 key 6|112 41.119 <0.001 0.688

Intensity 6|112 23.067 <0.001 0.553 span 6|112 7.710 <0.001 0.292

meanF1 6|112 4.295 0.001 0.187 std 6|112 20.721 <0.001 0.526

meanF2 6|112 4.550 <0.001 0.196 Range10-90 6|112 7.422 <0.001 0.284

meanF3 6|112 36.345 <0.001 0.661

Codec H1-H2 5|112 7.803 <0.001 0.258 f0 min 5|112 0.128 0.986 0.006

H1-A3 5|112 5.960 <0.001 0.210 f0 max 5|112 0.137 0.983 0.006

Rate 5|112 1.076 0.378 0.046 key 5|112 0.107 0.991 0.005

Intensity 5|112 11.254 <0.001 0.334 span 5|112 0.544 0.743 0.024

meanF1 5|112 1.231 0.299 0.052 f0 std 5|112 0.849 0.518 0.037

meanF2 5|112 2.708 0.024 0.108 Range10-90 5|112 3.363 0.007 0.131

meanF3 5|112 12.993 <0.001 0.367

Effect sizes are provided in terms of partial eta squared. Interaction effects were all not significant and are thus omitted in the summary.

Blue highlighted table cells mark the tonal, red the non-tonal parameter results.

relied on the voice-quality parameter H1-A3, the third formant F3,

and the mean intensity.

Besides the two LDA series, we also calculated multivariate

ANCOVAs, again separately for the two sets of tonal and non-

tonal parameters. Sentence was integrated into the analyzes as a

covariate. Emotion (7 levels) and Codec (6 levels) represented the

two between-subjects fixed factors. Table 3 summarizes the relevant

results of the two MANCOVAs. First, note that emotion resulted

in main effects for almost all acoustic-prosodic parameters. That is,

the seven emotional categories all differed clearly from each other in

terms of the measured parameter set. It is beyond the scope of this

study to present acoustic-prosodic profiles of all emotions involved,

i.e., to detail how each emotion was characterized prosodically

and to compare these characteristics to those carved out in

previous studies. It is also well known from these previous studies

how basic emotions differ acoustically (Mozziconacci, 2001; Gobl

and Chasaide, 2003; Bänziger and Scherer, 2005); in fact, some

comparative analyzes were also carried out for the EMODB corpus

used here (Raju et al., 2018). However, note that two consistent

patterns emerged across all 6 + 7 parameters. Firstly, the most

extreme values along each parameter were always associated with

the two emotions joy and anger on the one hand and boredom and

sadness on the other, see, for example, Figure 4A for the emotion-

specific f0 mimima. In contrast, there was, secondly, one single

emotion whose measured values consistently fell in the middle of

the acoustic range of all emotions. That is, one emotion did not

stand out in any acoustic direction: disgust.

Unlike for the fixed factor Emotion, Table 3 shows hardly

any significant main effects of Codec on the acoustic parameters,

especially not on the tonal ones. Only for the p90 range, there

was a significant main effect of Codec. For f0 std, the main effect

approached significance. A closer inspection of the data shows that

both effects are due to a fanning-out of the measured values. That

is, different emotions are influenced by compression in different

directions. For example, the f0 values of joy tend to increase,

whereas those of anger tend to decrease. Indications in these

directions can also be seen for the f0 minima in Figure 4A. The

fanning-out increases the acoustic distinctiveness of the emotions

under compression and, thus, also f0 range or variability measures,

especially in connection with MP3 and SPEEX. For the set of

non-tonal parameters, there are a few significant main effects

of Codec. This applies in particular to those measures that also

had high prediction performances in the LDAs: mean F3, mean

intensity, H1-A3, and H1-H2. The main effects are due to the

fact that the values drop and merge to various degrees under

speech compression. This applies even to something as popular

as MP3 compression, but is especially pronounced under SPEEX

compression. The latter is shown in Figure 4B, using the mean F3

as an example.

Note that there are no significant interactions of Emotion and

Codec. The covariate Sentence yielded no significant effect either.

4. Discussion and conclusion

4.1. Interpretation of the findings

Siegert and Niebuhr (2021a) found that strong speech signal

compression has significant effects on the perception of speaker

charisma and related speaker traits. The perceived speaker

charisma is significantly reduced, especially in connection with

MP3 and SPEEX compression. Siegert and Niebuhr (2021b)

then searched for the acoustic foundations of these perceptual

changes and were able to determine that (a) codec compression

systematically distorts the automatic measurements of charisma-

relevant acoustic-prosodic parameters, that (b) these distortions
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FIGURE 4

Estimated marginal means regarding Emotion*Codec interactions for the tonal parameter f0 min (A) and the non-tonal parameter mean F3 (B). Each

datapoint N = 26.

FIGURE 5

Spiderweb diagram for non-tonal (–) and tonal (–) moduli of the group centroids for the significant discriminant function(s) of the LDAs.

are less strong for f0-based parameters than for spectral ones

and less strong for holistic parameters than for ones that refer to

local measurements, and that (c) the magnitude of codec-induced

parameter changes correlates well with magnitude the lowering of

perceived speaker charisma caused by these changes.

Niebuhr and Siegert (2022) extended this line of research

to emotion perception using the same speech corpus (EMO-

DB) and the same rating scales; firstly, because emotions are

a key component of charisma (especially with regard to the

degree of arousal) and, secondly, because the question to what

extent codecs distort emotion recognition is of particular relevance

to the everyday life of language users. Niebuhr and Siegert

found that the seven emotion categories tested (incl. neutral)

formed individual perception profiles along charisma-related rating

scales—that compression blurred these emotion-specific profiles to

codec-specific degrees, up to the point that they completelymerged.

That is, emotional speaker states were no longer perceptually

distinct. Analogous to Siegert and Niebuhr (2021b), the task of the

present acoustic analysis was to look for the foundations of these

perceptual findings. If, to what degree, and along which parameters

does an acoustic analysis reflect these perceptual findings? The

conducted acoustic analysis relied on the same prosodic parameters

as in Siegert and Niebuhr (2021b), i.e., temporal parameters were

not included as they have already proved irrelevant in Siegert and

Niebuhr (2021b).

Three questions were addressed. The first question concerned

the qualitative nature of the connection between the perceptual

distortions and their prosodic correlates: How does speech signal

compression affect the acoustics of different emotions? The second

question was conceptual in nature and asked which further insights

can be gained from the above connection about the acoustic

correlates of charisma and the relation of charisma and (different)

emotions: How is emotion acoustics related to listener ratings of

perceived speaker charisma and related traits? The third question

Frontiers inCommunication 12 frontiersin.org

https://doi.org/10.3389/fcomm.2023.972182
https://www.frontiersin.org/journals/communication
https://www.frontiersin.org


Niebuhr and Siegert 10.3389/fcomm.2023.972182

was of a more specific, practical nature and asked which concrete

acoustic patterns could be associated to the distortions in emotion

perception: Does themerging of emotions along the charisma scales

have an acoustic correspondence, and if so, along which prosodic

parameters? The results of the present acoustic analysis provide the

following answers to these three questions.

How does speech signal compression affect the acoustics

of different emotions? The most important answer to this

question is that the emotional acoustics are significantly and in

some conditions to a considerable degree influenced by signal

compression. The main effects of Codec in the MANCOVAs show

this very clearly. The nature of this influence is complex. For

f0 parameters, we find a fanning out of the measured values in

emotion-specific directions. The (automatically measured) values

can deviate by up to 20% from the values of the WAV reference

condition. In particular, measures such as the (p90) f0 range or

the f0 variability (std. dev.) are affected, which relate multiple

values to one another, including local landmark values such as

the f0 minimum. In the WAV condition, for example, the f0

variability values of joy and anger are only about 4 Hz apart

(48.5 Hz vs. 52.7 Hz). Under MP3 compression, this difference

increases to 22 Hz (40.3 Hz vs. 62.9 Hz)—and under SPEEX

compression even to 29 Hz (38.2 Hz vs. 67.6 Hz). Figure 4A

illustrates that this effect is also there for the f0 minimum,

albeit less pronounced. For spectral measures, the effects of

signal compression are qualitatively different. First, they are

more numerous and stronger than for f0 (i.e. there are more

significant main effects of Codec). Thus, this study replicates

the findings of Siegert and Niebuhr (2021b), who also found

that f0 measures are less susceptible to signal-compression effects

than non-tonal measures. That f0 parameters are more robust

against codec compression than spectral parameters is moreover

in accord with van Son (2005) and Bollepalli (2013), whose

studies were concerned with MP3 and Ogg Vorbis compressions.

Our results suggest that this difference between the two different

types of measures generally applies to codec compression. Second,

the effects of compression on non-tonal parameters are more

homogeneous across emotions. That is, the codecs affect the levels

of measured values, but they do this similarly for all emotions,

so that the acoustic distances between the emotions are more

strongly preserved. A notable exception is SPEEX. This codec

leads to an extensive merging of the non-tonal measurements

across all emotions, as is exemplified in Figure 4B for the mean

F3. The described differences are responsible for the fact that the

LDA-based emotion discrimination gets almost 20% better under

compression for tonal but more than 15% worse for non-tonal

parameters.

The second question was: How is emotion acoustics related to

listener ratings of perceived speaker charisma and related traits?

Our findings provide a number of insights related to this question,

based on clear parallels between the present results and the listener

ratings in Niebuhr and Siegert (2022). In the latter study, joy

and anger emerged as similarly charismatic emotions, and in fact

these two emotions were also the most frequently confused ones

in our acoustics-based LDAs, particularly in the WAV condition.

Joy and anger stand out from the other emotion categories (incl.

neutral) by the following characteristics: low values of H1-H2

and H1-A3, i.e. a shallow spectral slope, a high intensity level,

high F1 values in combination with low F2 and F3 values, as

well as the highest/largest f0 values of all emotions, including

those of variability and range. These acoustic profiles are broadly

consistent with those described as charisma-inducing in Niebuhr

and Silber-Varod (2021). By far the most uncharismatic emotion

in the perception study by Niebuhr and Siegert (2022) was

disgust, ahead of boredom and sadness. In the present acoustic

analysis, disgust emerged as the emotion whose acoustics was

in the middle of all emotions. Expressing disgust meant to be

neither particularly fast nor slow, neither high-pitched nor low-

pitched, neither loud nor soft. Disgust meant relative mediocrity.

This seems to imply that, not to stand out means not to be

charisma-inducing. Furthermore, Niebuhr & Siegert reported that

no significant emotion differentiation based on the charisma-

related scales was possible under SPEEX. The present data show

that the emotion discrimination of the LDAs improved for the f0

parameters, but worsened for the temporal and spectral parameters.

All in all, these parallels between the present findings and those

of Niebuhr & Siegert allow the following conclusions: In the tonal

domain, charisma perception is essentially based on raised, more

extensive, and more frequent (i.e., more variable) f0 movements.

In the non-tonal domain, an essential ingredient of charismatic

speech is an increased “vocal effort”, which (in addition to a

raised f0) manifests itself in higher F1 and H1-A3 values (Liénard,

1999). The speaker’s voice is loud, sounds resonant and is tense

(negative H1-H2 values) than rather than breathy and thin. The

speaker sounds big, i.e., the acoustic body size is high (lower F2

and F3 values; González, 2004). Moreover, these spectral aspects

of prosody seem to carry more weight for perceived speaker

charisma than the tonal aspects (in view of the comparisons

between LDAs and the listener ratings in Niebuhr and Siegert

2022). This conclusion also fits with the latest data fromNiehof and

Niebuhr (2022), who concluded on the basis of their analyzes that

a good tonal performance is required for investor pitches to win

competitions—but it is a good spectral (and temporal) prosodic

performance that decides about whether investor pitches loose

competitions.

The third question was: Does the merging of emotions along

the charisma scales have an acoustic correspondence, and if so,

along which prosodic parameters? The answer to the second

question already indicated that the answer to the third question

is clearly positive. There are remarkable parallels between the

codec-related merging of the emotion categories along the

listener ratings in Niebuhr and Siegert (2022) on the one hand

and the confusion and merging of emotion categories in the

present LDAs on the other hand. Joy and anger were rated

similarly charismatic in Niebuhr and Siegert (2022) and were

particularly often confused in the present LDAs. The opposite

is true for boredom and anger. These two emotions received

very different charisma ratings in Niebuhr and Siegert (2022) and

were not confused at all in the present LDAs. The charisma-

related emotion ratings in Niebuhr and Siegert (2022) merged

under SPEEX compression, and the same was true here to a

large extent for the spectral and temporal prosodic parameters.

Accordingly, the merging of the listener ratings in Niebuhr and

Siegert (2022) is reflected here in the spectral dimensions—most
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strongly in the following three: intensity (RMS), mean F2 and

mean F3.

To conclude the discussion of the results, the displays

in Figure 5 provide a graphical summary of the findings.

Shown are the largest moduli of the group centroids for the

significant discriminant function(s) of the LDA—separately for

each individual emotion. The centroids are mulivariate averages.

They quantify how much a group—in this case an emotion—

differs in standard deviation units from the zero mean of the

discriminant function. They are thus a measure of the separability

of the individual emotions from one another in the multivariate

acoustic parameter space. As in Figure 3, the tonal and non-tonal

values are differently color coded. At the level of the individual

codecs it can be seen in Figure 5 that distinct shapes and area sizes

emerge from the moduli of all emotions. The area size directly

reflects the overall degree to which a codec can separate the

individual emotions. In addition, how complementary (or non-

complementary) the areas of the non-tonal and tonal moduli are

in the value space contributes to the overall separability, too—

as does a more circular shape as a sign of a more homogeneous

discrimination performance across emotions. Consistent with the

percentages in Figure 3, we see in Figure 5 that for WAV, as well

as for OPUS and AMR-WB, the non-tonal areas are significantly

larger than the tonal area. For WAV and OPUS, the areas are more

circular, though, than the rather angular area of AMR-WB. We can

also see that the non-tonal area for MP3 is already smaller than

for the other three codecs, and in the case of SPEEX compression

it shrinks considerably again. Simultaneously, SPEEX yielded the

largest tonal area of all codecs. It is even larger than SPEEX’s non-

tonal area, albeit the least circular of all codecs. MP3 compression

created a similarly large tonal area as SPEEX, but more circularly,

which led to the overall highest tonal separation performance of

all codecs (cf. Figure 3). For the WAV reference condition and

the other two codecs, OPUS and AMR-WB, the tonal area is

so much smaller than for SPEEX and MP3 that it lies entirely

within the non-tonal area. Furthermore, the displays in Figure 5

also reflect the intermediate acoustic expression of disgust (in the

form of consistently low group centroid moduli) and the generally

more pronounced prosodies of anger and joy, with group centroid

moduli for the latter emotion being higher than for the former,

which reflects that anger was more often confused with joy than

joy with anger.

At the beginning of the paper and in its title, we asked

whether there is a digital “flat affect” for emotional prosody. At

the end of the results’ discussion, the answer to this question

is a conditional “yes”. Overall, this digital “flat affect” seems to

apply more strongly to perception, for which emotional mergers

were even more pronounced than in acoustics, and in the latter

domain the “flat affect” did not apply to all codecs and all

prosodic parameters. The non-tonal parameters seemed to be

affected more than the tonal ones. In any case, it is particularly

relevant for the nature of the “flat affect” that high-arousal

emotions are more likely to be affected by acoustical codec

distortions. For this reason, we can conclude even in view of

our study’s limitations (see Section 4.3) that a digital “flat affect”

cannot be categorically ruled out in the everyday use of digital

communication devices.

4.2. Toward explaining the compression
e�ects

Finding technical explanations for the codec-related distortions

of the acoustic-prosodic measurements goes beyond the aims of

this study. Our goal was to test the audio files for the existence

of such distortions and to examine the extent to which they

match the results pattern of emotion perception from Niebuhr and

Siegert (2022). Explaining the distortions technically would require

correcting or manipulating the assumed origins of the distortions

in the codecs so as to compare their new acoustic outputs and

measurements with those of the original codec versions. This is

an engineering question and no longer a socio- or psycho-phonetic

question. However, paving the way to this engineering question, we

offer below some assumptions about which basic mechanisms in

the codecs could be responsible for the distortions.

First, we suspect the frame size of the codecs to be one

of the three main causes, especially if the frame size is large

and/or fixed. One of the defining characteristics of emotional (and

also charismatic) speech vs. matter-of-fact speech is its altered

signal dynamics (Banse and Scherer, 1996; Mozziconacci, 2001;

Gobl and Chasaide, 2003; Niebuhr and Silber-Varod, 2021 for

charisma). For higher arousal emotions like anger and joy, prosodic

changes take place faster, and they involve larger contrasts, i.e.,

the used value range increases and syntagmatic differences are

realized more pronounced, such as that between stressed and

unstressed syllables. The opposite is true for low-arousal, low-

dynamics emotions like sadness. It is plausible to assume that

codecs can only inadequately represent altered dynamics, which

deviate greatly from the emotionally neutral standard, if the

frame size is not appropriate. A too large frame size means, for

high arousal emotions, more changes than the codec can handle.

Conversely, if the frame size is too small and the signal dynamics

is too low, relevant prosodic changes could be overlooked by

the codec. This would explain why emotions with particularly

high/low arousal levels were (in terms of measurement distortions)

acoustically changed the most by the codecs, either in the direction

of better or worse discrimination to neighboring emotions in the

LDA series. It would additionally explain why the MP3 and SPEEX

compressions with their relatively large, fixed frame sizes of 24

ms or 30 ms (cf. Table 1) caused the greatest acoustic distortions.

Furthermore, it would also explain why speaking rate, i.e., the

measurement of defined intensity peaks and their frequency of

occurrence per second, was not a major emotion discrimination

factor for the compressed audios, although the general relevance

of this factor is well documented (Banse and Scherer, 1996;

Mozziconacci, 2001). Intensity peaks have a significantly higher

dynamics than, for example, f0 or formant transitions and are

therefore more susceptible to measurement errors and more

variability within and between the emotion categories. In fact, for

instance for SPEEX, the average speaking rate across all emotions is

about 10% lower, i.e., intensity peaks got lost in the compression,

while the variability of the speaking rate across all emotions

increased.

A second reason, directly related to the first, we suspect

is the size and adaptivity of a codec’s codebooks. A codebook

contains the range of quantization vectors that a codec is able
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to use. This applies in particular to the source signal. In the

case of emotional speech, this source signal deviates partially or

continuously from the modal voice signal of neutral utterances.

This, in connection with the different f0 dynamics, could exceed the

possibilities of some codebooks, such as SPEEX, whose codebook

is not adaptive but hard-coded. The two codecs AMRWB and

OPUS have larger and more adaptive codebooks. Only MP3 is

based on a completely different compression method that does

not require codebooks. It is striking in this context that MP3 was

the only compression method that had the f0 range among the

top-three tonal predictors and the only one whose non-tonal top-

three predictors were identical to those of the WAV reference

condition.

The third and perhaps most obvious reason is the range

of spectral frequencies that the codecs took into account. We

concluded here in line with, for example, Gobl and Chasaide

(2003) that emotions are, in both dimensions arousal and valence,

significantly defined by (differences in) voice quality, i.e., by

(differences in) spectral energy distributions. Since the codecs took

different spectral frequency ranges into account, it was therefore

to be expected that this would cause perceptual distortions that

match acoustically measured parameter distortions. SPEEX only

covered the lower 4 kHz of the speech signal, AMR-WB reached

up to 6.4 kHz, and OPUS included spectral frequencies until about

8 kHz. This order corresponds to the performance that the codecs

achieved in terms of perceptual and acoustic discrimination relative

to the WAV reference condition. Furthermore, it is consistent

with this frequency-range explanation that emotions with a tenser

voice and hence with a shallower spectral slope compared to

neutral utterances—i.e., fear, anger, disgust—lost more of their

acoustic discriminability through codec compression than other

emotions.

4.3. Limitations and outlook

The present study had some limitations. This includes,

among other things, that (1) the acoustic analysis was based

on comparatively few speakers, that (2) the speech material

was based on enacted emotions, and that (3) only very high

compression rates of selected codecs were examined. For the

present question, these limitations were acceptable. As we argued

in 2.1, the aim here was to investigate the general nature

of acoustic distortion effects caused by some technical signal-

processing algorithms and not, for example, to separate meaningful

prosodic patterns from variable human speech behavior. For the

success of this investigation, it was the category diversity of the

speech material that mattered and not its ecological validity—

also because Scherer (2013) showed that the prosody of enacted

emotions can basically be comparable with that of authentic

emotional field recordings. It was also useful and reasonable here

to begin this investigation with looking at a very high compression

levels, for which the strongest effects could be expected. In

addition, note that all limitations were not only acceptable—they

were mandatory, because as we wanted to project the measured

acoustic distortion effects onto the perception results of Niebuhr

and Siegert (2022), which required using the same speech data,

compression methods, and compression levels as in the latter

study.

Although this projection was successful in that it

revealed parallels between acoustic distortions and the

listener ratings in Niebuhr and Siegert (2022), the above

points (1)-(3) remain relevant limitations of this study.

Regardless of these limitations, there can be no doubt in

view of Section 4.1 that we were able to show here that

codec compression of speech signals not only influences the

naturalness and intelligibility of matter-of-fact utterances.

It also influences the acoustics of emotions and—as shown

by Niebuhr and Siegert (2022)—the identification of

emotions in human speech. In this respect, the present

data represent a call-to-action to go beyond phoneme and

word recognition as performance criteria in researching

and developing speech-signal compression procedures.

Everyday conversations include a lot more than conveying

and requesting propositional content, but this fact is currently

not sufficiently reflected in speech compression/transmission

technology.

When it comes to the details and diversification of this general

call-to-action, the above limitations become relevant. Future

research must therefore focus on comparatively examining the

acoustics and perception of emotions—and higher-level concepts

such as speaker charisma—taking into account the abundance of

emotional variation and the availability of other codec variants and

compression levels.

The first task of such follow-up studies should be to apply

the codec variants and compression levels tested here to a

wider range of speech material, i.e., to more speakers and

more utterances. An extended speaker sample means additional

voice-quality and f0-level conditions, and it also opens up the

possibility of a separate investigation of speaker-sex effects (which

are already well documented for charisma and uncompressed

emotions, cf. Parkins, 2012; Niehof and Niebuhr, 2022). Testing

more utterances means looking at a more diverse interplay

of segmental and prosodic phenomena and, thus, at a richer

and more variable prosody. In addition, follow-up studies could

also test other languages and/or in-situ recorded emotions.

For example, we assumed here that emotions which are less

clearly pronounced (compared to enacted ones) would exacerbate

compression-induced the acoustic overlap and, thus, the perceptual

confusion of emotional categories. In principle, however, it is also

possible that less strong emotions reduce the signal distortion

caused by codecs as less strong typically means less extreme

prosodic dynamics, in this way preserving the identification of

emotional categories. Overall, our speaker and utterance samples

are clearly too small to draw differentiated conclusions about

exactly how, where, and under what conditions codecs weaken

emotional signals.

A second task of follow-up studies, which is orthogonal

to the first one, is to vary the codecs themselves, either

with respect to the levels, versions, and types of codec

compression or by iteratively modifying and testing the

compression algorithms or procedures themselves. The

first type of variation is relevant for everyday life, for

example, in that it will allow determining compression

thresholds up to which the distortion of the emotion
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acoustics and the identification of emotional categories

are still acceptable. The targeted modification of the

compression algorithms or procedures, on the other hand,

is of conceptual relevance in that will allow revealing

sources of distortions, to understand them and, if possible, to

minimize them.

A third task of follow-up studies could ultimately be to

use speech compression not as a research topic but as a

research tool, for example, in order to gain insights into

the importance of tonal and non-tonal prosodic cues to

emotions, charisma, and related phenomena. The opposite LDA

performances found here for tonal and non-tonal prosodic

parameters, in combination with previous perception results

that more closely resemble the non-tonal LDA performances

(Niebuhr and Siegert, 2022) show the potential of this approach.

This is all the more relevant since previous research into

phenomena such as emotions and charisma has often focused

on tonal parameters, while the factor voice-quality is currently

gaining attention.
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